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Abstract

In this paper, we address semantic pars-
ing in a multilingual context. We train one
multilingual model that is capable of pars-
ing natural language sentences from mul-
tiple different languages into their corre-
sponding formal semantic representations.
We extend an existing sequence-to-tree
model to a multi-task learning framework
which shares the decoder for generating
semantic representations. We report evalu-
ation results on the multilingual GeoQuery
corpus and introduce a new multilingual
version of the ATIS corpus.

1 Introduction

In this work, we address multilingual seman-
tic parsing – the task of mapping natural lan-
guage sentences coming from multiple different
languages into their corresponding formal seman-
tic representations. We consider two multilin-
gual scenarios: 1) the single-source setting, where
the input consists of a single sentence in a single
language, and 2) the multi-source setting, where
the input consists of parallel sentences in multi-
ple languages. Previous work handled the for-
mer by means of monolingual models (Wong and
Mooney, 2006; Lu et al., 2008; Jones et al., 2012),
while the latter has only been explored by Jie
and Lu (2014) who ensembled many monolingual
models together. Unfortunately, training a model
for each language separately ignores the shared
information among the source languages, which
may be potentially beneficial for typologically re-
lated languages. Practically, it is also inconvenient
to train, tune, and configure a new model for each
language, which can be a laborious process.

In this work, we propose a parsing architec-
ture that accepts as input sentences in several

languages. We extend an existing sequence-to-
tree model (Dong and Lapata, 2016) to a multi-
task learning framework, motivated by its success
in other fields, e.g., neural machine translation
(MT) (Dong et al., 2015; Firat et al., 2016). Our
model consists of multiple encoders, one for each
language, and one decoder that is shared across
source languages for generating semantic repre-
sentations. In this way, the proposed model po-
tentially benefits from having a generic decoder
that works well across languages. Intuitively, the
model encourages each source language encoder
to find a common structured representation for the
decoder. We further modify the attention mech-
anism (Bahdanau et al., 2015) to integrate multi-
source information, such that it can learn where to
focus during parsing; i.e., which input positions in
which languages.

Our contributions are as follows:

• We investigate semantic parsing in two mul-
tilingual scenarios that are relatively unex-
plored in past research,

• We present novel extensions to the sequence-
to-tree architecture that integrates multilin-
gual information for semantic parsing, and

• We release a new ATIS semantic dataset an-
notated in two new languages.

2 Related Work

In this section, we summarize semantic pars-
ing approaches from previous works. Wong and
Mooney (2006) created WASP, a semantic parser
based on statistical machine translation. Lu et al.
(2008) proposed generative hybrid tree structures,
which were augmented with a discriminative re-
ranker. CCG-based semantic parsing systems have
been developed, such as ZC07 (Zettlemoyer and
Collins, 2007) and UBL (Kwiatkowski et al.,
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2010). Researchers have proposed sequence-to-
sequence parsing models (Jia and Liang, 2016;
Dong and Lapata, 2016; Kočiskỳ et al., 2016). Re-
cently, Susanto and Lu (2017) extended the hybrid
tree with neural features.

Recent progress in multilingual NLP has moved
towards building a unified model that can work
across different languages, such as in multilingual
dependency parsing (Ammar et al., 2016), multi-
lingual MT (Firat et al., 2016), and multilingual
word embedding (Guo et al., 2016). Nonetheless,
multilingual approaches for semantic parsing are
relatively unexplored, which motivates this work.
Jones et al. (2012) evaluated an individually-
trained tree transducer on a multilingual semantic
dataset. Jie and Lu (2014) ensembled monolingual
hybrid tree models on the same dataset.

3 Model

In this section, we describe our approach to
multilingual semantic parsing, which extends
the sequence-to-tree model by Dong and Lap-
ata (2016). Unlike the mainstream approach that
trains one monolingual parser per source lan-
guage, our approach integrates N encoders, one
for each language, into a single model. This model
encodes a sentence from the n-th language X =
x1, x2, ..., x|X| as a vector and then uses a shared
decoder to decode the encoded vector into its cor-
responding logical form Y = y1, y2, ..., y|Y |. We
consider two types of input: 1) a single sentence
in one of N languages in the single-source setting
and 2) parallel sentences in N languages in the
multi-source setting. We elaborate on each setting
in Section 3.1 and 3.2, respectively.

