
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 580–586
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-2092

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 580–586
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-2092

Chunk-Based Bi-Scale Decoder for Neural Machine Translation

Hao Zhou∗

Nanjing University
zhouh@nlp.nju.edu.cn

Zhaopeng Tu∗

Tencent AI Lab
tuzhaopeng@gmail.com

Shujian Huang
Nanjing University

huangsh@nlp.nju.edu.cn

Xiaohua Liu
Huawei Noah’s Ark Lab

liuxiaohua3@huawei.com

Hang Li
Huawei Noah’s Ark Lab

hangli.hl@huawei.com

Jiajun Chen
Nanjing University

chenjj@nlp.nju.edu.cn

Abstract

In typical neural machine transla-
tion (NMT), the decoder generates a
sentence word by word, packing all
linguistic granularities in the same time-
scale of RNN. In this paper, we propose
a new type of decoder for NMT, which
splits the decode state into two parts and
updates them in two different time-scales.
Specifically, we first predict a chunk
time-scale state for phrasal modeling, on
top of which multiple word time-scale
states are generated. In this way, the
target sentence is translated hierarchically
from chunks to words, with information
in different granularities being leveraged.
Experiments show that our proposed
model significantly improves the transla-
tion performance over the state-of-the-art
NMT model.

1 Introduction

Recent work of neural machine translation (NMT)
models propose to adopt the encoder-decoder
framework for machine translation (Kalchbrenner
and Blunsom, 2013; Cho et al., 2014; Sutskever
et al., 2014), which employs a recurrent neural net-
work (RNN) encoder to model the source context
information and a RNN decoder to generate trans-
lations, which is significantly different from previ-
ous statistical machine translation systems (Koehn
et al., 2003; Chiang, 2005). This framework is
then extended by an attention mechanism, which
acquires source sentence context dynamically at
different decoding steps (Bahdanau et al., 2014;
Luong et al., 2015).

∗Work was done when Hao Zhou was interning and
Zhaopeng Tu was working at Huawei Noah’s Ark Lab.

The decoder state stores translation information
at different granularities, determining which seg-
ment should be expressed (phrasal), and which
word should be generated (lexical), respectively.
However, due to the extensive existence of multi-
word phrases and expressions, the varying speed
of the lexical component is much faster than the
phrasal one. As in the generation of “the French
Republic”, the lexical component in the decoder
will change thrice, each of which for a sepa-
rate word. But the phrasal component may only
change once. The inconsistent varying speed of
the two components may cause translation errors.

Typical NMT model generates target sentences
in the word level, packing the phrasal and lexi-
cal information in one hidden state, which is not
necessarily the best for translation. Much previ-
ous work propose to improve the NMT model by
adopting fine-grained translation levels such as the
character or sub-word levels, which can learn the
intermediate information inside words (Ling et al.,
2015; Costa-jussà and Fonollosa, 2016; Chung
et al., 2016; Luong et al., 2016; Lee et al., 2016;
Sennrich and Haddow, 2016; Sennrich et al., 2016;
Garcı́a-Martı́nez et al., 2016). However, high level
structures such as phrases has not been explicitly
explored in NMT, which is very useful for ma-
chine translation (Koehn et al., 2007).

We propose a chunk-based bi-scale decoder
for NMT, which explicitly splits the lexical and
phrasal components into different time-scales.1

The proposed model generates target words in a
hierarchical way, which deploys a standard word
time-scale RNN (lexical modeling) on top of an
additional chunk time-scale RNN (phrasal model-
ing). At each step of decoding, our model first
predict a chunk state with a chunk attention, based
on which multiple word states are generated with-

1In this work, we focus on chunk-based well-formed
phrases, which generally contain two to five words.
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out attention. The word state is updated at every
step, while the chunk state is only updated when
the chunk boundary is detected by a boundary gate
automatically. In this way, we incorporate soft
phrases into NMT, which makes the model flex-
ible at capturing both global reordering of phrases
and local translation inside phrases. Our model
has following benefits:

1. The chunk-based NMT model explicitly
splits the lexical and phrasal components of
the decode state for different time-scales,
which addresses the issue of inconsistent up-
dating speeds of different components, mak-
ing the model more flexible.

2. Our model recognizes phrase structures ex-
plicitly. Phrase information are then used
for word predictions, the representations of
which are then used to help predict corre-
sponding words.

