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Abstract

Accurate detection of emotion from natu-
ral language has applications ranging from
building emotional chatbots to better un-
derstanding individuals and their lives.
However, progress on emotion detection
has been hampered by the absence of large
labeled datasets. In this work, we build
a very large dataset for fine-grained emo-
tions and develop deep learning models
on it. We achieve a new state-of-the-art
on 24 fine-grained types of emotions (with
an average accuracy of 87.58%). We also
extend the task beyond emotion types to
model Robert Plutchik’s 8 primary emo-
tion dimensions, acquiring a superior ac-
curacy of 95.68%.

1 Introduction

According to the Oxford English Dictionary, emo-
tion is defined as “[a] strong feeling deriving
from one’s circumstances, mood, or relationships
with others.” ! This “standard” definition identifies
emotions as constructs involving something innate
that is often invoked in social interactions and that
aids in communicating with others(Hwang and
Matsumoto, 2016). It is no exaggeration that hu-
mans are emotional beings: Emotions are an in-
tegral part of human life, and affect our decision
making as well as our mental and physical health.
As such, developing emotion detection models is
important; they have a wide array of applications,
ranging from building nuanced virtual assistants
that cater for the emotions of their users to de-
tecting the emotions of social media users in order
to understand their mental and/or physical health.

'nttps://en.oxforddictionaries.com/
definition/emotion.
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However, emotion detection has remained a chal-
lenging task, partly due to the limited availabil-
ity of labeled data and partly due the controversial
nature of what emotions themselves are (Aaron
C. Weidman and Tracy, 2017).

Recent advances in machine learning for natu-
ral language processing (NLP) suggest that, given
enough labeled data, there should be an oppor-
tunity to build better emotion detection models.
Manual labeling of data, however, is costly and
so it is desirable to develop labeled emotion data
without annotators. While the proliferation of
social media has made it possible for us to ac-
quire large datasets with implicit labels in the form
of hashtags (Mohammad and Kiritchenko, 2015),
such labels are noisy and reliable.

In this work, we seek to enable deep learning
by creating a large dataset of fine-grained emo-
tions using Twitter data. More specifically, we
harness cues in Twitter data in the form of emo-
tion hashtags as a way to build a labeled emotion
dataset that we then exploit using distant supervi-
sion (Mintz et al., 2009) (the use of hashtags as a
surrogate for annotator-generated emotion labels)
to build emotion models grounded in psychology.
We construct such a dataset and exploit it using
powerful deep learning methods to build accu-
rate, high coverage models for emotion prediction.
Overall, we make the following contributions: 1)
Grounded in psychological theory of emotions, we
build a large-scale, high quality dataset of tweets
labeled with emotions. Key to this are methods to
ensure data quality, 2) we validate the data collec-
tion method using human annotations, 3) we de-
velop powerful deep learning models using a gated
recurrent network to exploit the data, yielding new
state-of-the-art on 24 fine-grained types of emo-
tions, and 4) we extend the task beyond these emo-
tion types to model Plutick’s 8 primary emotion
dimensions.
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Our emotion modeling relies on distant supervi-
sion (Read, 2005; Mintz et al., 2009), the approach
of using cues in data (e.g., hashtags or emoticons)
as a proxy for “ground truth” labels as we ex-
plained above. Distant supervision has been in-
vestigated by a number of researchers for emotion
detection (Tanaka et al., 2005; Mohammad, 2012;
Purver and Battersby, 2012; Wang et al., 2012;
Pak and Paroubek, 2010; Yang et al., 2007) and
for other semantic tasks such as sentiment anal-
ysis (Read, 2005; Go et al., 2009) and sarcasm
detection (Gonzalez-Ibanez et al., 2011). In these
works, authors successfully use emoticons and/or
hashtags as marks to label data after performing
varying degrees of data quality assurance. We
take a similar approach, using a larger collection
of tweets, richer emotion definitions, and stronger
filtering for tweet quality.

The remainder of the paper is organized as fol-
lows: We first overview related literature in Sec-
tion 2, describe our data collection in Section 3.1,
and the annotation study we performed to validate
our distant supervision method in Section 4. We
then describe our methods in Section 5, provide
results in Section 6, and conclude in Section 8.