The encoder is implemented as a unidirectional
RNN with long short-term memory (LSTM) units
(Hochreiter and Schmidhuber, 1997), which takes
a sequence of natural language tokens as input.
Similar to previous multi-task frameworks, e.g., in
neural MT (Firat et al., 2016; Zoph and Knight,
2016), we create one encoder per source language,
i.e., {Ψn

enc}Nn=1. For the n-th language, it updates
the hidden vector at time step t by:

hn
t = Ψn

enc(h
n
t−1,E

n
x[xt]) (1)

where Ψn
enc is the LSTM function and En

x ∈
R|V |×d is an embedding matrix containing row
vectors of the source tokens in the n-th language.
Each encoder may be configured differently, such
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Figure 1: Illustration of the model with three lan-
guage encoders and a shared logical form decoder
(in λ-calculus). Two scenarios are considered: (a)
single-source and (b) multi-source with a com-
biner module (in grey color).

as by the number of hidden units and the embed-
ding dimension for the source symbol.

In the basic sequence-to-sequence model, the
decoder generates each target token in a linear
fashion. However, in semantic parsing, such a
model ignores the hierarchical structure of logi-
cal forms. In order to alleviate this issue, Dong
and Lapata (2016) proposed a decoder that gen-
erates logical forms in a top-down manner, where
they define a “non-terminal” token <n> to indi-
cate subtrees. At each depth in the tree, logical
forms are generated sequentially until the end-of-
sequence token is output.

Unlike in the single language setting, here we
define a single, shared decoder Ψdec as opposed to
one decoder per source language. We augment the
parent non-terminal’s information p when com-
puting the decoder state zt, as follows:

zt = Ψdec(zt−1,Ey[ỹt−1],p) (2)

where Ψdec is the LSTM function and ỹt−1 is the
previous target symbol.

The attention mechanism (Bahdanau et al.,
2015; Luong et al., 2015) computes a time-
dependent context vector ct (as defined later in
Section 3.1 and 3.2), which is subsequently used
for computing the probability distribution over the
next symbol, as follows:

z̃t = tanh(Uzt + Vct) (3)

p(yt|y<t, X) ∝ exp(Wz̃t) (4)

where U, V, and W are weight matrices. Finally,
the model is trained to maximize the following
conditional log-likelihood:

L(θ) =
∑

(X,Y )∈D

|Y |∑

t=1

log p(yt|y<t, X) (5)
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where (X,Y ) refers to a ground-truth sentence-
semantics pair in the training data D.

We use the same formulation above for the en-
coders and the decoder in both multilingual set-
tings. Each setting differs in terms of: 1) the de-
coder state initialization, 2) the computation of the
context vector ct, and 3) the training procedure,
which are described in the following sections.

3.1 Single-Source Setting
In this setting, the input is a source sentence com-
ing from the n-th language. Figure 1 (a) depicts
a scenario where the model is parsing Indonesian
input, with English and Chinese being non-active.

The last state of the n-th encoder is used to ini-
tialize the first state of the decoder. We may need
to first project the encoder vector into a suitable
dimension for the decoder, i.e., z0 = φndec(h

n
|X|),

where φndec can be an affine transformation. Simi-
larly, we may do so before computing the attention
scores, i.e., h̃n

k = φnatt(h
n
k). Then, we compute the

context vector cnt as a weighted sum of the hidden
vectors in the n-th encoder:

αn
k,t =

exp(h̃n
k · zt)∑|X|

k′=1 exp(h̃n
k′ · zt)

(6)

cnt =

|X|∑

k=1

αn
k,th̃

n
k (7)

We set ct = cnt for computing Equation 3. We pro-
pose two variants of the model under this setting.
In the first version, we define separate weight ma-
trices for each language, i.e., {Un,Vn,Wn}Nn=1.
In the second version, the three weight matrices
are shared across languages, essentially reducing
the number of parameters by a factor of N .

The training data consists of the union of
sentence-semantics pairs in N languages, where
the source sentences are not necessarily parallel.
We implement a scheduling mechanism that cy-
cles through all languages during training, one lan-
guage at a time. Specifically, model parameters
are updated after one batch from one language
before moving to the next one. Similar to Firat
et al. (2016), this mechanism prevents excessive
updates from a specific language.