3. Instead of incorporating source side linguistic
information (Eriguchi et al., 2016; Sennrich
and Haddow, 2016), our model incorporates
linguistic knowledges in the target side (for
deciding chunks), which will guide the trans-
lation more in line with linguistic grammars.

4. Given the predicted phrase representation,
our NMT model could extract attentive
source context by chunk attention, which is
more specific and thus more useful compared
to the word-level counterpart.

Experiments show that our proposed model
obtains considerable BLEU score improvements
upon an attention-based NMT baseline on the
Chinese to English and the German to English
datasets simultaneously.

2 Standard Neural Machine Translation
Model

Generally, neural machine translation system di-
rectly models the conditional probability of the
translation y word by word (Bahdanau et al.,
2014). Formally, given an input sequence x =
[x1, x2, . . . , xJ ], and the previously generated
sequence y<t = [y1, y2, . . . , yt−1], the probabil-
ity of next target word yt is

P (yt|x) = softmax(f(eyt−1 , st, ct)) (1)

where f(·) is a non-linear function, eyt−1 is the
embedding of yt−1; st is the decode state at the
time step t, which is computed by

st = g(st−1, eyt−1 , ct) (2)

bush visits the french republic <eos>
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Figure 1: The architecture of the chunk-based bi-
scale NMT.

Here g(·) is a transition function of decoder RNN.
ct is the context vector computed by

ct =
J∑

j=1

ATT(st−1, hj) · hj =
J∑

j=1

αt,j · hj (3)

where ATT is an attention operation, which out-
puts alignment distribution α:

αt,j =
exp(et,j)∑Tx

k=1 exp(et,k)
(4)

et,j = vT
a tanh(Wast−1 + Uahj) (5)

and h is the annotation of x from a bi-directional
RNNs. The training objective is to maximize the
likelihood of the training data. Beam search is
adopted for decoding.

3 Chunk-Based Bi-Scale Neural Machine
Translation Model

Instead of the word-based decoder, we propose to
use a chunk-based bi-scale decoder, which gen-
erates translation hierarchically with chunk and
word time-scales, as shown in Figure 1. Intu-
itively, we firstly generate a chunk state with the
attention model, which extracts the source con-
text for the current phrasal scope. Then we gen-
erate multiple lexical words based on the same
chunk state, which does not require attention oper-
ations. The boundary of a chunk is determined by
a boundary gate, which decides whether to update
the chunk state or not at each step.

Formally, the probability of next word yt is

P (yt|x) = softmax(f(eyt−1 , st, pt)) (6)

st = g(st−1, eyt−1 , pt) (7)
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here pt is the chunk state at step t. Compared with
Equations 1 and 2, the generation of target word
is based on the chunk state instead of the context
vector ct produced by the attention model.

Since a chunk may correspond to multiple
words, we employ a boundary gate bt to decide
the boundary of each chunk:

p(bt) = softmax(st−1, eyt−1) (8)

bt will be 0 or 1, where 1 denotes this is the bound-
ary of a new chunk while 0 denotes not. Two dif-
ferent operations would be executed:

pt =

{
pt−1, bt = 0 (COPY)
g(pt−1, ept−1 , pct), bt = 1 (UPDATE)

In the COPY operation, the chunk state is kept the
same as the previous step. In the UPDATE op-
eration, ept−1 is the representation of last chunk,
which is computed by the LSTM-minus approach
(Wang and Chang, 2016):

ept−1 = m(st−1, eyt−1) − m(st′ , eyt′ ) (9)

here t′ is the boundary of last chunk and m(·) is a
linear function. pct is the context vector for chunk
pt, which is calculated by a chunk attention model:

pct =

Ts∑

j=1

ATT(pt−1, hj) · hj (10)

The chunk attention model differs from the stan-
dard word attention model (i.e., Equation 3) at:
1) it reads chunk state pt−1 rather than word state
st−1, and 2) it is only executed at boundary of each
chunk rather than at each decoding step.

In this way, our model only extracts source con-
text once for a chunk, and the words in one chunk
will share the same context for word generation.
The chunk attention mechanism adds a constrain
that target words in the same chunk shares the
same source context.

Training To encourage the proposed model to
learn reasonable chunk state, we add two addi-
tional objectives in training:
Chunk Tag Prediction: For each chunk, we
predict the probability of its tag P (lk|x) =
softmax

(
f(pt, ept , ct)

)
, where lk is the syntactic

tag of the k-th chunk such as NP (noun phrase) and
VP (verb phrase), and t is time step of its bound-
ary.

