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Abstract

Recently emerged intelligent assistants
on smartphones and home electronics
(e.g., Siri and Alexa) can be seen as
novel hybrids of domain-specific task-
oriented spoken dialogue systems and
open-domain non-task-oriented ones. To
realize such hybrid dialogue systems, this
paper investigates determining whether or
not a user is going to have a chat with
the system. To address the lack of bench-
mark datasets for this task, we construct
a new dataset consisting of 15, 160 utter-
ances collected from the real log data of a
commercial intelligent assistant (and will
release the dataset to facilitate future re-
search activity). In addition, we investi-
gate using tweets and Web search queries
for handling open-domain user utterances,
which characterize the task of chat de-
tection. Experiments demonstrated that,
while simple supervised methods are ef-
fective, the use of the tweets and search
queries further improves the F1-score from
86.21 to 87.53.

1 Introduction

1.1 Chat detection

Conventional studies on spoken dialogue systems
(SDS) have investigated either domain-specific
task-oriented SDS1 (Williams and Young, 2007)
or open-domain non-task-oriented SDS (a.k.a.,
chatbots or chat-oriented SDS) (Wallace, 2009).
The former offers convenience by helping users
complete tasks in specific domains, while the latter

∗Work done during internship at Yahoo Japan Corpora-
tion.

1They can be classified as single-domain or multi-domain
task-oriented SDS.

offers entertainment through open-ended chatting
(or smalltalk) with users. Although the function-
alities offered by the two types of SDS are com-
plementary to each other, little practical effort has
been made to combine them. This unfortunately
has limited the potential of SDS.

This situation is now being changed by the
emergence of voice-activated intelligent assistants
on smartphones and home electronics (e.g., Siri2

and Alexa3). These intelligent assistants typically
perform various tasks (e.g., Web search, weather
checking, and alarm setting) while being able to
have chats with users. They can be seen as a
novel hybrid of multi-domain task-oriented SDS
and open-domain non-task-oriented SDS.

To realize such hybrid SDS, we have to deter-
mine whether or not a user is going to have a chat
with the system. For example, if a user says “What
is your hobby?” it is considered that she is going
to have a chat with the system. On the other hand,
if she says “Set an alarm at 8 o’clock,” she is prob-
ably trying to operate her smartphone. We refer to
this task as chat detection and treat it as a binary
classification problem.

Chat detection has not been explored enough
in past studies. This is primarily because little
attempts have been made to develop hybrids of
task-oriented and non-task-oriented SDS (see Sec-
tion 2 for related work). Although task-oriented
and non-task-oriented SDS have long research his-
tories, both of them do not require chat detec-
tion. Typically, users of task-oriented SDS do not
have chats with the systems and users of non-task-
oriented SDS always have chats with the systems.

1.2 Summary of this paper
In this work, we construct a new dataset for chat
detection. As we already discussed, chat detection

2http://www.apple.com/ios/siri
3https://developer.amazon.com/alexa
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has not been explored enough, and thus there ex-
ist no benchmark datasets available. To address
this situation, we collected 15, 160 user utterances
from real log data of a commercial intelligent as-
sistant, and recruited crowd workers to annotate
those utterances with whether or not the users are
going to have chats with the intelligent assistant.
The resulting dataset will be released to facilitate
future studies.

The technical challenge in chat detection is that
we have to handle open-ended utterances of in-
telligent assistant users. Commercial intelligent
assistants have a vast amount of users and they
talk about a wide variety of topics especially when
chatting with the assistants. It consequently be-
comes labor-intensive to collect a sufficiently large
amount of annotated data for training accurate chat
detectors.

We develop supervised binary classifiers to per-
form chat detection. We address the open-ended
user utterances, which characterize chat detection,
by using unlabeled external resources. We specif-
ically utilize tweets (i.e., Twitter posts) and Web
search queries to enhance the supervised classi-
fiers.

Experimental results demonstrated that, while
simple supervised methods are effective, the ex-
ternal resources are able to further improve them.
The results demonstrated that the use of the ex-
ternal resources increases over 1 point of F1-score
(from 86.21 to 87.53).

2 Related Work

2.1 Previous studies on combining
task-oriented and non-task-oriented SDS

Task-oriented and non-task-oriented SDS have
long been investigated independently, and little at-
tempts have been made to develop hybrids of the
two types of SDS. As a consequence, previous
studies have not investigated chat detection with-
out only a few exceptions.4

Niculescu and Banchs (2015) explored using
non-task-oriented SDS as a back-off mechanism
for task-oriented SDS. They, however, did not pro-
pose any concrete methods of automatically deter-
mining when to switch to non-task-oriented SDS.