3.2 Multi-Source Setting
In this setting, the input are semantically equiva-
lent sentences in N languages. Figure 1 (b) de-
picts a scenario where the model is parsing En-
glish, Indonesian, and Chinese simultaneously. It

includes a combiner module (denoted by the grey
box), which we will explain next.

The decoder state at the first time step is ini-
tialized by first combining the N final states from
each encoder, i.e., z0 = φinit(h

1
|X|, · · · ,hN

|X|),
where we implement φinit by max-pooling.

We propose two ways of computing ct that inte-
grates source-side information from multiple en-
coders. First, we consider word-level combina-
tion, where we combine N encoder states at every
time step, as follows:

αn
k,t =

exp(h̃n
k · zt)∑N

n′=1

∑|X|
k′=1 exp(h̃n′

k′ · zt)
(8)

ct =
N∑

n=1

|X|∑

k=1

αn
k,th̃

n
k (9)

Alternatively, in sentence-level combination,
we first compute the context vector for each lan-
guage in the same way as Equation 6 and 7. Then,
we perform a simple concatenation of N context
vectors: ct =

[
c1t ; · · · ; cNt

]
.

Unlike the single-source setting, the train-
ing data consists of N -way parallel sentence-
semantics pairs. That is, each training instance
consists of N semantically equivalent sentences
and their corresponding logical form.

4 Experiments and Results

4.1 Datasets and Settings

We conduct our experiments on two multilingual
benchmark datasets, which we describe below.
Both datasets use a meaning representation based
on lambda calculus.

The GeoQuery (GEO) dataset is a standard
benchmark evaluation for semantic parsing. The
multilingual version consists of 880 instances of
natural language queries related to US geography
facts in four languages (English, German, Greek,
and Thai) (Jones et al., 2012). We use the standard
split which consists of 600 training examples and
280 test examples.

The ATIS dataset contains natural language
queries to a flight database. The data is split into
4,434 instances for training, 491 for development,
and 448 for evaluation, same as Zettlemoyer and
Collins (2007). The original version only includes
English. In this work, we annotate the corpus in
Indonesian and Chinese. The Chinese corpus was
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annotated (with segmentations) by hiring profes-
sional translation service. The Indonesian corpus
was annotated by a native Indonesian speaker.

We use the same pre-processing as Dong and
Lapata (2016), where entities and numbers are re-
placed with their type names and unique IDs.1

English words are stemmed using NLTK (Bird
et al., 2009). Each query is paired with its cor-
responding semantic representation in lambda cal-
culus (Zettlemoyer and Collins, 2005).

In all experiments, following Dong and Lap-
ata (2016), we use a one-layer LSTM with 200-
dimensional cells and embeddings. We use a mini-
batch size of 20 with RMSProp updates (Tieleman
and Hinton, 2012) for a fixed number of epochs,
with gradient clipping at 5. Parameters are uni-
formly initialized at [-0.08,0.08] and regularized
using dropout (Srivastava et al., 2014). Input se-
quences are reversed. See Appendix A for detailed
experimental settings.

For each model configuration, all experiments
are repeated 3 times with different random seed
values, in order to make sure that our findings
are reliable. We found empirically that the ran-
dom seed may affect SEQ2TREE performance.
This is especially important due to the relatively
small dataset. As previously done in multi-
task sequence-to-sequence learning (Luong et al.,
2016), we report the average performance for the
baseline and our model. The evaluation metric is
defined in terms of exact match accuracy with the
ground-truth logical forms. See Appendix B for
the accuracy of individual runs.

4.2 Results

Table 1 compares the performance of the mono-
lingual sequence-to-tree model (Dong and Lap-
ata, 2016), SINGLE, and our multilingual model,
MULTI, with separate and shared output param-
eters under the single-source setting as described
in Section 3.1. On average, both variants of the
multilingual model outperform the monolingual
model by up to 1.34% average accuracy on GEO.
Parameter sharing is shown to be helpful, in partic-
ular for GEO. We observe that the average perfor-
mance increase on ATIS mainly comes from Chi-
nese and Indonesian. We also learn that although
including English is often helpful for the other lan-
guages, it may affect its individual performance.

Table 2 shows the average performance on

1See Section 3.6 of (Dong and Lapata, 2016).

