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Abstract

We study automatic question generation
for sentences from text passages in read-
ing comprehension. We introduce an
attention-based sequence learning model
for the task and investigate the effect of en-
coding sentence- vs. paragraph-level infor-
mation. In contrast to all previous work,
our model does not rely on hand-crafted
rules or a sophisticated NLP pipeline; it is
instead trainable end-to-end via sequence-
to-sequence learning. Automatic evalu-
ation results show that our system sig-
nificantly outperforms the state-of-the-art
rule-based system. In human evaluations,
questions generated by our system are also
rated as being more natural (i.e., grammat-
icality, fluency) and as more difficult to an-
swer (in terms of syntactic and lexical di-
vergence from the original text and reason-
ing needed to answer).

1 Introduction

Question generation (QG) aims to create natu-
ral questions from a given a sentence or para-
graph. One key application of question generation
is in the area of education — to generate ques-
tions for reading comprehension materials (Heil-
man and Smith, 2010). Figure 1, for example,
shows three manually generated questions that test
a user’s understanding of the associated text pas-
sage. Question generation systems can also be de-
ployed as chatbot components (e.g., asking ques-
tions to start a conversation or to request feed-
back (Mostafazadeh et al., 2016)) or, arguably, as
a clinical tool for evaluating or improving mental
health (Weizenbaum, 1966; Colby et al., 1971).

In addition to the above applications, question
generation systems can aid in the development of

Sentence:

Oxygen is used in cellular respiration and re-
leased by photosynthesis, which uses the en-
ergy of sunlight to produce oxygen from water.

Questions:

– What life process produces oxygen in the
presence of light?

photosynthesis

– Photosynthesis uses which energy to form
oxygen from water?

sunlight

– From what does photosynthesis get oxygen?
water

Figure 1: Sample sentence from the second para-
graph of the article Oxygen, along with the natural
questions and their answers.

annotated data sets for natural language process-
ing (NLP) research in reading comprehension and
question answering. Indeed the creation of such
datasets, e.g., SQuAD (Rajpurkar et al., 2016) and
MS MARCO (Nguyen et al., 2016), has spurred
research in these areas.

For the most part, question generation has been
tackled in the past via rule-based approaches
(e.g., Mitkov and Ha (2003); Rus et al. (2010).
The success of these approaches hinges criti-
cally on the existence of well-designed rules for
declarative-to-interrogative sentence transforma-
tion, typically based on deep linguistic knowledge.

To improve over a purely rule-based sys-
tem, Heilman and Smith (2010) introduced an
overgenerate-and-rank approach that generates
multiple questions from an input sentence using
a rule-based approach and then ranks them us-
ing a supervised learning-based ranker. Although
the ranking algorithm helps to produce more ac-
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ceptable questions, it relies heavily on a manually
crafted feature set, and the questions generated of-
ten overlap word for word with the tokens in the
input sentence, making them very easy to answer.

Vanderwende (2008) point out that learning to
ask good questions is an important task in NLP
research in its own right, and should consist of
more than the syntactic transformation of a declar-
ative sentence. In particular, a natural sounding
question often compresses the sentence on which
it is based (e.g., question 3 in Figure 1), uses syn-
onyms for terms in the passage (e.g., “form” for
“produce” in question 2 and “get” for “produce”
in question 3), or refers to entities from preced-
ing sentences or clauses (e.g., the use of “pho-
tosynthesis” in question 2). Othertimes, world
knowledge is employed to produce a good ques-
tion (e.g., identifying “photosynthesis” as a “life
process” in question 1). In short, constructing nat-
ural questions of reasonable difficulty would seem
to require an abstractive approach that can pro-
duce fluent phrasings that do not exactly match the
text from which they were drawn.

As a result, and in contrast to all previous work,
we propose here to frame the task of question gen-
eration as a sequence-to-sequence learning prob-
lem that directly maps a sentence from a text pas-
sage to a question. Importantly, our approach is
fully data-driven in that it requires no manually
generated rules.

More specifically, inspired by the recent suc-
cess in neural machine translation (Sutskever
et al., 2014; Bahdanau et al., 2015), summariza-
tion (Rush et al., 2015; Iyer et al., 2016), and im-
age caption generation (Xu et al., 2015), we tackle
question generation using a conditional neural
language model with a global attention mecha-
nism (Luong et al., 2015a). We investigate several
variations of this model, including one that takes
into account paragraph- rather than sentence-level
information from the reading passage as well as
other variations that determine the importance of
pre-trained vs. learned word embeddings.

