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Abstract

Word segmentation plays a pivotal role in
improving any Arabic NLP application.
Therefore, a lot of research has been spent
in improving its accuracy. Off-the-shelf
tools, however, are: i) complicated to use
and ii) domain/dialect dependent. We ex-
plore three language-independent alterna-
tives to morphological segmentation us-
ing: 1) data-driven sub-word units, ii)
characters as a unit of learning, and iii)
word embeddings learned using a charac-
ter CNN (Convolution Neural Network).
On the tasks of Machine Translation and
POS tagging, we found these methods to
achieve close to, and occasionally surpass
state-of-the-art performance. In our anal-
ysis, we show that a neural machine trans-
lation system is sensitive to the ratio of
source and target tokens, and a ratio close
to 1 or greater, gives optimal performance.

1 Introduction

Arabic word segmentation has shown to signifi-
cantly improve output quality in NLP tasks such
as machine translation (Habash and Sadat, 2006;
Almabhairi et al., 2016), part-of-speech tagging
(Diab et al., 2004; Habash and Rambow, 2005),
and information retrieval (M. Aljlayl and Gross-
man, 2002). A considerable amount of research
has therefore been spent on Arabic morphologi-
cal segmentation in the past two decades, rang-
ing from rule-based analyzers (Beesley, 1996) to
state-of-the-art statistical segmenters (Pasha et al.,
2014; Abdelali et al., 2016; Khalifa et al., 2016).
Morphological segmentation splits words into
morphemes. For example, *‘wkiAbnA” “\,LS 7y

(gloss: and our book) is decomposed into its stem
and affixes as: “w+ ktAb +nA” Uy O 4 o7
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Despite the gains obtained from using morpho-
logical segmentation, there are several caveats to
using these tools. Firstly, they make the train-
ing pipeline cumbersome, as they come with
complicated pre-processing (and additional post-
processing in the case of English-to-Arabic trans-
lation (El Kholy and Habash, 2012)). More impor-
tantly, these tools are dialect- and domain-specific.
A segmenter trained for modern standard Arabic
(MSA) performs significantly worse on dialectal
Arabic (Habash et al., 2013), or when it is applied
to a new domain.

In this work, we explore whether we can avoid
the language-dependent pre/post-processing com-
ponents and learn segmentation directly from the
training data being used for a given task. We in-
vestigate data-driven alternatives to morphologi-
cal segmentation using i) unsupervised sub-word
units obtained using byte-pair encoding (Sennrich
et al., 2016), ii) purely character-based segmen-
tation (Ling et al., 2015), and iii) a convolutional
neural network over characters (Kim et al., 2016).

We evaluate these techniques on the tasks
of machine translation (MT) and part-of-speech
(POS) tagging and compare them against mor-
phological segmenters MADAMIRA (Pasha et al.,
2014) and Farasa (Abdelali et al., 2016). On
the MT task, byte-pair encoding (BPE) performs
the best among the three methods, achieving very
similar performance to morphological segmenta-
tion in the Arabic-to-English direction and slightly
worse in the other direction. Character-based
methods, in comparison, perform better on the
task of POS tagging, reaching an accuracy of
95.9%, only 1.3% worse than morphological seg-
mentation. We also analyze the effect of segmen-
tation granularity of Arabic on the quality of MT.
We observed that a neural MT (NMT) system is
sensitive to source/target token ratio and performs
best when this ratio is close to or greater than 1.

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 601-607
Vancouver, Canada, July 30 - August 4, 2017. (©)2017 Association for Computational Linguistics
https://doi.org/10.18653/v1/P17-2095


https://doi.org/10.18653/v1/P17-2095
https://doi.org/10.18653/v1/P17-2095

2 Segmentation Approaches

We experimented with three data-driven segmen-
tation schemes: 1) morphological segmentation, ii)
sub-word segmentation based on BPE, and iii) two
variants of character-based segmentation. We first
map each source word to its corresponding seg-
ments (depending on the segmentation scheme),
embed all segments of a word in vector space
and feed them one-by-one to an encoder-decoder
model. See Figure 1 for illustration.

2.1 Morphological Segmentation

There is a vast amount of work on statistical seg-
mentation for Arabic. Here we use the state-
of-the-art Arabic segmenter MADAMIRA and
Farasa as our baselines. MADAMIRA involves
a morphological analyzer that generates a list of
possible word-level analyses (independent of con-
text). The analyses are provided with the original
text to a Feature Modeling component that
applies an SVM and a language model to make
predictions, which are scored by an Analysis
Ranking component. Farasa on the other hand
is a light weight segmenter, which ignores context
and instead uses a variety of features and lexicons
for segmentation.