2 Related Work

2.1 Computational Treatment of Emotion

The SemEval-2007 Affective Text task (Strappa-
rava and Mihalcea, 2007) [SEMO7] focused on
classification of emotion and valence (i.e., posi-
tive and negative texts) in news headlines. A to-
tal of 1,250 headlines were manually labeled with
the 6 basic emotions of Ekman (Ekman, 1972) and
made available to participants. Similarly, (Aman
and Szpakowicz, 2007) describe an emotion anno-
tation task of identifying emotion category, emo-
tion intensity and the words/phrases that indicate
emotion in blog post data of 4,090 sentences and a
system exploiting the data. Our work differs from
both that of SEMO7 (Strapparava and Mihalcea,
2007) and (Aman and Szpakowicz, 2007) in that
we focus on a different genre (i.e., Twitter) and in-
vestigate distant supervision as a way to acquire a
significantly larger labeled dataset.

Our work is similar to (Mohammad, 2012; Mo-
hammad and Kiritchenko, 2015), (Wang et al.,
2012), and (Volkova and Bachrach, 2016) who use
distant supervision to acquire Twitter data with
emotion hashtags and report analyses and exper-
iments to validate the utility of this approach. For
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example, (Mohammad, 2012) shows that by using
a simple domain adaptation method to train a clas-
sifier on their data they are able to improve both
precision and recall on the SemEval-2007 (Strap-
parava and Mihalcea, 2007) dataset. As the author
points out, this is another premise that the self-
labeled hashtags acquired from Twitter are con-
sistent, to some degree, with the emotion labels
given by the trained human judges who labeled
the SemEval-2007 data. As pointed out earlier,
(Wang et al., 2012) randomly sample a set of 400
tweets from their data and human-label as rele-
vant/irrelevant, as a way to verify the distant super-
vision approach with the quality assurance heuris-
tics they employ. The authors found that the pre-
cision on a test set is 93.16%, thus confirming
the utility of the heuristics. (Wang et al., 2012)
provide a number of important observations, as
conclusions based on their work. These include
that since they are provided by the tweets’ writers,
the emotion hashtags are more natural and reli-
able than the emotion labels traditionally assigned
by annotators to data by a few annotators. This
is the case since in the lab-condition method an-
notators need to infer the writers emotions from
text, which may not be accurate. Additionally,
(Volkova and Bachrach, 2016) follow the same
distant supervision approach and find correlations
of users’ emotional tone and the perceived demo-
graphics of these users’ social networks exploit-
ing the emotion hashtag-labeled data. Our dataset
is more than an order of magnitude larger than
(Mohammad, 2012) and (Volkova and Bachrach,
2016) and the range of emotions we target is much
more fine grained than (Mohammad, 2012; Wang
et al., 2012; Volkova and Bachrach, 2016) since
we model 24 emotion types, rather than focus on
< 7 basic emotions.

(Yan et al., 2016; Yan and Turtle, 2016a,b) de-
velop a dataset of 15,553 tweets labeled with 28
emotion types and so target a fine-grained range
as we do. The authors instruct human annotators
under lab conditions to assign any emotion they
feel is expressed in the data, allowing them to as-
sign more than one emotion to a given tweet. A set
of 28 chosen emotions was then decided upon and
further annotations were performed using Ama-
zon Mechanical Turk (AMT). The authors cite an
agreement of 0.50 Krippendorff’s alpha («) be-
tween the lab/expert annotators, and an («) of 0.28
between experts and AMT workers. EmoTweet-



28 is a useful resource. However, the agreement
between annotators is not high and the set of as-
signed labels do not adhere to a specific theory of
emotion. We use a much larger dataset and report
an accuracy of the hashtag approach at 90% based
on human judgement as reported in Section 4.

2.2 Mood

A number of studies have also been performed
to analyze and/or model mood in social media
data. (De Choudhury et al., 2012) identify more
than 200 moods frequent on Twitter as extracted
from psychological literature and filtered by AMT
workers. They then collect tweets which have one
of the moods in their mood lexicon in the form of
a hashtag. To verify the quality of the mood data,
the authors run AMT studies where they ask work-
ers whether a tweet displayed the respective mood
hashtag or not and find that in 83% of the cases
hashtagged moods at the end of posts did cap-
ture users’ moods, whereas for posts with mood
hashtags anywhere in the tweet, only 58% of the
cases capture the mood of users. Although they
did not build models for mood detection, the an-
notation studies (De Choudhury et al., 2012) per-
form further support our specific use of hashtags
to label emotions. (Mishne and De Rijke, 2006)
collect user-labeled mood from blog post text on
LiveJournal and exploit them for predicting the in-
tensity of moods over a time span rather than at
the post level. Similarly, (Nguyen, 2010) builds
models to infer patterns of moods in a large col-
lection of LiveJournal posts. Some of the moods
in these LiveJournal studies (e.g., hungry, cold),
as (De Choudhury et al., 2012) explain, would not
fit any psychological theory. Our work is differ-
ent in that it is situated in psychological theory of
emotion.