In evaluations on the SQuAD dataset (Ra-
jpurkar et al., 2016) using three automatic eval-
uation metrics, we find that our system signif-
icantly outperforms a collection of strong base-
lines, including an information retrieval-based
system (Robertson and Walker, 1994), a statistical
machine translation approach (Koehn et al., 2007),
and the overgenerate-and-rank approach of Heil-

man and Smith (2010). Human evaluations also
rated our generated questions as more grammati-
cal, fluent, and challenging (in terms of syntactic
divergence from the original reading passage and
reasoning needed to answer) than the state-of-the-
art Heilman and Smith (2010) system.

In the sections below we discuss related work
(Section 2), specify the task definition (Section 3)
and describe our neural sequence learning based
models (Section 4). We explain the experimental
setup in Section 5. Lastly, we present the evalua-
tion results as well as a detailed analysis.

2 Related Work

Reading Comprehension is a challenging task
for machines, requiring both understanding of nat-
ural language and knowledge of the world (Ra-
jpurkar et al., 2016). Recently many new datasets
have been released and in most of these datasets,
the questions are generated in a synthetic way.
For example, bAbI (Weston et al., 2016) is a fully
synthetic dataset featuring 20 different tasks. Her-
mann et al. (2015) released a corpus of cloze
style questions by replacing entities with place-
holders in abstractive summaries of CNN/Daily
Mail news articles. Chen et al. (2016) claim that
the CNN/Daily Mail dataset is easier than previ-
ously thought, and their system almost reaches the
ceiling performance. Richardson et al. (2013) cu-
rated MCTest, in which crowdworker questions
are paired with four answer choices. Although
MCTest contains challenging natural questions, it
is too small for training data-demanding question
answering models.

Recently, Rajpurkar et al. (2016) released the
Stanford Question Answering Dataset1 (SQuAD),
which overcomes the aforementioned small size
and (semi-)synthetic issues. The questions are
posed by crowd workers and are of relatively high
quality. We use SQuAD in our work, and simi-
larly, we focus on the generation of natural ques-
tions for reading comprehension materials, albeit
via automatic means.

Question Generation has attracted the atten-
tion of the natural language generation (NLG)
community in recent years, since the work of Rus
et al. (2010).

Most work tackles the task with a rule-based ap-
proach. Generally, they first transform the input
sentence into its syntactic representation, which

1https://stanford-qa.com
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they then use to generate an interrogative sentence.
A lot of research has focused on first manually
constructing question templates, and then apply-
ing them to generate questions (Mostow and Chen,
2009; Lindberg et al., 2013; Mazidi and Nielsen,
2014). Labutov et al. (2015) use crowdsourcing to
collect a set of templates and then rank the rel-
evant templates for the text of another domain.
Generally, the rule-based approaches make use of
the syntactic roles of words, but not their semantic
roles.

Heilman and Smith (2010) introduce an
overgenerate-and-rank approach: their system
first overgenerates questions and then ranks
them. Although they incorporate learning to
rank, their system’s performance still depends
critically on the manually constructed generating
rules. Mostafazadeh et al. (2016) introduce visual
question generation task, to explore the deep con-
nection between language and vision. Serban et al.
(2016) propose generating simple factoid ques-
tions from logic triple (subject, relation, object).
Their task tackles mapping from structured repre-
sentation to natural language text, and their gen-
erated questions are consistent in terms of format
and diverge much less than ours.

To our knowledge, none of the previous works
has framed QG for reading comprehension in an
end-to-end fashion, and nor have them used deep
sequence-to-sequence learning approach to gener-
ate questions.

3 Task Definition

In this section, we define the question generation
task. Given an input sentence x, our goal is to gen-
erate a natural question y related to information in
the sentence, y can be a sequence of an arbitrary
length: [y1, ..., y|y|]. Suppose the length of the in-
put sentence is M , x could then be represented as
a sequence of tokens [x1, ..., xM ]. The QG task is
defined as finding y, such that:

y = argmax
y

P (y|x) (1)

where P (y|x) is the conditional log-likelihood of
the predicted question sequence y, given the input
x. In section 4.1, we will elaborate on the global
attention mechanism for modeling P (y|x).