4Unfortunately, we cannot discuss little about chat detec-
tion in existing commercial intelligent assistants since most
of their technical details have not been disclosed. We make
the best effort to compensate for it by comparing the pro-
posed methods with our in-house intelligent assistant in the
experiment.

Lee et al. (2007) proposed an example-based di-
alogue manager to combine task-oriented and non-
task-oriented SDS. In such a framework, however,
it is difficult to flexibly utilize state-of-the-art su-
pervised classifiers as a component.

Other studies proposed machine-learning-based
frameworks for combining multi-domain task-
oriented SDS and non-task-oriented SDS (Wang
et al., 2014; Sarikaya, 2017). These assume that
several components including a chat detector are
already available, and explore integrating those
components. They discuss little on how to develop
each of the components. On the other hand, the fo-
cus of this work is to develop one of those compo-
nents, a chat detector. Although it lies outside the
scope of this paper to explore how to exploit chat
detection method in a full dialogue system, the
chat detection method is considered to serve, for
example, as one component within those frame-
works.

2.2 Intent and domain determination

Chat detection is related to, but different from,
intent and domain determination that have been
studied in the field of SDS (Guo et al., 2014; Xu
and Sarikaya, 2014; Ravuri and Stolcke, 2015;
Kim et al., 2016; Zhang and Wang, 2016).

Both intent and domain determination have
been investigated in domain-specific task-oriented
SDS. Intent determination aims to determine the
type of information a user is seeking in single-
domain task-oriented SDS. For example, in the
ATIS dataset, which is collected from an airline
travel information service system, the information
type includes flight, city, and so on (Tur et al.,
2010). On the other hand, domain determination
aims to determine which domain is relevant to a
given user utterance in multi-domain task-oriented
SDS (Xu and Sarikaya, 2014). Note that it is pos-
sible that domain determination is followed by in-
tent determination.

Unlike intent and domain determination, chat
detection targets hybrid systems of multi-domain
task-oriented SDS and open-domain non-task-
oriented SDS, and aims to determine whether the
non-task-oriented component is responsible to a
given user utterance or not (i.e., the user is going
to have a chat or not). Therefore, the objective of
chat detection is different from intent and domain
determination.

It may be possible to see chat detection as a spe-
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cific problem of domain determination (Sarikaya,
2017). We, nevertheless, discuss it as a different
problem because of the uniqueness of the “chat
domain.” It greatly differs from ordinary domains
in that it plays a role of combining the two differ-
ent types of SDS that have long been studied in-
dependently, rather than combining multiple SDS
of the same types. In addition, we discuss the use
of external resources, especially tweets, for chat
detection. This approach is unique to chat detec-
tion and is not considered effective for ordinary
domain determination.

It is interesting to note that chat detection is not
followed by slot-filling unlike intent and domain
determination, as far as we use a popular response
generator such as seq2seq model (Sutskever et al.,
2014) or an information retrieval based approach
(Yan et al., 2016). Although joint intent (or
domain) determination and slot-filling has been
widely studied to improve accuracy (Guo et al.,
2014; Zhang and Wang, 2016), the same approach
is not feasible in chat detection.

2.3 Intelligent assistant
Previous studies on intelligent assistants have not
investigated chat detection. Their research top-
ics are centered around those on user behaviors
including the prediction of user satisfaction and
engagement (Jiang et al., 2015; Kobayashi et al.,
2015; Sano et al., 2016; Kiseleva et al., 2016a,b)
and gamification (Otani et al., 2016). For example,
Jiang et al. (2015) investigated predicting whether
users are satisfied with the responses of intelligent
assistants by combining diverse features including
clicks and utterances. Sano et al. (2016) explored
predicting whether users will keep using the intel-
ligent assistants in the future by using long-term
usage histories.

Some earlier works used the Cortana dataset as
a benchmark of domain determination (Guo et al.,
2014; Xu and Sarikaya, 2014; Kim et al., 2016)
or proposed a development framework for Cortana
(Crook et al., 2016). Those studies, however, re-
garded the intelligent assistant as merely one ex-
ample of multi-domain task-oriented SDS and did
not explore chat detection.