2.3 Deep Learning for NLP

In spite of the effectiveness of feature engineering
for NLP, it is a labor intensive task that also needs
domain expertise. More importantly, feature engi-
neering falls short of extracting and organizing all
the discriminative information from data (LeCun
et al., 2015; Goodfellow et al., 2016). Neural net-
works (Goodfellow et al., 2016) have emerged as
a successful class of methods that has the power
of automatically discovering the representations
needed for detection or classification and has been
successfully applied to multiple NLP tasks. A line
of studies in the literature (e.g., (Labutov and Lip-
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son, 2013; Maas et al., 2011; Tang et al., 2014b,a)
aim to learn sentiment-specific word embeddings
(Bengio et al., 2003; Mikolov et al., 2013) from
neighboring text. Another thread of research fo-
cuses on learning semantic composition (Mitchell
and Lapata, 2010), including extensions to phrases
and sentences with recursive neural networks (a
class of syntax-tree models) (Socher et al., 2013;
Irsoy and Cardie, 2014; Li et al., 2015) and to
documents with distributed representations of sen-
tences and paragraphs (Le and Mikolov, 2014;
Tang et al., 2015) for modeling sentiment.

Long-short term memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) and Gated Recur-
rent Neural Nets (GRNNs) (Cho et al., 2014,
Chung et al., 2015), variations of recurrent neu-
ral networks (RNNs), a type of networks suitable
for handling time-series data like speech (Graves
et al., 2013) or handwriting recognition (Graves,
2012; Graves and Schmidhuber, 2009), have also
been used successfully for sentiment analysis (Ren
etal., 2016; Liu et al., 2015; Tai et al., 2015; Tang
et al., 2015; Zhang et al., 2016). Convolutional
neural networks (CNNs) have also been quite suc-
cessful in NLP, and have been applied to a range of
sentence classification tasks, including sentiment
analysis (Blunsom et al., 2014; Kim, 2014; Zhang
et al., 2015). Other architectures have also been
recently proposed (e.g., (Bradbury et al., 2016)).
A review of neural network methods for NLP can
be found in (Goldberg, 2016).

3 Data

3.1 Collection of a Large-Scale Dataset

To be able to use deep learning for modeling
emotion, we needed a large dataset of labeled
tweets. Since there is no such human-labeled
dataset publicly available, we follow (Mohammad,
2012; Mintz et al., 2009; Purver and Battersby,
2012; Gonzélez-Ibdnez et al., 2011; Wang et al.,
2012) in adopting distant supervision: We col-
lect tweets with emotion-carrying hashtags as a
surrogate for emotion labels. To be able to col-
lect enough tweets to serve our need, we devel-
oped a list of hashtags representing each of the 24
emotions proposed by Robert Plutchick (Plutchik,
1980, 1985, 1994). Plutchik (Plutchik, 2001) orga-
nizes emotions in a three-dimensional circumplex
model analogous to the colors on a color wheel.
The cone’s vertical dimension represents intensity,
and the 3 circle represent degrees of similarity



Figure 1: Plutchik’s wheel of emotion.

among the various emotion types. The eight sec-
tors are meant to capture that there are eight pri-
mary emotion dimensions arranged as four pairs
of opposites. Emotions in the blank spaces are
the primary emotion dyads (i.e., emotions that are
mixtures of two of the primary emotions). For this
work, we exclude the dyads in the exploded model
from our treatment. For simplicity, we refer to
the circles as plutchik—1: with the emotions
{admiration, amazement, ecstasy, grief, loathing,
rage, terror, vigilance}, plutchik-2: with the
emotions {joy, trust, fear, surprise, sadness, dis-
gust, anger, anticipation}, and plutchik-3:
with the emotions {acceptance, annoyance, ap-
prehension, boredom, distraction, interest, pen-
siveness, serenity}. The wheel is shown in Figure
1.