4 Model

Our model is partially inspired by the way in
which a human would solve the task. To ask
a natural question, people usually pay attention
to certain parts of the input sentence, as well
as associating context information from the para-
graph. We model the conditional probability us-
ing RNN encoder-decoder architecture (Bahdanau
et al., 2015; Cho et al., 2014), and adopt the global
attention mechanism (Luong et al., 2015a) to make
the model focus on certain elements of the input
when generating each word during decoding.

Here, we investigate two variations of our mod-
els: one that only encodes the sentence and an-
other that encodes both sentence and paragraph-
level information.

4.1 Decoder
Similar to Sutskever et al. (2014) and Chopra et al.
(2016), we factorize the the conditional in equa-
tion 1 into a product of word-level predictions:

P (y|x) =
|y|∏

t=1

P (yt|x, y<t)

where probability of each yt is predicted based on
all the words that are generated previously (i.e.,
y<t), and input sentence x.

More specifically,

P (yt|x, y<t) = softmax (Wstanh (Wt[ht; ct]))
(2)

with ht being the recurrent neural networks state
variable at time step t, and ct being the attention-
based encoding of x at decoding time step t (Sec-
tion 4.2). Ws and Wt are parameters to be
learned.

ht = LSTM1 (yt−1,ht−1) (3)

here, LSTM is the Long Short-Term Memory
(LSTM) network (Hochreiter and Schmidhuber,
1997). It generates the new state ht, given the
representation of previously generated word yt−1
(obtained from a word look-up table), and the pre-
vious state ht−1.

The initialization of the decoder’s hidden state
differentiates our basic model and the model that
incorporates paragraph-level information.

For the basic model, it is initialized by the sen-
tence’s representation s obtained from the sen-
tence encoder (Section 4.2). For our paragraph-
level model, the concatenation of the sentence
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encoder’s output s and the paragraph encoder’s
output s′ is used as the initialization of decoder
hidden state. To be more specific, the architec-
ture of our paragraph-level model is like a “Y”-
shaped network which encodes both sentence-
and paragraph-level information via two RNN
branches and uses the concatenated representation
for decoding the questions.

4.2 Encoder

The attention-based sentence encoder is used in
both of our models, while the paragraph en-
coder is only used in the model that incorporates
paragraph-level information.

Attention-based sentence encoder:
We use a bidirectional LSTM to encode the sen-

tence,

−→
bt =

−−−−→
LSTM2

(
xt,
−−→
bt−1

)

←−
bt =

←−−−−
LSTM2

(
xt,
←−−
bt+1

)

where
−→
bt is the hidden state at time step t for the

forward pass LSTM,
←−
bt for the backward pass.

To get attention-based encoding of x at decod-
ing time step t, namely, ct, we first get the context
dependent token representation by bt = [

−→
bt;
←−
bt],

then we take the weighted average over bt (t =
1, ..., |x|),

ct =
∑

i=1,..,|x|
ai,tbi (4)

The attention weight are calculated by the bi-
linear scoring function and softmax normalization,

ai,t =
exp

(
hT
t Wbbi

)
∑

j exp
(
hT
t Wbbj

) (5)

To get the sentence encoder’s output for initial-
ization of decoder hidden state, we concatenate
last hidden state of the forward and backward pass,
namely, s = [

−−→
b|x|;

←−
b1].

Paragraph encoder:
Given sentence x, we want to encode the para-

graph containing x. Since in practice the para-
graph is very long, we set a length thresholdL, and
truncate the paragraph at theLth token. We call the
truncated paragraph “paragraph” henceforth.

Denoting the paragraph as z, we use another
bidirectional LSTM to encode z,

−→
dt =

−−−−→
LSTM3

(
zt,
−−→
dt−1

)

←−
dt =

←−−−−
LSTM3

(
zt,
←−−
dt+1

)

With the last hidden state of the forward and
backward pass, we use the concatenation [

−→
d|z|;
←−
d1]

as the paragraph encoder’s output s′.

4.3 Training and Inference
Giving a training corpus of sentence-question
pairs: S =

{(
x(i),y(i)

)}S
i=1

, our models’ train-
ing objective is to minimize the negative log-
likelihood of the training data with respect to all
the parameters, as denoted by θ,

L = −
S∑

i=1

logP
(
y(i)|x(i); θ

)

= −
S∑

i=1

|y(i)|∑

j=1

logP
(
y
(i)
j |x(i), y

(i)
<j ; θ

)

Once the model is trained, we do inference us-
ing beam search. The beam search is parametrized
by the possible paths number k.