2.4 Non-task-oriented SDS
Non-task-oriented SDS have long been studied
in the research community. While early studies
adopted rule-based methods (Weizenbaum, 1966;
Wallace, 2009), statistical approaches have re-

cently gained much popularity (Ritter et al., 2011;
Vinyals and Le, 2015). This research direction
was pioneered by Ritter et al. (2011), who applied
a phrase-based SMT model to the response gen-
eration. Later, Vinyals and Le (2015) used the
seq2seq model (Sutskever et al., 2014). To date, a
number follow-up studies have been made to im-
prove on the response quality (Hasegawa et al.,
2013; Shang et al., 2015; Sordoni et al., 2015;
Li et al., 2016a,b; Gu et al., 2016; Yan et al.,
2016). Those studies assume that users always
want to have chats with systems and investigate
only methods of generating appropriate responses
to given utterances. Chat detection is required for
integrating those response generators into intelli-
gent assistants.

2.5 Use of conversational data

The recent explosion of conversational data on
the Web, especially tweets, have triggered a va-
riety of dialogue studies. Those typically used
tweets either for training response generators (c.f.,
Section 2.4) or for discovering dialogue acts in
an unsupervised fashion (Ritter et al., 2010; Hi-
gashinaka et al., 2011). This treatment of tweets
differs from that in our work.

3 Chat Detection Dataset

In this section we explain how we constructed the
new benchmark dataset for chat detection. We
then analyze the data to provide insights into the
actual user behavior.

3.1 Construction procedure

We sampled 15, 160 unique utterances5 (i.e., au-
tomatic speech recognition results) from the real
log data of a commercial intelligent assistant, Ya-
hoo! Voice Assist.6 The log data were collected
between Jan. and Aug. 2016. In the log data, some
utterances such as “Hello” appear frequently. To
construct a dataset containing both high and low
frequency utterances, we set frequency thresh-
olds7 to divide the utterances into three groups
(high, middle, and low frequency) and then ran-
domly sampled the same number of utterances

5The utterances are all in Japanese. Example utterances
given in this paper are English translations.

6https://v-assist.yahoo.co.jp
7We cannot disclose the exact threshold values so as to

keep the detailed statistics of the original log data confiden-
tial.
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Label Example No. of votes
CHAT Let’s talk about something. 5

What is your hobby? 7
I don’t have any holidays this month. 5
I’m walking around now. 6
Do you like cats? 5
You are a serious geek. 7

NONCHAT Show me a picture of Mt. Fuji. 6
What’s the highest building in the world? 5
A nice restaurant near here. 7
Wake me up at 9:10. 7
Brighten the screen. 6
Turn off the alarm. 7

Table 1: Example utterances and the numbers of votes. NONCHAT utterances are further divided into
information seeking (top) and device control (bottom) to facilitate readers’ understanding.

#Votes No. of utterances
4 1701
5 2670
6 4978
7 5811

Table 2: Distribution of the numbers of votes.

from each of the three groups. During the data col-
lection, we ensured privacy by manually removing
utterances that included the full name of a person
or detailed address information.

Next, we recruited crowd workers to annotate
the 15, 160 utterances with two labels, CHAT and
NONCHAT. The workers annotated the CHAT la-
bel when users were going to have chats with the
intelligent assistant and annotated the NONCHAT

label when users were seeking some information
(e.g., searching the Web or checking the weather)
or were trying to operate the smartphones (e.g.,
setting alarms or controlling volume). Note that
our intelligent assistant works primarily on smart-
phones and thus the NONCHAT utterances include
many operational instructions such as alarm set-
ting. Example utterances are given in Table 1.

Seven workers were assigned to each utterance,
and the final labels were obtained by majority vote
to address the quality issue inherent in crowd-
sourcing. The last column in Table 1 shows the
number of votes that the majority label obtained.
For example, five workers provided the CHAT la-
bel (and the other two provided the NONCHAT la-
bel) to the first utterance “Let’s talk about some-
thing.”

3.2 Data analysis

The construction process described above yielded
a dataset made up of 4, 833 CHAT and 10, 327
NONCHAT utterances.

We investigated the annotation agreement
among the crowd workers. Table 2 shows the
distribution of the numbers of votes that the ma-
jority labels obtained. The annotation given by
the seven workers agreed perfectly in 5, 811 of
the 15, 160 utterances (38%). Also, at least six
workers agreed in the majority of cases, 10, 789
(= 4, 978 + 5, 811) utterances (71%). This indi-
cates high agreement among the workers and the
reliability of the annotation results.