For each emotion type, we prepared a seed
set of hashtags representing the emotion. We
used Google synonyms and other online dic-
tionaries and thesauri (e.g., www.thesaurus.
com) to expand the initial seed set of each emo-
tion. We acquire a total of 665 emotion hash-
tags across the 24 emotion types. For exam-
ple, for the joy emotion, a subset of the seeds
in our expanded set is { “happy”, “happiness”,
“joy”, “joyful”, “joyfully”, “delighted”, “feel-
ingsunny”, “blithe”, “beatific”, “exhilarated”,
“blissful”, “walkingonair”, “jubilant”}. We then
used the expanded set to extract tweets with hash-
tags from the set from a number of massive-scale
in-house Twitter datasets. We also used Twitter
API to crawl Twitter with hashtags from the ex-
panded set. Using this method, we were able to
acquire a dataset of about 1/4 billion tweets cov-
ering an extended time span from July 2009 till
January 2017.
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3.2 Preprocessing and Quality Assurance

Twitter data are very noisy, not only because of
use of non-standard typography (which is less of
a problem here) but due to the many duplicate
tweets and the fact that tweets often have multiple
emotion hashtags. Since these reduce our ability
to build accurate models, we need to clean the data
and remove duplicates. Starting with > 1/4 billion
tweets, we employ a rigorous and strict pipeline.
This results in a vastly smaller set of about 1.6 mil-
lion dependable labeled tweets.

Since our goal is to create non-overlapping cat-
egories at the level of a tweet, we first removed
all tweets with hashtags belonging to more than
one emotion of the 24 emotion categories. Since
it was observed (e.g., (Mohammad, 2012; Wang
et al., 2012)) and also confirmed by our annota-
tion study as described in Section 4, that hash-
tags in tweets with URLs are less likely to cor-
relate with a true emotion label, we remove all
tweets with URLs from our data. We filter out
duplicates using a two-step procedure: 1) we
remove all retweets (based on existence of the
token “RT” regardless of case) and 2) we use
the Python library pandas http://pandas.
pydata.org/ “drop_duplicates” method to
compare the tweet texts of all the tweets after
normalizing character repetitions [all consecutive
characters of > 2 to 2] and user mentions (as de-
tected by a string starting with an “@” sign). We
then performed a manual inspection of a random
sample of 1,000 tweets from the data and found
no evidence of any remaining tweet duplicates.

Next, even though the emotion hashtags them-
selves are exclusively in English, we observe the
data do have tweets in languages other than En-
glish. This is due to code-switching, but also
to the fact that our data dates back to 2009
and Twitter did not allow use of hashtags for
several non-English languages until 2012. To
filter out non-English, we use the langid (Lui
and Baldwin, 2012) (https://github.com/
saffsd/langid.py) library to assign lan-
guage tags to the tweets. Since the common wis-
dom in the literature (e.g., (Mohammad, 2012;
Wang et al., 2012)) is to restrict data to hash-
tags occurring in final position of a tweet, we in-
vestigate correlations between a tweet’s relevance
and emotion hashtag location in Section 4 and test
models exclusively on data with hashtags occur-
ring in final position. We also only use tweets con-



taining at least 5 words.

Table 2 shows statistics of the data after apply-
ing our cleaning, filtering, language identification,
and deduplication pipeline. Since our focus is on
English, we only show statistics for tweets tagged
with an “en” (for “English”) label by langid. Ta-
ble 2 provides three types of relevant statistics: 1)
counts of all tweets, 2) counts of tweets with at
least 5 words and the emotion hashtags occurring
in the last quarter of the tweet text (based on char-
acter count), and 3) counts of tweets with at least
5 words and the emotion hashtags occurring as the
final word in the tweet text. As the last column in
Table 2 shows, employing our most strict criterion
where an emotion hashtag must occur finally in
a tweet of a minimal length 5 words, we acquire
a total of 1,608,233 tweets: 205,125 tweets for
plutchik-1, 790,059 for plutchik-2, and
613,049 for plutchik-3. 2

Emotion ct ct@lq ct@end
admiration 292,153 150,509 112,694
amazement 568,255 358,472 34,826
ecstasy 54,174 34,307 23,856
grief 102,980 33,141 12,568
loathing 90,465 41,787 456
rage 30,994 11,777 4,749
terror 84,827 25,908 15,268
vigilance 6,171 1,028 708
plutchik-1 1,230,019 | 656,929 205,125
anger 131,082 82,447 56,472
anticipation 67,175 36,846 26,655
disgust 212,770 145,052 52,067
fear 302,989 153,513 98,657
joy 974,226 522,689 330,738
sadness 1,252,192 | 762,901 142,300
surprise 143,755 78,570 53,915
trust 198,619 103,332 29,255
plutchik-2 3,282,808 | 1,885,350 | 790,059
acceptance 138,899 54,706 16,522
annoyance 954,027 791,869 364,135
apprehension | 29,174 11,650 7,828
boredom 872,246 583,994 152,105
distraction 122,009 52,633 617
interest 113,555 67,216 56,659
pensiveness 11,751 5,012 3,513
serenity 97,467 36,817 11,670
plutchik-3 2,339,128 | 1,603,897 | 613,049

[ ALL [ 6,851,955 [ 4,146,176 [ 1,608,233 ]

Table 2: Data statistics.