As there could be many rare words in the input
sentence that are not in the target side dictionary,
during decoding many UNK tokens will be out-
put. Thus, post-processing with the replacement
of UNK is necessary. Unlike Luong et al. (2015b),
we use a simpler replacing strategy for our task.
For the decoded UNK token at time step t, we re-
place it with the token in the input sentence with
the highest attention score, the index of which is
argmaxi ai,t.

5 Experimental Setup

We experiment with our neural question genera-
tion model on the processed SQuAD dataset. In
this section, we firstly describe the corpus of the
task. We then give implementation details of our
neural generation model, the baselines to compare,
and their experimental settings. Lastly, we intro-
duce the evaluation methods by automatic metrics
and human raters.

5.1 Dataset
With the SQuAD dataset (Rajpurkar et al., 2016),
we extract sentences and pair them with the ques-
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Figure 2: Overlap percentage of sentence-question
pairs in training set. y-axis is # non-stop-words
overlap with respect to the total # tokens in the
question (a percentage); x-axis is # sentence-
question pairs for a given overlap percentage
range.

tions. We train our models with the sentence-
question pairs. The dataset contains 536 articles
with over 100k questions posed about the articles.
The authors employ Amazon Mechanical Turks
crowd-workers to create questions based on the
Wikipedia articles. Workers are encouraged to use
their own words without any copying phrases from
the paragraph. Later, other crowd-workers are em-
ployed to provide answers to the questions. The
answers are spans of tokens in the passage.

Since there is a hidden part of the original
SQuAD that we do not have access to, we treat
the accessible parts (∼90%) as the entire dataset
henceforth.

We first run Stanford CoreNLP (Manning et al.,
2014) for pre-processing: tokenization and sen-
tence splitting. We then lower-case the entire
dataset. With the offset of the answer to each ques-
tion, we locate the sentence containing the answer
and use it as the input sentence. In some cases
(< 0.17% in training set), the answer spans two or
more sentences, and we then use the concatenation
of the sentences as the input “sentence”.

Figure 2 shows the distribution of the token
overlap percentage of the sentence-question pairs.
Although most of the pairs have over 50% over-
lap rate, about 6.67% of the pairs have no non-
stop-words in common, and this is mostly because
of the answer offset error introduced during an-
notation. Therefore, we prune the training set
based on the constraint: the sentence-question pair
must have at least one non-stop-word in common.
Lastly we add <SOS> to the beginning of the sen-

# pairs (Train) 70484
# pairs (Dev) 10570
# pairs (Test) 11877

Sentence: avg. tokens 32.9
Question: avg. tokens 11.3

Avg. # questions per sentence 1.4

Table 1: Dataset (processed) statistics. Sentence
average # tokens, question average # tokens, and
average # questions per sentence statistics are
from training set. These averages are close to the
statistics on development set and test set.

tences, and <EOS> to the end of them.
We randomly divide the dataset at the article-

level into a training set (80%), a development set
(10%), and a test set (10%). We report results on
the 10% test set.

Table 1 provides some statistics on the pro-
cessed dataset: there are around 70k training sam-
ples, the sentences are around 30 tokens, and
the questions are around 10 tokens on average.
For each sentence, there might be multiple corre-
sponding questions, and, on average, there are 1.4
questions for each sentence.

5.2 Implementation Details

We implement our models 2 in Torch7 3 on top of
the newly released OpenNMT system (Klein et al.,
2017).

For the source side vocabulary V , we only keep
the 45k most frequent tokens (including <SOS>,
<EOS> and placeholders). For the target side vo-
cabulary U , similarly, we keep the 28k most fre-
quent tokens. All other tokens outside the vocab-
ulary list are replaced by the UNK symbol. We
choose word embedding of 300 dimensions and
use the glove.840B.300d pre-trained embed-
dings (Pennington et al., 2014) for initialization.
We fix the word representations during training.

We set the LSTM hidden unit size to 600 and set
the number of layers of LSTMs to 2 in both the en-
coder and the decoder. Optimization is performed
using stochastic gradient descent (SGD), with an
initial learning rate of 1.0. We start halving the
learning rate at epoch 8. The mini-batch size for
the update is set at 64. Dropout with probability

2The code is available at https://github.com/
xinyadu/nqg.