During the data construction, we found that a
typical confusing case arises when the utterance
can be interpreted as an implicit information re-
quest. For example, the utterance “I am hungry”
can be seen as the user trying to have a chat with
the assistant, but it might be the case that she is
looking for a local restaurant. Similar examples
include “I have a backache” and so on. One solu-
tion in this case might be to ask the user a clari-
fication question (Schlöder and Fernandez, 2015).
Such an exploration is left for our future research.

Additionally, we manually classified the CHAT

utterances according to their dialogue acts to fig-
ure out how real users have chats with the intelli-
gent assistant (Table 3). The set of dialogue acts
was designed by referring to (Meguro et al., 2010).
As shown in Table 3, while some of the utterances
are boilerplates (e.g., those in the GREETING act)
and thus have limited variety, the majority of the
utterances exhibit tremendous diversity. We see
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Dialogue act (No. of Utter.) Example
GREETING (206) Hello.

Merry Christmas.
SELFDISCLOSURE (1164) I am free today.

I have a sore throat.
ORDER (716) Please cheer me up.

Give me a song!
QUESTION (1551) Do you have emotions?

Are you angry?
INVITATION (130) Let’s play with me!

Let’s go to karaoke next time.
INFORMATION (214) My cat is acting strange.

It snowed a lot.
THANKS (126) Thank you.

You are cool!
CURSE (172) You’re an idiot.

You are useless.
APOLOGY (9) I’m sorry.

I mistook, sorry.
INTERJECTION (151) Whoof.

Yeah, yeah.
MISC (394) May the force be with you.

Cock-a-doodle-doo.

Table 3: Distribution over dialogue acts and exam-
ple utterances.

a wide variety of topics including private issues
(e.g., “I am free today”) and questions to the assis-
tant (e.g., “Are you angry?”). Also, we even see a
movie quote (“May the force be with you”) and a
rooster crow (“Cock-a-doodle-doo”) in the MISC

act. These clearly represent the open-domain na-
ture of the user utterances in intelligent assistants.

Interestingly, some users curse at the intelligent
assistant probably because it failed to make appro-
priate responses (see the CURSE act). Although
such user behavior would not be observed from
paid research participants, we observe a certain
amount of curse utterances in the real data.

4 Detection Method

We formulate chat detection as a binary classifi-
cation problem to train supervised classifiers. In
this section, we first explain the two types of clas-
sifiers explored in this paper, and then investigate
the use of external resources for enhancing those
classifiers.

4.1 Base classifiers

The first classifier utilizes SVM for its popular-
ity and efficiency. It uses character and word n-
gram (n = 1 and 2) features. It also uses word
embedding features (Turian et al., 2010). A skip-
gram model (Mikolov et al., 2013) is trained on

Figure 1: Feature vector representation of the ex-
ample utterance “Today’s weather.” The upper
three parts of the vector represent the features de-
scribed in Section 4.1 (character n-gram, word n-
gram, and average of the word embeddings). The
three additional features explained in Section 4.2
are added as two real-valued features (Tweet GRU
and Query GRU) and one binary feature (Query
binary).

the entire intelligent assistant log8 to learn word
embeddings. The embeddings of the words in the
utterance are then averaged to produce additional
features.

The second classifier uses a convolutional neu-
ral network (CNN) because it has recently proven
to perform well on text classification problems
(Kim, 2014; Johnson and Zhang, 2015a,b). We
follow (Kim, 2014) to develop a simple CNN that
has a single convolution and max-pooling layer
followed by the soft-max layer. We use a recti-
fied linear unit (ReLU) as the non-linear activation
function. The same word embeddings as SVM are
used for the pre-training.

4.2 Using external resources

We next investigate using external resources for
enhancing the base classifiers. Thanks to the rapid
evolution of the Web in the past decade, a variety
of textual data including not only conversational
(i.e., chat-like) but also non-conversational ones
are abundantly available nowadays. These data of-
fer an effective way of enhancing the base classi-
fiers. We specifically use tweets and Web search
queries as conversational and non-conversational
text data, respectively.