4 Annotation Study

In their work, (Wang et al., 2012) manually label a
random sample of 400 tweets extracted with hash-
>The data can be acquired by emailing the first author.

The distribution is in the form of tweet ids and labels, to ad-
here to Twitter conditions.
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tags in a similar way as we acquire our data and
find that human annotators agree 93% of the time
with the hashtag emotion type if the hashtag oc-
curs as the last word in the tweet. We wanted to
validate our use of hashtags in a similar fashion
and on a bigger random sample. We had human
annotators label a random sample of 5,600 tweets
that satisfy our preprocessing pipeline. Manual in-
spection during annotation resulted in further re-
moving a negligible 16 tweets that were found to
have problems. For each of the remaining 5,584
tweets, the annotators assign a binary tag from
the set {relevant, irrelevant} to indicate whether a
tweet carries an emotion category as assigned us-
ing our distant supervision method or not. Annota-
tors assigned 61.37% (n = 3,427) “relevant” tags
and 38.63% (n = 2,157) “irrelevant” tags. Our
analysis of this manually labeled dataset also sup-
ports the findings of (Wang et al., 2012): When
we limit position of the emotion hashtag to the
end of a tweet, we acquire 90.57% relevant data.
We also find that if we relax the constraint on the
hashtag position such that we allow the hashtag
to occur in the last quarter of a tweet (based on a
total tweet character count), we acquire 85.43%
relevant tweets. We also find that only 23.20%
(n = 795 out of 3,427) of the emotion carrying
tweets have the emotion hashtags occurring in fi-
nal position, whereas 31.75% (n = 1,088 out of
3,427) of the tweets have the emotion hashtags in
the last quarter of the tweet string. This shows
how enforcing a final hashtag location results in
loss of a considerable number of emotion tweets.
As shown in Table 2, only 1,608, 233 tweets out
of a total of 6,851, 955 tweets (% = 23, 47) in our
bigger dataset have emotion hashtags occurring in
final position. Overall, we agree with (Moham-
mad, 2012; Wang et al., 2012) that the accuracy
acquired by enforcing a strict pipeline and limit-
ing to emotion hashtags to final position is a rea-
sonable measure for warranting good-quality data
for training supervised systems, an assumption we
have also validated with our empirical findings
here.

One advantage of using distant supervision un-
der these conditions for labeling emotion data, as
(Wang et al., 2012) also notes, is that the label is
assigned by the writer of the tweet himself/herself
rather than an annotator who could wrongly de-
cide what category a tweet is. After all, emotion
is a fuzzy concept and > 90% agreement as we



report here is higher than the human agreement
usually acquired on many NLP tasks. Another ad-
vantage of this method is obviously that it enables
us to acquire a sufficiently large training set to use
deep learning. We now turn to describing our deep
learning methods.

5 Methods

For our core modeling, we use Gated Recurrent
Neural Networks (GRNNs), a modern variation of
recurrent neural networks (RNNs), which we now
turn to introduce. For notation, we denote scalars
with italic lowercase (e.g., x), vectors with bold
lowercase (e.g.,x), and matrices with bold upper-
case (e.g.,W).

Recurrent Neural Network A recurrent neu-
ral network (RNN) is one type of neural network
architecture that is particularly suited for model-
ing sequential information. At each time step ¢, an
RNN takes an input vector x; € R" and a hidden
state vector h ;_; € R™ and produces the next hid-
den state h ; by applying the recursive operation:

h; = f (Wx; +Uh;_; + b) (D

Where the input to hidden matrix W ¢ R"*",
the hidden to hidden matrix U ¢ R™*™, and the
bias vector b ¢ R™ are parameters of an affine
transformation and f is an element-wise nonlin-
earity. While an RNN can in theory summa-
rize all historical information up to time step hy,
in practice it runs into the problem of vanish-
ing/exploding gradients (Bengio et al., 1994; Pas-
canu et al., 2013) while attempting to learn long-
range dependencies.