3http://torch.ch/
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Model BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGEL

IRBM25 5.18 0.91 0.28 0.12 4.57 9.16
IREdit Distance 18.28 5.48 2.26 1.06 7.73 20.77
MOSES+ 15.61 3.64 1.00 0.30 10.47 17.82
DirectIn 31.71 21.18 15.11 11.20 14.95 22.47
H&S 38.50 22.80 15.52 11.18 15.95 30.98
Vanilla seq2seq 31.34 13.79 7.36 4.26 9.88 29.75

Our model (no pre-trained) 41.00 23.78 15.71 10.80 15.17 37.95
Our model (w/ pre-trained) 43.09 25.96 17.50 12.28 16.62 39.75

+ paragraph 42.54 25.33 16.98 11.86 16.28 39.37

Table 2: Automatic evaluation results of different systems by BLEU 1–4, METEOR and ROUGEL. For
a detailed explanation of the baseline systems, please refer to Section 5.3. The best performing system
for each column is highlighted in boldface. Our system which encodes only sentence with pre-trained
word embeddings achieves the best performance across all the metrics.

0.3 is applied between vertical LSTM stacks. We
clip the gradient when the its norm exceeds 5.

All our models are trained on a single GPU. We
run the training for up to 15 epochs, which takes
approximately 2 hours. We select the model that
achieves the lowest perplexity on the dev set.

During decoding, we do beam search with a
beam size of 3. Decoding stops when every beam
in the stack generates the <EOS> token.

All hyperparameters of our model are tuned us-
ing the development set. The results are reported
on the test set.

5.3 Baselines

To prove the effectiveness of our system, we com-
pare it to several competitive systems. Next, we
briefly introduce their approaches and the experi-
mental setting to run them for our problem. Their
results are shown in Table 2.

IR stands for our information retrieval baselines.
Similar to Rush et al. (2015), we implement the
IR baselines to control memorizing questions from
the training set. We use two metrics to calculate
the distance between a question and the input sen-
tence, i.e., BM-25 (Robertson and Walker, 1994)
and edit distance (Levenshtein, 1966). According
to the metric, the system retrieves the training set
to find the question with the highest score.

MOSES+ (Koehn et al., 2007) is a widely used
phrase-based statistical machine translation sys-
tem. Here, we treat sentences as source language
text, we treat questions as target language text, and
we perform the translation from sentences to ques-

tions. We train a tri-gram language model on tar-
get side texts with KenLM (Heafield et al., 2013),
and tune the system with MERT on dev set. Per-
formance results are reported on the test set.

DirectIn is an intuitive yet meaningful baseline in
which the longest sub-sentence of the sentence is
directly taken as the predicted question. 4 To split
the sentence into sub-sentences, we use a set of
splitters, i.e., {“?”, “!”, “,”, “.”, “;”}.

H&S is the rule-based overgenerate-and-rank sys-
tem that was mentioned in Section 2. When run-
ning the system, we set the parameter just-wh
true (to restrict the output of the system to being
only wh-questions) and set max-length equal
to the longest sentence in the training set. We
also set downweight-pro true, to down weight
questions with unresolved pronouns so that they
appear towards the end of the ranked list. For com-
parison with our systems, we take the top question
in the ranked list.

Seq2seq (Sutskever et al., 2014) is a basic
encoder-decoder sequence learning system for
machine translation. We implement their model
in Tensorflow. The input sequence is reversed be-
fore training or translating. Hyperparameters are
tuned with dev set. We select the model with the
lowest perplexity on the dev set.

4We also tried using the entire input sentence as the pre-
diction output, but the performance is worse than taking sub-
sentence as the prediction, across all the automatic metrics
except for METEOR.
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Naturalness Difficulty Best % Avg. rank

H&S 2.95 1.94 20.20 2.29
Ours 3.36 3.03* 38.38* 1.94**

Human 3.91 2.63 66.42 1.46

Table 3: Human evaluation results for question
generation. Naturalness and difficulty are rated
on a 1–5 scale (5 for the best). Two-tailed t-
test results are shown for our method compared to
H&S (statistical significance is indicated with ∗(p
< 0.005), ∗∗(p < 0.001)).