We train character-based9 language models on
8We used the same log data used in Section 3. The de-

tailed statistics is confidential.
9We also trained word-based language models in prelim-
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Figure 2: Architecture of our CNN-based classi-
fier when the input utterance is “Today’s weather.”
The output layer of CNN and the three additional
features explained in Section 4.2 are concatenated.
The resulting vector is fed to the soft-max func-
tion.

tweets and Web search queries, and use their
scores (i.e., the normalized log probabilities of
the utterance) as two additional features. Let
u = c1, c2, . . . , cm be an utterance made up of
m characters. Then, the score scorer(u) of the
language model trained on the external resource
r ∈ {tweet, query} is defined as

scorer(u) =
1

m

m∑

t=1

log pr(ct | c1, . . . , ct−1).

The GRU language model is adopted for its su-
perior performance (Cho et al., 2014; Chung et al.,
2014). Let xt be the embedding of t-th character
and ht be the t-th hidden state. GRU computes the
hidden state as

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

zt = σ(W(z)zt +U(z)ht−1)

h̃t = tanh(W(h)xt +U(h)(rt ⊙ ht−1))

rt = σ(W(r)xt +U(r)ht−1)

where ⊙ is the element-wise multiplication, σ is
the sigmoid and tanh is the hyperbolic tangent.
W(z), U(z), W(h), U(h), W(r), and U(r) are
weight matrices. The hidden states are fed to the
soft-max to predict the next word.

We also use a binary feature indicating whether
the utterance appears in the Web search query log

inary experiments and found that character-based ones per-
form consistently better.

or not. We observe that some NONCHAT utter-
ances are made up of single entities such as loca-
tion and product names. Such utterances are con-
sidered to be seeking information on those entities.
We therefore use the query log as an entity dic-
tionary to derive a feature indicating whether the
utterance is likely to be a single entity.

The resulting three features are incorporated
into the SVM-based classifier straightforwardly
(Figure 1). For the CNN-based classifier, they are
provided as additional inputs to the soft-max layer
(Figure 2).

5 Experimental Results

We empirically evaluate the proposed methods on
the chat detection dataset.

5.1 Experimental settings

We performed 10-fold cross validation on the chat
detection dataset to train and evaluate the proposed
classifiers. In each fold, we used 80%, 10%, and
10% of the data for the training, development, and
evaluation, respectively.

We used word2vec10 to learn 300 dimen-
sional word embeddings. They were used to in-
duce the additional 300 features for SVM. They
were also used as the pre-trained word embed-
dings for CNN.

We used the faster-rnn toolkit11 to train the
GRU language models. The size of the embedding
and hidden layer was set to 256. Noise contrastive
estimation (Gutmann and Hyvärinen, 2010) was
used to train the soft-max function and the num-
ber of noise samples was set to 50. Maximum en-
tropy 4-gram models were also trained to yield a
combined model (Mikolov et al., 2011).

The language models were trained on 100 mil-
lions tweets collected between Apr. and July 2016
and 100 million Web search queries issued be-
tween Mar. and Jun. 2016. The tweets were sam-
pled from those received replies to collect only
conversational tweets (Ritter et al., 2011). The
same Web search queries were used to derive the
binary feature. Although it is difficult to release
those data, we plan to make the feature values
available together with the benchmark dataset.

We used liblinear12 to train L2-regularized
L2-loss SVM. The hyperparameter c was tuned

10https://code.google.com/archive/p/word2vec
11https://github.com/yandex/faster-rnnlm
12https://www.csie.ntu.edu.tw/˜cjlin/liblinear
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Model Acc. P R F1

Majority 68.12 N/A N/A N/A
Tweet GRU 72.07 54.54 74.40 62.94
In-house IA 78.31 62.57 79.51 70.03

SVM 90.51 86.42 83.45 84.91
SVM+embed. 91.35 87.62 84.88 86.21
SVM+embed.+tweet-query 92.15 88.61 86.50 87.53
CNN 85.16 83.40 68.12 74.41
CNN+pre-train. 90.84 87.03 83.80 85.36
CNN+pre-train.+tweet-query 91.48 87.78 85.18 86.56

Table 4: Chat detection results.

over {2−10, 2−9, . . . , 210}.
The CNN was implemented with chainer.13

We tuned the number of feature maps over
{100, 150}, and filter region sizes over
{{2}, {3}, {1, 2}, {2, 3}, {3, 4}, {1, 2, 3}, {2, 3, 4}}.
The mini-batch size was set to 32. The dropout
rate was set to 0.5. We used Adam (α = 0.001,
β1 = 0.9, β2 = 0.999, and ϵ = 10−8) to perform
stochastic gradient descent (Kingma and Ba,
2015).