2.2 Data Driven Sub-word Units

A number of data-driven approaches have been
proposed that learn to segment words into smaller
units from data (Demberg, 2007; Sami Virpioja
and Kurimo, 2013) and shown to improve phrase-
based MT (Fishel and Kirik, 2010; Stallard et al.,
2012). Recently, with the advent of neural MT,
a few sub-word-based techniques have been pro-
posed that segment words into smaller units to
tackle the limited vocabulary and unknown word
problems (Sennrich et al., 2016; Wu et al., 2016).

In this work, we explore Byte-Pair Encoding
(BPE), a data compression algorithm (Gage, 1994)
as an alternative to morphological segmentation
of Arabic. BPE splits words into symbols (a se-
quence of characters) and then iteratively replaces
the most frequent symbols with their merged vari-
ants. In essence, frequent character n-gram se-
quences will be merged to form one symbol.
The number of merge operations is controlled by
a hyper-parameter OP which directly affects the
granularity of segmentation: a high value of OP
means coarse segmentation and a low value means
fine-grained segmentation.
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Figure 1: Segmentation approaches for the word
“b$rhm” “ea A7 the blue vectors indicate the

embedding(s) used before the encoding layer.

2.3 Character-level Encoding

Character-based models have been found to be
effective in translating closely related language
pairs (Durrani et al., 2010; Nakov and Tiedemann,
2012) and OOV words (Durrani et al., 2014). Ling
et al. (2016) used character embeddings to address
the OOV word problem. We explored them as an
alternative to morphological segmentation. Their
advantage is that character embeddings do not re-
quire any complicated pre- and post-processing
step other than segmenting words into characters.
The fully character-level encoder treats the source
sentence as a sequence of letters, encoding each
letter (including white-space) in the LSTM en-
coder (see Figure 1). The decoding may follow
identical settings. We restricted the character-level
representation to the Arabic side of the parallel
corpus and use words for the English side.

Character-CNN  Kim et al. (2016) presented a
neural language model that takes character-level
input and learns word embeddings using a CNN
over characters. The embedding are then pro-
vided to the encoder as input. The intuition is
that the character-based word embedding should
be able to learn the morphological phenomena
a word inherits. Compared to fully character-
level encoding, the encoder gets word-level em-
beddings as in the case of unsegmented words
(see Figure 1). However, the word embedding
is intuitively richer than the embedding learned
over unsegmented words because of the convolu-
tion over characters. The method was previously
shown to help neural MT (Belinkov and Glass,
2016; Costa-jussa and Fonollosa, 2016). Belinkov
et al. (2017) also showed character-based repre-
sentations learned using a CNN to be superior, at
learning word morphology, than their word-based
counter-parts. However, they did not compare
these against BPE-based segmentation. We use
character-CNN to aid Arabic word segmentation.



Arabic-to-English

# SEG tstll  tstl2  tstl3

tstl4 | AVG. || tstll

English-to-Arabic
tstl2  tstl3  tstl4 | AVG.

UNSEG

257 282 273 239 ‘

26.3 H 15.8 17.1 18.1

155 | 16.6

MORPH | 292 33.0 329 283
cCNN 29.0 32.0 325 280
CHAR 28.8 318 325 278
BPE 29.7 325 33.6 284

30.9 165 188 204 172 18.2
30.3 143 128 13.6 126 133
30.2 153 171 180 153 16.4
31.1 175 18.0 20.0 16.6 18.0

Table 1: Results of comparing several segmentation strategies.

3 Experiments

In the following, we describe the data and system
settings and later present the results of machine
translation and POS tagging.

3.1 Settings

Data The MT systems were trained on 1.2 Mil-
lion sentences, a concatenation of TED corpus
(Cettolo et al., 2012), LDC NEWS data, QED
(Guzman et al., 2013) and an MML-filtered (Axel-
rod et al., 2011) UN corpus.! We used dev+test10
for tuning and tstl11-14 for testing. For English-
Arabic, outputs were detokenized using MADA
detokenizer. Before scoring the output, we nor-
malized them and reference translations using the
QCRI normalizer (Sajjad et al., 2013).

POS tagging We used parts 2-3 (v3.1-2) of the
Arabic Treebank (Mohamed Maamouri, 2010).
The data consists of 18268 sentences (483,909
words). We used 80% for training, 5% for devel-
opment and the remaining for test.

Segmentation MADAMIRA and Farasa nor-
malize the data before segmentation. In order to
have consistent data, we normalize it for all seg-
mentation approaches. For BPE, we tuned the
value of merge operations OP and found 30k and
90k to be optimal for Ar-to-En and En-to-Ar re-
spectively. In case of no segmentation (UNSEG)
and character-CNN (cCNN), we tokenized the
Arabic with the standard Moses tokenizer, which
separates punctuation marks. For character-level
encoding (CHAR), we preserved word boundaries
by replacing space with a special symbol and then
separated every character with a space. English-
side is tokenized/truecased using Moses scripts.