LSTM Long short-term memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997) ad-
dresses this exact problem of learning long-term
dependencies by augmenting an RNN with a
memory cell ¢; e R™ at each time step. As such, in
addition to the input vector Xx;, the hiddent vector
h;_1, an LSTM takes a cell state vector ¢;_1 and
produces h; and ¢; via the following calculations:

i =0 (Wa,+ Uhy_y +b)

f,—o (Wfa:t +Uhy +bf)

0 =0 (WO.I‘t + Uoht—l + bo) (2)
g, = tanh (W9x; + U%h;_; + bY)
=0 1+i;0g

ht =0 ® tanh(ct)
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Where o(-) and tanh(-) are the element-wise
sigmoid and hyperbolic tangent functions, © the
element-wise multiplication operator, and i, f;, o,
are the input, forget, and output gates. The g, is a
new memory cell vector with candidates that could
be added to the state. The LSTM parameters W,
U, and b; are for j € {7, f, 0, g}.

GRNNs (Cho et al., 2014; Chung et al., 2015)
propose a variation of LSTM with a reset gate r,
an update state z;, and a new simpler hidden unit
hy, as follows:

rr=o0 (Wrdft + Urht_l + br)

2z, = 0 (W?zy + U’hy_; + b?)

= 3 ANRE)
f, = tanh (W:ct 1+ U + b )

ht :Zt*ht—1+(1 _Zt) *ﬁt

The GRNN parameters W;, U;, and b; are for j €
{r, z,h}. In this set up, the hidden state is forced
to ignore a previous hidden state when the reset
gate is close to 0, thus enabling the network to
forget or drop irrelevant information. Addition-
ally, the update gate controls how much informa-
tion carries over from a previous hidden state to
the current hidden state (similar to an LSTM mem-
ory cell). We use GRNNSs as they are simpler and
faster than LSTM. For GRNNs, we use Theano
(Theano Development Team, 2016).

Online Classifiers We compare the perfor-
mance of the GRNNSs to four online classifiers that
are capable of handling the data size: Stochas-
tic Gradient Descent (SGD), Multinomial Naive
Bayes (MNB), Perceptron, and the Passive Agres-
sive Classifier (PAC). These classifiers learn on-
line from mini-batches of data. We use mini-
batches of 10,000 instances with all the four clas-
sifiers. We use the scikit-learn implementation
of these classifiers (http://scikit—-learn.
org).

Settings We aim to model Plutchik’s 24 fine-
grained emotions as well as his 8 primary emotion
dimensions where each 3 related types of emotion
(perceived as varying in intensity) are combined
in one dimension. We now turn to describing our
experiments experiments.

6 Experiments

6.1 Predicting Fine-Grained Emotions

As explained earlier, Plutchik organizes the 24
emotion types in the 3 main circles that we will
refer to as plutchik-1, plutchik-2, and plutchik-3.



Emotion | Qadir (2013) | Roberts (2012) | MD (2015) Wang (2012) Volkova (2016) | This work

anger 400 0.44 | 583 0.64 1,555 0.28 | 457,972 0.72 | 4,963 0.80 56,472 0.75
anticip - - - - - - - - - - 26,655 0.70
disgust - - 922 0.67 761 0.19 | - - 12,948 | 0.92 52,067 0.82
fear 592 0.54 | 222 0.74 2,816 0.51 | 11,156 0.44 | 9,097 0.77 98,657 0.74
joy 1,005 | 0.59 | 716 0.68 8,240 0.62 | 567,487 0.72 | 15,559 | 0.79 330,738 | 0.91
sadness 560 0.46 | 493 0.69 3,830 0.39 | 489,831 0.65 | 4,232 0.62 142,300 | 0.73
surprise - - 324 0.61 3849 0.45 | 1,991 0.14 | 8,244 0.64 53,915 0.86
trust - - - - - - - - - - 29,255 0.82
ALL 4,500 | 0.53 | 3,777 | 0.67 21,051 | 0.49 | 1,991,184 | - 52,925 | 0.78 790,059 | 0.83