5.2 Baselines
The following baseline methods were imple-
mented for comparison:

Majority Utterances are always classified as the
majority class, NONCHAT.

Tweet GRU Utterances are classified as CHAT if
the score of the GRU language model trained
on the tweets exceeds a threshold. We used
exactly the same GRU language model as the
one that was used for deriving the feature.
The threshold was calibrated on the develop-
ment data by maximizing the F1-score of the
CHAT class.

In-house IA Our in-house intelligent assistant
system, which adopts a hybrid of rule-based
and example-based approaches. Since we
cannot disclose its technical details, the result
is presented just for reference.

5.3 Result
Table 4 gives the precision, recall, F1-score (for
the CHAT class), and overall classification accu-
racy results. We report only accuracy for Ma-
jority baseline. +embed. and +pre-train. repre-
sent using the word embedding features for SVM

13http://chainer.org

and the pre-trained word embeddings for CNN,
respectively. +tweet-query represents using the
three features derived from the tweets and Web
search query.

Table 4 represents that both of the classi-
fiers, SVM and CNN, perform accurately. We
see that both +embed. and +pre-train. im-
prove the results. The best performing method,
SVM+embed.+tweet-query, achieves 92% accu-
racy and 87% F1-score, outperforming all of the
baselines. CNN performed worse than SVM con-
trary to results reported by recent studies (Kim,
2014). We think this is because the architecture
of our CNN is rather simplistic. It might be possi-
ble to improve the CNN-based classifier by adopt-
ing more complex network, although it is likely
to come at the cost of extra training time. Another
reason would be that our SVM classifier uses care-
fully designed features beyond word 1-grams.

Table 4 also represents that the external re-
sources are effective, improving F1-scores almost
1 points in both SVM and CNN. Table 5 il-
lustrates example utterances and their language
model scores. We see that the language mod-
els trained on the tweets and queries success-
fully provide the CHAT utterances with high and
low scores, respectively. Table 6 shows chat de-
tection results when each of the three features
derived from the external resources is added to
SVM+embed. The results represent that they are
all worse than SVM+embed.+tweet-query and
thus it is crucial to combine all of them for achiev-
ing the best performance.

Table 7 shows examples of feature weights of
SVM+embed.+tweet-query. Tweet GRU and
query GRU denote the language model score fea-
tures. The others are word n-gram features. We
see that the language model scores have the large
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Score (tweet/query) Label Utterance
−0.964 −1.427 CHAT Halloween has already finished.
−0.957 −1.610 CHAT　　 Let’s sleep.
−1.233 −0.562 NONCHAT Pokemon Go install.
−1.837 −0.682 NONCHAT Weekly weather forecast.

Table 5: Examples of the language model scores. The first two columns represent the scores provided
by the GRU language models trained on the tweets and Web search queries, respectively. The third and
fourth columns represent the label and utterance.

Feature Acc. P R F1

tweet GRU 91.53 87.62 85.49 86.53
query GRU 91.38 87.55 85.06 86.28
query binary 91.42 87.56 85.21 86.36

Table 6: Effect of the three features derived from
the tweets and Web search queries.

Feature Weight Feature Weight
tweet GRU 1.128 query GRU −0.771

I 0.215 call to −0.217
Sing 0.195 volume −0.196

Table 7: Examples feature weights of
SVM+embed+tweet-query.

positive and negative weights, respectively. This
indicates that effectiveness of the language mod-
els. We also see that the first person has a large
positive weight, while terms related to device con-
trolling (“call to” and “volume”) have large nega-
tive weights.

Table 8 represents chat detection results of
SVM+embd.+tweet-query across the numbers of
votes that the majority label obtained. As ex-
pected, we see that all metrics get higher as the
number of agreement among the crowd workers
becomes larger. In fact, we see as much as 98%
accuracy when all seven workers agree. This im-
plies that utterances easy for humans to classify
are also easy for the classifiers.

5.4 Training data size

We next investigate the effect of the training data
size on the classification accuracy.