Neural MT Settings We used the seg2seq-
attn (Kim, 2016) implementation, with 2 layers of

"We used 3.75% as reported to be optimal filtering thresh-
old in (Durrani et al., 2016).
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LSTM in the (bidirectional) encoder and the de-
coder, with a size of 500. We limit the sentence
length to 100 for MORPH, UNSEG, BPE, cCNN,
and 500 for CHAR experiments. The source and
target vocabularies are limited to 50k each.

3.2 Machine Translation Results

Table 1 presents MT results using various segmen-
tation strategies. Compared to the UNSEG system,
the MORPH system? improved translation quality
by 4.6 and 1.6 BLEU points in Ar-to-En and En-
to-Ar systems, respectively. The results also im-
proved by up to 3 BLEU points for cCNN and
CHAR systems in the Ar-to-En direction. How-
ever, the performance is lower by at least 0.6
BLEU points compared to the MORPH system.

In the En-to-Ar direction, where cCNN and
CHAR are applied on the target side, the perfor-
mance dropped significantly. In the case of CHAR,
mapping one source word to many target char-
acters makes it harder for NMT to learn a good
model. This is in line with our finding on using
a lower value of OP for BPE segmentation (see
paragraph Analyzing the effect of OP). Surpris-
ingly, the cCNN system results were inferior to the
UNSEG system for En-to-Ar. A possible explana-
tion is that the decoder’s predictions are still done
at word level even when using the cCNN model
(which encodes the target input during training
but not the output). In practice, this can lead to
generating unknown words. Indeed, in the Ar-to-
En case cCNN significantly reduces the unknown
words in the test sets, while in the En-to-Ar case
the number of unknown words remains roughly
the same between UNSEG and cCNN.

The BPE system outperformed all other systems
in the Ar-to-En direction and is lower than MORPH
by only 0.2 BLEU points in the opposite direction.
This shows that machine translation involving the

%Farasa performed better in the Ar-to-En experiments and
MADAMIRA performed better in the En-to-Ar direction. We

used best results as our baselines for comparison and call
them MORPH.



Arabic language can achieve competitive results
with data-driven segmentation. This comes with
an additional benefit of language-independent pre-
processing and post-processing pipeline. In an
attempt to find, whether the gains obtained from
data-driven segmentation techniques and morpho-
logical segmentation are additive, we applied BPE
to morphological segmented data. We saw further
improvement of up to 1 BLEU point by using the
two segmentations in tandem.

Analyzing the effect of OP: The unsegmented
training data consists of 23M Arabic tokens and
28M English tokens. The parameter OP decides
the granularity of segmentation: a higher value
of OP means fewer segments. For example, at
0P=50k, the number of Arabic tokens is greater by
7% compared to OP=90k. We tested four differ-
ent values of OP (15k, 30k, 50k, and 90k). Figure
2 summarizes our findings on test-2011 dataset,
where x-axis presents the ratio of source to tar-
get language tokens and y-axis shows the BLEU
score. The boundary values for segmentation are
character-level segmentation (OP=0) and unseg-
mented text (OP=N).> For both language direc-
tions, we observed that a source to target token ra-
tio close to 1 and greater works best provided that
the boundary conditions (unsegmented Arabic and
character-level segmentation) are avoided. In the
En-to-Ar direction, the system improves for coarse
segmentation whereas in the Ar-to-En direction,
a much finer-grained segmentation of Arabic per-
formed better. This is in line with the ratio of to-
kens generated using the MORPH systems (Ar-to-
En ratio = 1.02). Generalizing from the perspec-
tive of neural MT, the system learns better when
total numbers of source and target tokens are close
to each other. The system shows better tolerance
towards modeling many source words to a few tar-
get words compared to the other way around.