5.4 Automatic Evaluation

We use the evaluation package released by Chen
et al. (2015), which was originally used to score
image captions. The package includes BLEU 1,
BLEU 2, BLEU 3, BLEU 4 (Papineni et al., 2002),
METEOR (Denkowski and Lavie, 2014) and
ROUGEL (Lin, 2004) evaluation scripts. BLEU
measures the average n-gram precision on a set
of reference sentences, with a penalty for overly
short sentences. BLEU-n is BLEU score that uses
up to n-grams for counting co-occurrences. ME-
TEOR is a recall-oriented metric, which calculates
the similarity between generations and references
by considering synonyms, stemming and para-
phrases. ROUGE is commonly employed to eval-
uate n-grams recall of the summaries with gold-
standard sentences as references. ROUGEL (mea-
sured based on longest common subsequence) re-
sults are reported.

5.5 Human Evaluation

We also perform human evaluation studies to mea-
sure the quality of questions generated by our sys-
tem and the H&S system. We consider two modal-
ities: naturalness, which indicates the grammati-
cality and fluency; and difficulty, which measures
the sentence-question syntactic divergence and the
reasoning needed to answer the question. We ran-
domly sampled 100 sentence-question pairs. We
ask four professional English speakers to rate the
pairs in terms of the modalities above on a 1–5
scale (5 for the best). We then ask the human raters
to give a ranking of the questions according to the
overall quality, with ties allowed.

6 Results and Analysis

Table 2 shows automatic metric evaluation results
for our models and baselines. Our model which
only encodes sentence-level information achieves

Sentence 1: the largest of these is the eldon square shop-
ping centre , one of the largest city centre shopping com-
plexes in the uk .
Human: what is one of the largest city center shopping
complexes in the uk ?
H&S: what is the eldon square shopping centre one of ?
Ours: what is one of the largest city centers in the uk ?

Sentence 2: free oxygen first appeared in significant
quantities during the paleoproterozoic eon -lrb- between
3.0 and 2.3 billion years ago -rrb- .
Human: during which eon did free oxygen begin ap-
pearing in quantity ?
H&S: what first appeared in significant quantities dur-
ing the paleoproterozoic eon ?
Ours: how long ago did the paleoproterozoic exhibit ?

Sentence 3: inflammation is one of the first responses
of the immune system to infection .
Human: what is one of the first responses the immune
system has to infection ?
H&S: what is inflammation one of ?
Ours: what is one of the first objections of the immune
system to infection ?

Sentence 4: tea , coffee , sisal , pyrethrum , corn , and
wheat are grown in the fertile highlands , one of the most
successful agricultural production regions in Africa.
Human: (1) where is the most successful agricultural
prodcution regions ? (2) what is grown in the fertile
highlands ?
H&S: what are grown in the fertile highlands in africa ?
Ours: what are the most successful agricultural produc-
tion regions in africa ?

Sentence 5: as an example , income inequality did fall
in the united states during its high school movement
from 1910 to 1940 and thereafter .
Human: during what time period did income inequality
decrease in the united states ?
H&S: where did income inequality do fall during its
high school movement from 1910 to 1940 and thereafter
as an example ?
Ours: when did income inequality fall in the us ?

Sentence 6: however , the rainforest still managed to
thrive during these glacial periods , allowing for the sur-
vival and evolution of a broad diversity of species .
Human: did the rainforest managed to thrive during the
glacial periods ?
H&S: what are treaties establishing european union ?
Ours: why do the birds still grow during glacial periods
?

Sentence 7: maududi founded the jamaat-e-islami party
in 1941 and remained its leader until 1972.
Human: when did maududi found the jamaat-e-islami
party ?
H&S: who did maududi remain until 1972 ?
Ours: when was the jamaat-e-islami party founded ?