Chunk Boundary Prediction: At each decoding
step, we predict the probability of chunk boundary
P (bt|x) = softmax(st−1, eyt−1).

Accordingly, given a set of training examples
{[xn,yn]}N

n=1, the new training objective is

J(θ, γ) = arg max

N∑

n=1

{
log P (yn|xn)

+ log P (ln|xn) + log P (bn|xn)

}
(11)

where ln and bn are chunk tag sequence and
boundary sequence on yn, respectively.

4 Experiments

We carry out experiments on a Chinese-English
translation task. Our training data consists of
1.16M2 sentence pairs extracted from LDC cor-
pora, with 25.1M Chinese words and 27.1M
English words, respectively. We choose the
NIST 2002 (MT02) dataset as our development
set, and the NIST 2003 (MT03), 2004 (MT04)
2005 (MT05) datasets as our test sets. We
also evaluate our model on the WMT translation
task of German-English, newstest2014 (DE14) is
adopted as development set and newstest2012,
newstest2013 (DE1213) are adopted as testing set.
The English sentences are labeled by a neural
chunker, which is implemented according to Zhou
et al. (2015). We use the case-insensitive 4-gram
NIST BLEU score as our evaluation metric (Pap-
ineni et al., 2002).

In training, we limit the source and target vo-
cabularies to the most frequent 30K words. We
train each model with the sentences of length up
to 50 words. Sizes of the chunk representation and
chunk hidden state are set to 1000. All the other
settings are the same as in Bahdanau et al. (2014).

4.1 Results on Chinese-English
We list the BLEU score of our proposed model
in Table 1, comparing with Moses (Koehn et al.,
2007) and dl4mt3 (Bahdanau et al., 2014), which
are state-of-the-art models of SMT and NMT, re-
spective. For Moses, we use the default config-
uration with a 4-gram language model trained on
the target portion of the training data. For dl4mt,
we also report the results (dl4mt-2) by using two

23LDC2002E18, LDC2003E14, the Hansards portion of
LDC2004T08, and LDC2005T06.

3https://github.com/nyu-dl/
dl4mt-tutorial
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System MT02 MT03 MT04 MT05 Ave.
Moses 30.10 28.82 31.22 27.78 29.48
dl4mt 31.66 29.92 32.76 28.88 30.81
dl4mt-2 31.01 28.74 31.71 27.95 29.85
This Work 33.43 32.06 34.21 30.01 32.42

Table 1: BLEU scores for different systems.

Attention MT02 MT03 MT04 MT05 Ave.
Word 32.69 31.36 33.55 29.77 31.56
Chunk 33.43 32.06 34.21 30.01 32.42

Table 2: Results with different attention models.

decoder layers (Wu et al., 2016) for better compar-
ison.

As shown in Table 1, our proposed model out-
performs different baselines on all sets, which ver-
ifies that the chunk-based bi-scale decoder is ef-
fective for NMT. Our model gives a 1.6 BLEU
score improvement upon the standard NMT base-
line (dl4mt). We conduct experiment with dl4mt-2
to see whether the neural NMT system can model
the bi-scale components with different varying
speeds automatically. Surprisingly, we find that
dl4mt-2 obtains lower BLEU scores than dl4mt.
We speculate that the more complex model dl4mt-
2 may need more training data for obtaining rea-
sonable results.

Effectiveness of Chunk Attention As de-
scribed in Section 3, we propose to use the chunk
attention to replace the word level attention in our
model, in which the source context extracted by
the chunk attention will be used for the corre-
sponding word generations in the chunk. We also
report the result of our model using conventional
word attention for comparison. As shown in Table
2, our model with the chunk attention gives higher
BLEU score than the word attention.

Intuitively, we think chunks are more specific in
semantics, thus could extract more specific source
context for translation. The chunk attention could
be considered as a compromise approach between
encoding the whole source sentence into decoder
without attention (Sutskever et al., 2014) and uti-
lizing word level attention at each step (Bahdanau
et al., 2014). We also draw the figure of align-
ments by chunk attention (Figure 2), from which
we can see that our chunk attention model can well
explore the alignments from phrases to words.

Figure 2: Alignments with chunk attention.