Discussion: Though BPE performed well for
machine translation, there are a few reservations
that we would like to discuss here. Since the
main goal of the algorithm is to compress data
and segmentation comes as a by-product, it often
produces different segmentations of a root word
when occurred in different morphological forms.
For example, the words driven and driving are seg-
mented as driv en and drivi ng respectively. This
adds ambiguity to the data and may result in un-

3 is the number of types in the unsegmented corpus.
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3
0.82 0.89 0.93 0.97 1.15 4.37
ARJ/EN token ratio

0.23 0.87 1.01 1.10 1.12 1.25
EN/AR token ratio

Figure 2: Source/Target token ratio with varying
OP versus BLEU. Character and unsegmented sys-
tems can be seen as BPE with OP=0 and OP=/N.

expected translation errors. Another limitation of
BPE is that at test time, it may divide the unknown
words to semantically different known sub-word
units which can result in a semantically wrong
translation. For example, the word “ lz%” is un-
known to our vocabulary. BPE segmented it into
known units which ended up being translated to
courage. One possible solution to this problem is;
at test time, BPE is applied to those words only
which were known to the full vocabulary of the
training corpus. In this way, the sub-word units
created by BPE for the word are already seen in
a similar context during training and the model
has learned to translate them correctly. The down-
side of this method is that it limits BPE’s power to
segment unknown words to their correct sub-word
units and outputs them as UNK in translation.

3.3 Part of Speech Tagging

We also experimented with the aforementioned
segmentation strategies for the task of Arabic
POS tagging. Probabilistic taggers like HMM-
based (Brants, 2000) and sequence learning mod-
els like CRF (Lafferty et al., 2001) consider pre-
vious words and/or tags to predict the tag of
the current word. We mimic a similar setting
but in a sequence-to-sequence learning frame-
work. Figure 3 describes a step by step procedure
to train a neural encoder-decoder tagger. Con-
sider an Arabic phrase “klm >SdqA}k b$rhm”

“op iy b X (f > (gloss: call your friends
give them the good news), we want to learn the tag



context window of length N

NOUN PRON
o4
borttd

i

— Adg;,. @ ®
c:mg PO mbeddmg
Ntexy  ~m _¢

Figure 3: Seq-to-Seq POS Tagger: The number of
segments and the embeddings depend on the seg-
mentation scheme used (See Figure 1).

of the word “S"“” » 297 using the context of the pre-

vious two words and their tags. First, we segment
the phrase using a segmentation approach (step 1)
and then add POS tags to context words (step 2).
The entire sequence with the words and tags is
fed to the sequence-to-sequence framework. The
embeddings (for both words and tags) are learned
jointly with other parameters in an end-to-end
fashion, and optimized on the target tag sequence;
for example, “NOUN PRON” in this case.

For a given word w; in a sentence s =
{wy,wa, ...,wp} and its POS tag t;, We formu-
late the neural TAGGER as follows:

SEGMENTER(T) : Vw; — S;
TAGGER : S;_2 5,1 S; —~ t;

where S; is the segmentation of word w;. In case
of UNSEG and cCNN, S; would be same as w;.
SEGMENTER here is identical to the one described
in Figure 1. TAGGER is a NMT architecture that
learns to predict a POS tag of a segmented/unseg-
mented word given previous two words.*

Table 2 summarizes the results. The MORPH
system performed best with an improvement of
5.3% over UNSEG. Among the data-driven meth-
ods, CHAR model performed best and was behind
MORPH by only 0.3%. Even though BPE was infe-
rior compared to other methods, it was still better
than UNSEG by 4%.°

Analysis of POS outputs We performed a
comparative error analysis of predictions made

*We also tried using previous words with their POS tags
as context but did not see any significant difference in the end
result.

3Optimizing the parameter OP did not yield any difference
in accuracy. We used 10k operations.
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SEG | UNSEG cCNN  BPE

ACC | 909

MORPH | CHAR
96.2 \ 95.9 958 949

Table 2: POS tagging with various segmentations

through MORPH, CHAR and BPE based segmen-
tations. MORPH and CHAR observed very similar
error patterns, with most confusion between For-
eign and Particle tags. In addition to this confu-
sion, BPE had relatively scattered errors. It had
lower precision in predicting nouns and had con-
fused them with adverbs, foreign words and adjec-
tives. This is expected, since most nouns are out-
of-vocabulary terms, and therefore get segmented
by BPE into smaller, possibly known fragments,
which then get confused with other tags. However,
since the accuracies are quite close, the overall er-
rors are very few and similar between the various
systems. We also analyzed the number of tags that
are output by the sequence-to-sequence model us-
ing various segmentation schemes. In 99.95% of
the cases, the system learned to output the correct
number of tags, regardless of the number of source
segments.

4 Conclusion

We explored several alternatives to language-
dependent segmentation of Arabic and evaluated
them on the tasks of machine translation and POS
tagging. On the machine translation task, BPE
segmentation produced the best results and even
outperformed the state-of-the-art morphological
segmentation in the Arabic-to-English direction.
On the POS tagging task, character-based models
got closest to using the state-of-the-art segmen-
tation. Our results showed that data-driven seg-
mentation schemes can serve as an alternative to
heavily engineered language-dependent tools and
achieve very competitive results. In our analy-
sis we showed that NMT performs better when
the source to target token ratio is close to one or
greater.
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