SINGLE
MULTI

separate shared
GEO
en 84.40 85.00 85.48
de 70.24 71.19 72.86
el 74.40 75.12 75.60
th 72.86 72.26 73.33
avg. 75.48 75.89 76.82
ATIS
en 81.85 81.40 81.77
id 74.85 74.03 75.45
zh 73.66 75.89 73.96
avg. 76.79 77.11 77.06

Table 1: Single-source parsing results in terms of
average accuracy % over 3 runs. Best results are
in bold.

RANKING
MULTI

word sentence
GEO
en+de+el 83.21 85.48 86.43
en+de+th 82.02 86.19 85.48
en+el+th 82.62 85.60 85.24
de+el+th 79.64 72.14 76.43
en+de+el+th 82.50 85.48 86.79
ATIS
en+id 82.81 83.93 83.78
en+zh 82.81 82.96 82.96
id+zh 78.50 76.79 77.75
en+id+zh 83.11 82.22 83.85

Table 2: Multi-source parsing results in terms of
average accuracy % over 3 runs. Best results are
in bold.

multi-source parsing by combining 3 to 4 lan-
guages for GEO and 2 to 3 languages for ATIS.
For RANKING, we combine the predictions from
each language by selecting the one with the high-
est probability. Indeed, we observe that system
combination at the model level is able to give bet-
ter performance on average (up to 4.29% on GEO)
than doing so at the output level. Combining at
the word level and sentence level shows compara-
ble performance on both datasets. It can be seen
that the benefit is more apparent when we include
English in the system combination.

Regarding comparison to previous monolingual
works, we want to highlight that there exist two
different versions of the GeoQuery dataset anno-
tated with completely different semantic represen-
tations: semantic tree and lambda calculus. As
noted in Section 5 of Lu (2014), results obtained
from these two versions are not comparable. We
use lambda calculus same as Dong and Lapata
(2016). Under the multilingual setting, the closest
work is Jie and Lu (2014). Nonetheless, they used
the semantic tree version of GeoQuery. They eval-
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Model Input Output

SINGLE (en) list the airlines with flights to or from ci0 lambda $0 e ( and ( airline $0 ) ( exists $1 ( and ( flight $1 )
( or ( from $1 ci0 ) ( to $1 ci0 ) ) ( airline $1 $0 ) ) ) )

SINGLE (id) daftarkan maskapai dengan penerbangan
ke atau dari ci0

lambda $0 e ( and ( airline $0 ) ( exists $1 ( and ( flight $1 )
( from $1 ci0 ) ( airline $1 $0 ) ) ) )

SINGLE (zh) 请列出有航班起降 ci0的航空公司 lambda $0 e ( and ( airline $0 ) ( services $0 ci0 ) )

MULTI (en+id+zh) lambda $0 e ( exists $1 ( and ( flight $1 ) ( or ( from $1 ci0 )
( to $1 ci0 ) ) ( = ( airline:e $1 ) $0 ) ) )

GOLD (en+id+zh) lambda $0 e ( exists $1 ( and ( flight $1 ) ( or ( from $1 ci0 )
( to $1 ci0 ) ) ( = ( airline:e $1 ) $0 ) ) )

Table 3: Example output from monolingual and multilingual models trained on ATIS.

Model Number of parameters
GEO ATIS

SINGLE/RANKING 3.7× 106 3.1× 106

MULTI (single)
- separate 2.3× 106 2.1× 106

- shared 2.0× 106 1.9× 106

MULTI (multi)
- word 2.0× 106 1.9× 106

- sentence 2.1× 106 1.9× 106

Table 4: Model size

uated extrinsically on a database query task while
we use exact match accuracy, so their work is not
directly comparable to ours.

5 Analysis

In this section, we report a qualitative analysis
of our multilingual model. Table 3 shows exam-
ple output from the monolingual model, SINGLE,
trained on the three languages in ATIS and the
multilingual model, MULTI, with sentence-level
combination. This example demonstrates a sce-
nario when the multilingual model successfully
parses the three input sentences into the correct
logical form, whereas the individual models are
unable to do so.