Table 6: Comparison (in F-score) of our results with GRNNSs to published literature. MD = Mohammad
(2015). Note: For space restrictions, we take the liberty of using the last name of only the first author of

each work.
Emotion SGD | MNB | PRCPTN | PAC
baseline 60.00 | 60.00 | 60.00 60.00
admiration 78.30 | 78.01 | 74.24 79.86
amazement 37.57 | 35.71 | 42.51 46.69
ecstasy 51.53 | 51.89 | 47.37 53.53
grief 38.64 | 36.94 | 37.33 48.10
loathing 0.00 0.00 2.09 2.99
rage 347 4.49 14.02 17.04
terror 3323 | 44.12 | 40.48 47.00
vigilance 2.53 2.56 5.52 8.42
plutchik-1 60.26 | 60.54 | 59.11 64.86
anger 19.41 | 13.84 | 24.54 29.26
anticipation 7.46 12.63 | 17.29 26.70
disgust 29.51 | 29.87 | 31.83 36.60
fear 2145 | 2549 | 30.41 33.59
joy 72.83 | 72.96 | 72.32 75.50
sadness 50.04 | 51.72 | 39.58 49.21
surprise 8.46 4.75 17.34 19.54
trust 42.09 | 38.52 | 44.48 47.51
plutchik-2 48.05 | 48.33 | 48.60 53.30
acceptance 0.12 2.74 13.98 13.04
annoyance 80.28 | 80.71 | 78.80 81.47
apprehension | 0.80 0.00 9.72 10.66
boredom 49.53 | 51.27 | 52.02 57.84
distraction 0.00 2.99 342 0.00
interest 21.69 | 3045 | 34.85 44.14
pensiveness 2.61 8.08 11.22 12.27
serenity 8.87 19.57 | 27.23 38.59
plutchik-3 62.20 | 64.00 | 64.04 68.14
[ ALL [ 56.84 [ 57.62 | 57.25 [ 62.10 ]

Table 3: Results in F-score with traditional online
classifiers.

We model the set of emotions belonging to each
of the 3 circles independently, thus casting each
as an 8-way classification task. Inspired by ob-
servations from the literature and our own annota-
tion study, we limit our data to tweets of at least
5 words with an emotional hashtag occurring at
the end. We then split the data representing each
of the 3 circles into 80% training (TRAIN), 10%
development (DEV), and 10% testing (TEST). As
mentioned above, we run experiments with a range
of online, out-of-core classifiers as well as the
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GRNNs. To train the GRNNs, we optimize the
hyper-parameters of the network on a development
set as we describe below, choosing a vocabulary
size of 80K words (a vocabulary size we also use
for the out-of-core classifiers), a word embedding
vector of size 300 dimensions learnt directly from
the training data, an input maximum length of 30
words, 7 epochs, and the Adam (Kingma and Ba,
2014) optimizer with a learning rate of 0.001. We
use 3 dense layers each with 1,000 units. We use
dropout (Hinton et al., 2012) for regularization,
with a dropout rate of 0.5. For our loss function,
we use categorical cross-entropy. We use a mini-
batch (Cotter et al., 2011) size of 128. We found
this architecture to work best with almost all the
settings and so we fix it across the board for all
experiments with GRNNS.

Results with Traditional Classifiers Results
with the online classifiers are presented in terms
of F-score in Table 3. As the table shows, among
this group of classifiers, the Passive Agressive
classifier (PAC) acquires the best performance.
PAC achieves an overall F-score of 64.86% on
plutchik-1, 53.30% on plutchik-2, and
68.14% on plutchik-3, two of which are
higher than an arbitrary baseline’ of 60%.

Results with GRNNs Table 4 presents re-
sults with GRNNs, compared with the best re-
sults using the traditional classifiers as acquired
with PAC. As the table shows, the GRNN mod-
els are very successful across all the 3 classifica-
tion tasks. With GRNNs, we acquire an overall
F-scores of: 91.21% on plutchik-1, 82.32%
onplutchik-2,and 87.47% onplutchik-3.
These results are 26.35%, 29.02%, and 25.37%
higher than PAC, respectively.

Negative Results We experiment with aug-

3The arbitrary baseline is higher than the majority class in
the training data in any of the 3 cases.