Figure 3 illustrates the learning curve. It rep-
resents that the classification accuracy improves
almost monotonically as the training data size in-
creases. Although our training data is by no means
small, the shape of the learning curve neverthe-
less suggests that further improvement would be
achieved by adding more training data. This im-

#Votes #Utter. Acc. P R F1

4 1701 66.67 55.41 59.81 57.53
5 2670 87.72 80.46 83.01 81.72
6 4978 96.02 92.73 93.87 93.30
7 5811 98.33 96.73 97.68 97.20

Table 8: Chat detection results across the numbers
of votes that the majority label obtained.

12.5 25.0 37.5 50.0 62.5 75.0 87.5 100.0
Training data size (%)

88

89

90

91

92

93
A

cc
ur

ac
y 

(%
)

SVM+embed.
SVM+embed.+tweet+query

Figure 3: Learning curve of the proposed meth-
ods. The horizontal axis represents what percent-
age of the training portion is used in each fold of
the cross validation. The vertical axis represents
the classification accuracy.

plies that a very large amount of training data are
required for covering open-domain utterances in
intelligent assistants.

The figure at the same time represents the
usefulness of the external resources. We see
that SVM+embed.+tweet-query trained on about
25% of the training data is able to achieve compa-
rable accuracy with SVM+embed. trained on the
entire training data. This result suggests that the
external resources are able to compensate for the
scarcity of annotated data.

5.5 Utterance length

We finally investigate how the utterance length
correlates with the classification accuracy. Fig-
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Figure 4: Classification accuracy across utterance
lengths in the number of characters.

ure 4 illustrates the classification accuracies of
SVM+embed. and SVM+embed.+tweet-query
for each utterance length in the number of char-
acters.

Figure 4 reveals that the difference between the
two proposed methods is evident in short utter-
ances (i.e., ≤ 5). This is because those utterances
are too short to contain sufficient information re-
quired for classification, and the additional fea-
tures are helpful. We note that Japanese writing
system uses ideograms and thus even five charac-
ters is enough to represent a simple sentence.

We also see a clear difference in longer utter-
ances (i.e., 15 ≤) as well. We consider those long
utterances are difficult to classify because some
words in the utterances are irrelevant for the clas-
sification and the n-gram and embedding features
include those irrelevant ones. On the other hand,
we consider that the language model scores are
good at capturing stylistic information irrespective
of the utterance length.

6 Future Work

As discussed in Section 3.2, some user utterances
such as “I am hungry” are ambiguous in nature and
thus are difficult to handle in the current frame-
work. An important future work is to develop a so-
phisticated dialogue manager to handle such utter-
ances, for example, by making clarification ques-
tions (Schlöder and Fernandez, 2015).

We manually investigated the dialogue acts in
the chat detection dataset (c.f., Section 3.2). It
is interesting to automatically determine the dia-
logue acts to help producing appropriate system
responses. Some related studies exist in such a re-
search direction (Meguro et al., 2010).

Although we used only text data to perform

chat detection, we can also utilize contextual in-
formation such as the previous utterances (Xu and
Sarikaya, 2014), the acoustic information (Jiang
et al., 2015), and the user profile (Sano et al.,
2016). It is an interesting research topic to use
such contextual information beyond text. It is con-
sidered promising to make use of a neural network
for integrating such heterogeneous information.

An automatic speech recognition (ASR) error is
a popular problem in SDS, and previous studies
have proposed sophisticated techniques, includ-
ing re-ranking (Morbini et al., 2012) and POMDP
(Williams and Young, 2007), for addressing the
ASR errors. Incorporating these techniques into
our methods is also an important future work.

Although the studies on non-task-oriented SDS
have made substantial progress in the past few
years, it unfortunately remains difficult for the
systems to fluently chat with users (Higashinaka
et al., 2015). Further efforts on improving non-
task-oriented dialogue systems is an important fu-
ture work.

7 Conclusion

This paper investigated chat detection for combin-
ing domain-specific task-oriented SDS and open-
domain non-task-oriented SDS. To address the
scarcity of benchmark datasets for this task, we
constructed a new benchmark dataset from the
real log data of a commercial intelligent assis-
tant. In addition, we investigated using the exter-
nal resources, tweets and Web search queries, to
handle open-domain user utterances, which char-
acterize the task of chat detection. The empiri-
cal experiment demonstrated that the off-the-shelf
supervised methods augmented with the external
resources perform accurately, outperforming the
baseline approaches. We hope that this study con-
tributes to remove the long-standing boundary be-
tween task-oriented and non-task-oriented SDS.

To facilitate future research, we are going to re-
lease the dataset together with the feature values
derived from the tweets and Web search queries.14
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