Figure 2 shows the alignments produced by
MULTI (sentence) when parsing ATIS in the multi-
source setting. Each cell in the alignment matrix
corresponds to αn

k,t which is computed by Equa-
tion 6. Semantically related words are strongly
aligned, such as the alignments between ground
(en), darat (id), 地面 (zh) and ground transport.
This shows that such correspondences can be
jointly learned by our multilingual model.

In Table 4, we summarize the number of param-
eters in the baseline and our multilingual model.
The number of parameters in SINGLE and RANK-
ING is equal to the sum of the number of parame-
ters in their monolingual components. It can be
seen that the size of our multilingual model is
about 50-60% smaller than that of the baseline.
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Figure 2: Attention score matrices computed by
MULTI when parsing English, Indonesian, and
Chinese inputs from ATIS. Darker color represents
higher attention score.

6 Conclusion

We have presented a multilingual semantic parser
that extends the sequence-to-tree model to a multi-
task learning framework. Through experiments,
we show that our multilingual model performs bet-
ter on average than 1) monolingual models in the
single-source setting and 2) ensemble ranking in
the multi-source setting. We hope that this work
will stimulate further research in multilingual se-
mantic parsing. Our code and data is available at
http://statnlp.org/research/sp/.
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A Hyperparameters

Table 5 lists the number of training epochs and the
dropout probability used in the LSTM cell and the
hidden layers before the softmax classifiers, which
were chosen based on preliminary experiments on
a held-out dataset. We use a training schedule
where we switch to the next language after train-
ing one mini-batch for GEO and 500 for ATIS. For
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SINGLE
MULTI

separate shared
1 2 3 1 2 3 1 2 3

GEO
en 87.14 83.57 82.50 85.71 83.93 85.36 85.36 83.93 87.14
de 70.00 70.36 70.36 71.79 71.79 70.00 73.57 73.93 71.07
el 76.43 72.50 74.29 77.14 72.14 76.07 76.43 74.64 75.71
th 72.50 73.57 72.50 72.14 72.14 72.50 72.50 71.07 76.43
ATIS
en 84.60 79.24 81.70 82.14 81.03 81.03 82.59 80.36 82.37
id 75.67 74.55 74.33 75.67 72.54 73.88 76.56 75.45 74.33
zh 74.33 73.66 72.99 74.11 76.12 77.46 75.67 72.54 73.66

Table 6: Single-source parsing results showing the accuracy of the 3 runs. Best results are in bold.

RANKING
MULTI

word sentence
1 2 3 1 2 3 1 2 3

GEO
en+de+el 85.00 82.50 82.14 87.14 84.64 84.64 87.50 85.36 86.43
en+de+th 84.29 81.07 80.71 87.86 85.00 85.71 85.71 86.43 84.29
en+el+th 84.29 82.14 81.43 87.50 84.29 85.00 84.64 85.71 85.36
de+el+th 80.00 79.29 79.64 71.07 72.86 72.50 77.86 74.64 76.79
en+de+el+th 83.93 81.79 81.79 85.71 86.07 84.64 87.50 86.79 86.07
ATIS
en+id 83.48 82.14 82.81 83.48 83.48 84.82 85.27 80.58 85.49
en+zh 84.60 80.80 83.04 83.26 82.14 83.48 85.49 80.13 83.26
id+zh 79.24 78.57 77.68 77.46 78.35 74.55 80.58 78.13 74.55
en+id+zh 84.15 81.92 83.26 82.14 81.25 83.26 85.49 81.03 85.04

Table 7: Multi-source parsing results showing the accuracy of the 3 runs. Best results are in bold.

all multilingual models, we initialize the encoders
using the encoder weights learned by the mono-
lingual models. For the multi-source setting, we
also initialize the decoder using the first language
in the list of the combined languages.

B Additional Experimental Results

In Table 6 and 7, we report the accuracy of the 3
runs for each model and dataset. In both settings,
we observe that the best accuracy on both datasets
is often achieved by MULTI. This is the same con-
clusion that we reached when averaging the results
over all runs.

#epochs dropout
(LSTM)

dropout
(output layer)

GEO
SINGLE 90 0.1 0.4
MULTI (single) 340 0.1 0.4
MULTI (multi) 150 0.1 0.4
ATIS
SINGLE 130 0.3 0.3
MULTI (single) 390 0.3 0.3
MULTI (multi) 250 0.3 0.3

Table 5: Hyperparameter values
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