PAC GRNNs
Emotion f-score | prec rec f-score
admiration 79.86 94.53 | 95.28 | 94.91
amazement 46.69 90.44 | 89.02 | 89.73
ecstasy 53.53 83.49 | 90.01 | 86.62
grief 48.10 85.07 | 81.13 | 83.05
loathing 2.99 83.87 | 54.17 | 65.82
rage 17.04 80.00 | 75.11 | 77.48
terror 47.00 91.15 | 84.01 | 87.44
vigilance 8.42 71.93 | 70.69 | 71.30
plutchik-1 64.86 91.26 | 91.24 | 91.21
anger 29.26 7495 | 69.20 | 71.96
anticipation 26.70 70.05 | 69.00 | 69.52
disgust 36.60 82.18 | 68.84 | 74.92
fear 33.59 73.74 | 72.51 | 73.12
joy 75.50 90.96 | 93.88 | 92.40
sadness 49.21 73.20 | 82.04 | 77.37
surprise 19.54 85.60 | 67.40 | 75.42
trust 47.51 8243 | 76.83 | 79.53
plutchik-2 53.30 82.53 | 82.46 | 82.32
acceptance 13.04 77.10 | 71.76 | 74.33
annoyance 81.47 91.46 | 95.01 | 93.20
apprehension | 10.66 80.40 | 61.07 | 69.41
boredom 57.84 85.95 | 84.40 | 85.16
distraction 0.00 87.50 | 25.00 | 38.89
interest 44.14 86.79 | 78.38 | 82.37
pensiveness 12.27 91.87 | 43.24 | 58.80
serenity 38.59 82.15 | 78.16 | 80.11
plutchik-3 68.14 88.94 | 89.08 | 88.89
[ ALL [ 6210 [ 87.58 | 87.59 | 87.47 |

Table 4: Results with GRNNs across Plutchik’s
24 emotion categories. We compare to best-
performing traditional classifier (i.e. Passive Ag-
gressive).

menting training data reported here in two ways:
1) For each emotion type, we concatenate the
training data with training data of tweets that
are more (or less) intense from the same sec-
tor/dimension in the wheel, and 2) for each emo-
tion type, we add tweets where emotion hashtags
occur in the last quarter of a tweet (which were
originally filtered out from TRAIN). However, we
gain no improvements based on either of these
methods, thus reflecting the importance of using
high-quality training data and the utility of our
strict pipeline.

6.2 Predicting 8 Primary Dimensions

We now investigate the task of predicting each
of the 8 primary emotion dimensions represented
by the sectors of the wheel (where the three de-
grees of intensity of a given emotion are reduced
to a single emotion dimension [e.g., {ecstasy, joy,
serenity} are reduced to the joy dimension]). We
concatenate the 80% training data (TRAIN) from
each of the 3 circles’ data into a single training set
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Dimension | prec | rec f-score
anger 97.40 | 97.72 | 97.56
anticipation | 91.18 | 89.95 | 90.56
disgust 96.20 | 93.94 | 95.06
fear 94.97 | 9438 | 94.68
joy 94.61 | 96.40 | 95.50
sadness 95.52 | 9525 | 95.39
surprise 94.99 | 91.62 | 93.27
trust 96.36 | 97.58 | 96.96
All 95.68 | 95.68 | 95.68

Table 5: GRNNS results across 8 emotion dimen-
sions. Each dimension represents three different
emotions. For example, the joy dimension repre-
sents serenity, joy and ecstasy.

Emotion | Volkova (2016) model | This work
anger 12.38 74.95
disgust 5.71 82.18
fear 11.18 73.74
joy 44.57 90.96
sadness 18.04 73.20
surprise 5.33 85.60
ALL 26.95 80.12

Table 7: Comparison (in acc) to (Volkova and
Bachrach, 2016)’s model.

(TRAIN-ALL), the 10% DEV to form DEV-ALL,
and the 10% TEST to form TEST-ALL. We test a
number of hyper-parameters on DEV and find the
ones we have identified on the fine-grained pre-
diction to work best and so we adopt them as is
with the exception of limiting to only 2 epochs.
We believe that with a wider exploration of hyper-
parameters, improvements could be possible. As
Table 5 shows, we are able to model the 8 dimen-
sions with an overall superior accuracy of 95.68%.
As far as we know, this is the first work on model-
ing these dimensions.

7 Comparisons to Other Systems

We compare our results on the 8 basic emotions
to the published literature. As Table 6 shows, on
this subset of emotions, our system is 4.53% (acc)
higher than the best published results (Volkova and
Bachrach, 2016), facilitated by the fact that we
have an order of magnitude more training data.
As shown in Table 7, we also apply (Volkova and
Bachrach, 2016)’s pre-trained model on our test
set of the 6 emotions they predict (which belong
to plutchik-2), and acquire an overall accu-
racy of 26.95%, which is significantly lower than
our accuracy.



8 Conclusion

In this paper, we built a large, automatically cu-
rated dataset for emotion detection using distant
supervision and then used GRNNs to model fine-
grained emotion, achieving a new state-of-the-art
performance. We also extended the classification
to 8 primary emotion dimensions situated in psy-
chological theory of emotion.
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