MT02 MT03 MT04 MT05
Boundary 89.97 88.81 89.64 89.25

Label 47.00 44.75 45.54 44.41

Table 3: Accuracies of predicted chunk boundary
and chunk label.

Predictions of the Chunk Boundary and Chunk
Label We also compute predicted accuracies of
chunk boundaries and chunk labels on the auto-
chunked development and testing data (Table 3).
We find that the chunk boundary could be pre-
dicted well, with an average accuracy of 89%,
which shows that our model could capture the
phrasal boundary information in the translation
process. However, our model could not pre-
dict chunk labels as well as chunk boundaries.
We speculate that more syntactic context features
should be added to improve the performance of
predicting chunk labels.

Subjective Evaluation Following Tu et al.
(2016, 2017a,b), we also compare our model with
the dl4mt baseline by subjective evaluation. Two
human evaluators are asked to evaluate the trans-
lations of 100 source sentences randomly sampled
from the test sets without knowing which system
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Model dl4mt Our Work
Adequacy 3.26 3.35

Fluency 3.69 3.71
Under-Translation 50% 47%

Over-Translation 32% 26%

Table 4: Subjective evaluation results.

System DE-14 DE-1213
dl4mt 16.53 16.78

This Work 17.40 17.45

Table 5: Results on German-English

the translation is translated by. The human eval-
uator is asked to give 4 scores: adequacy score
and fluency score, which are between 0 and 5, the
larger, the better; under-translation score and over-
translation score, which are set to 1 when under or
over translation errors occurs, otherwise set to 0.

We list the averaged scores in Table 5. We find
that our proposed model improves the dl4mt base-
line on both the translation adequacy and fluency
aspects. Specifically, the over translation error rate
drops by 6%, which confirms the assumption in
the introduction that splitting the fast and slow
varying components in different time-scales could
help alleviate the over translation errors.

4.2 Results on German-English

We evaluate our model on the WMT15 translation
task from German to English. We find that our
proposed chunk-based NMT model also obtains
considerable accuracy improvements on German-
English. However, the BLEU score gains are not
as significant as on Chinese-English. We speculate
that the difference between Chinese and English is
larger than German and English. The chunk-based
NMT model may be more useful for bilingual data
with bigger difference.

5 Related Work

NMT with Various Granularities. A line of
previous work propose to utilize other granulari-
ties besides words for NMT. By further exploit-
ing the character level (Ling et al., 2015; Costa-
jussà and Fonollosa, 2016; Chung et al., 2016; Lu-
ong et al., 2016; Lee et al., 2016), or the sub-word
level (Sennrich and Haddow, 2016; Sennrich et al.,
2016; Garcı́a-Martı́nez et al., 2016) information,
the corresponding NMT models capture the infor-

mation inside the word and alleviate the problem
of unknown words. While most of them focus on
decomposing words into characters or sub-words,
our work aims at composing words into phrases.

Incorporating Syntactic Information in NMT
Syntactic information has been widely used in
SMT (Liu et al., 2006; Marton and Resnik, 2008;
Shen et al., 2008), and a lot of previous work ex-
plore to incorporate the syntactic information in
NMT, which shows the effectiveness of the syntac-
tic information (Stahlberg et al., 2016). Shi et al.
(2016) give some empirical results that the deep
networks of NMT are able to capture some use-
ful syntactic information implicitly. Luong et al.
(2016) propose to use a multi-task framework for
NMT and neural parsing, achieving promising re-
sults. Eriguchi et al. (2016) propose a string-to-
tree NMT system by end-to-end training. Differ-
ent to previous work, we try to incorporate the syn-
tactic information in the target side of NMT. Ishi-
watari et al. (2017) concurrently propose to use
chunk-based decoder to cope with the problem of
free word-order languages. Differently, they adopt
word-level attention, and predict the end of chunk
by generating end-of-chunk tokens instead of us-
ing boundary gate.

6 Conclusion

We propose a chunk-based bi-scale decoder for
neural machine translation, in which way, the
target sentence is translated hierarchically from
chunks to words, with information in different
granularities being leveraged. Experiments show
that our proposed model outperforms the standard
attention-based neural machine translation base-
line. Future work includes abandoning labeled
chunk data, adopting reinforcement learning to ex-
plore the boundaries of phrase automatically (Mou
et al., 2016). Our code is released on https:
//github.com/zhouh/chunk-nmt.
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