Figure 3: Sample output questions generated by
human (ground truth questions), our system and
the H&S system.
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Category (%) H&S Ours Ours + paragraph

BLEU-3 BLEU-4 METEOR BLEU-3 BLEU-4 METEOR BLEU-3 BLEU-4 METEOR

w/ sentence 70.23 (243) 20.64 15.81 16.76 24.45 17.63 17.82 24.01 16.39 19.19
w/ paragraph 19.65 (68) 6.34 < 0.01 10.74 3.76 < 0.01 11.59 7.23 4.13 12.13

All* 100 (346) 19.97 14.95 16.68 23.63 16.85 17.62 24.68 16.33 19.61

Table 4: An estimate of categories of questions of the processed dataset and per-category performance
comparison of the systems. The estimate is based on our analysis of the 346 pairs from the dev set.
Categories are decided by the information needed to generate the question. Bold numbers represent the
best performing method for a given metric. ∗Here, we leave out performance results for “w/ article”
category (2 samples, 0.58%) and “not askable” category (33 samples, 9.54%).

the best performance across all metrics. We note
that IR performs poorly, indicating that memoriz-
ing the training set is not enough for the task. The
baseline DirectIn performs pretty well on BLEU
and METEOR, which is reasonable given the over-
lap statistics between the sentences and the ques-
tions (Figure 2). H&S system’s performance is on
a par with DirectIn’s, as it basically performs syn-
tactic change without paraphrasing, and the over-
lap rate is also high.

Looking at the performance of our three mod-
els, it’s clear that adding the pre-trained embed-
dings generally helps. While encoding the para-
graph causes the performance to drop a little, this
makes sense because, apart from useful informa-
tion, the paragraph also contains much noise.

Table 3 shows the results of the human evalua-
tion. We see that our system outperforms H&S in
all modalities. Our system is ranked best in 38.4%
of the evaluations, with an average ranking of
1.94. An inter-rater agreement of Krippendorff’s
Alpha of 0.236 is achieved for the overall rank-
ing. The results imply that our model can generate
questions of better quality than the H&S system.

For our qualitative analysis, we examine the
sample outputs and the visualization of the align-
ment between the input and the output. In Fig-
ure 3, we present sample questions generated by
H&S and our best model. We see a large gap be-
tween our results and H&S’s. For example, in
the first sample, in which the focus should be put
on “the largest.” Our model successfully captures
this information, while H&S only performs some
syntactic transformation over the input without
paraphrasing. However, outputs from our system
are not always “perfect”, for example, in pair 6,
our system generates a question about the reason
why birds still grow, but the most related question
would be why many species still grow. But from
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Figure 4: Heatmap of the attention weight matrix,
which shows the soft alignment between the sen-
tence (left) and the generated question (top).

a different perspective, our question is more chal-
lenging (readers need to understand that birds are
one kind of species), which supports our system’s
performance listed in human evaluations (See Ta-
ble 3). It would be interesting to further investigate
how to interpret why certain irrelavant words are
generated in the question. Figure 4 shows the at-
tention weights (αi,t) for the input sentence when
generating each token in the question. We see that
the key words in the output (“introduced”, “tele-
text”, etc.) aligns well with those in the input sen-
tence.

Finally, we do a dataset analysis and fine-
grained system performance analysis. We ran-
domly sampled 346 sentence-question pairs from
the dev set and label each pair with a category. 5

The four categories are determined by how much
information is needed to ask the question. To
be specific, “w/ sentence” means it only requires

5The IDs of the questions examined will be made
available at https://github.com/xinyadu/nqg/
blob/master/examined-question-ids.txt.
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the sentence to ask the question; “w/ paragraph”
means it takes other information in the paragraph
to ask the question; “w/ article” is similar to “w/
paragraph”; and “not askable” means that world
knowledge is needed to ask the question or there is
mismatch of sentence and question caused by an-
notation error.

Table 4 shows the per-category performance of
the systems. Our model which encodes paragraph
information achieves the best performance on the
questions of “w/ paragraph” category. This veri-
fies the effectiveness of our paragraph-level model
on the questions concerning information outside
the sentence.

7 Conclusion and Future Work

We have presented a fully data-driven neural net-
works approach to automatic question generation
for reading comprehension. We use an attention-
based neural networks approach for the task and
investigate the effect of encoding sentence- vs.
paragraph-level information. Our best model
achieves state-of-the-art performance in both au-
tomatic evaluations and human evaluations.

Here we point out several interesting future re-
search directions. Currently, our paragraph-level
model does not achieve best performance across
all categories of questions. We would like to ex-
plore how to better use the paragraph-level infor-
mation to improve the performance of QG system
regarding questions of all categories. Besides this,
it would also be interesting to consider to incor-
porate mechanisms for other language generation
tasks (e.g., copy mechanism for dialogue genera-
tion) in our model to further improve the quality
of generated questions.
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