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Abstract

Aspect extraction is an important and chal-
lenging task in aspect-based sentiment
analysis.  Existing works tend to ap-
ply variants of topic models on this task.
While fairly successful, these methods
usually do not produce highly coherent as-
pects. In this paper, we present a novel
neural approach with the aim of discov-
ering coherent aspects. The model im-
proves coherence by exploiting the distri-
bution of word co-occurrences through the
use of neural word embeddings. Unlike
topic models which typically assume in-
dependently generated words, word em-
bedding models encourage words that ap-
pear in similar contexts to be located close
to each other in the embedding space.
In addition, we use an attention mech-
anism to de-emphasize irrelevant words
during training, further improving the co-
herence of aspects. Experimental results
on real-life datasets demonstrate that our
approach discovers more meaningful and
coherent aspects, and substantially outper-
forms baseline methods on several evalua-
tion tasks.

1 Introduction

Aspect extraction is one of the key tasks in senti-
ment analysis. It aims to extract entity aspects on
which opinions have been expressed (Hu and Liu,
2004; Liu, 2012). For example, in the sentence
“The beef was tender and melted in my mouth”,
the aspect term is “beef”. Two sub-tasks are per-
formed in aspect extraction: (1) extracting all as-
pect terms (e.g., “beef”) from a review corpus, (2)
clustering aspect terms with similar meaning into
categories where each category represents a single
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aspect (e.g., cluster “beef”, “pork”, “pasta”, and
“fomato” into one aspect food).

Previous works for aspect extraction can be cat-
egorized into three approaches: rule-based, super-
vised, and unsupervised. Rule-based methods usu-
ally do not group extracted aspect terms into cate-
gories. Supervised learning requires data annota-
tion and suffers from domain adaptation problems.
Unsupervised methods are adopted to avoid re-
liance on labeled data needed for supervised learn-
ing.

In recent years, Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) and its variants (Titov
and McDonald, 2008; Brody and Elhadad, 2010;
Zhao et al., 2010; Mukherjee and Liu, 2012) have
become the dominant unsupervised approach for
aspect extraction. LDA models the corpus as a
mixture of topics (aspects), and topics as distri-
butions over word types. While the mixture of
aspects discovered by LDA-based models may de-
scribe a corpus fairly well, we find that the individ-
ual aspects inferred are of poor quality — aspects
often consist of unrelated or loosely-related con-
cepts. This may substantially reduce users’ con-
fidence in using such automated systems. There
could be two primary reasons for the poor qual-
ity. Conventional LDA models do not directly en-
code word co-occurrence statistics which are the
primary source of information to preserve topic
coherence (Mimno et al., 2011). They implicitly
capture such patterns by modeling word genera-
tion from the document level, assuming that each
word is generated independently. Furthermore,
LDA-based models need to estimate a distribution
of topics for each document. Review documents
tend to be short, thus making the estimation of
topic distributions more difficult.

In this work, we present a novel neural approach
to tackle the weaknesses of LDA-based methods.
We start with neural word embeddings that al-
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ready map words that usually co-occur within the
same context to nearby points in the embedding
space (Mikolov et al., 2013). We then filter the
word embeddings within a sentence using an at-
tention mechanism (Bahdanau et al., 2015) and
use the filtered words to construct aspect embed-
dings. The training process for aspect embed-
dings is analogous to autoencoders, where we use
dimension reduction to extract the common fac-
tors among embedded sentences and reconstruct
each sentence through a linear combination of as-
pect embeddings. The attention mechanism de-
emphasizes words that are not part of any aspect,
allowing the model to focus on aspect words. We
call our proposed model Attention-based Aspect
Extraction (ABAE).

In contrast to LDA-based models, our proposed
method explicitly encodes word-occurrence statis-
tics into word embeddings, uses dimension reduc-
tion to extract the most important aspects in the
review corpus, and uses an attention mechanism
to remove irrelevant words to further improve co-
herence of the aspects.

We have conducted extensive experiments on
large review data sets. The results show that
ABAE is effective in discovering meaningful and
coherent aspects. It substantially outperforms
baseline methods on multiple evaluation tasks. In
addition, ABAE is intuitive and structurally sim-
ple. It can also easily scale to a large amount of
training data. Therefore, it is a promising alterna-
tive to LDA-based methods proposed previously.

2 Related Work

The problem of aspect extraction has been well
studied in the past decade. Initially, methods were
mainly based on manually defined rules. Hu and
Liu (2004) proposed to extract different product
features through finding frequent nouns and noun
phrases. They also extracted opinion terms by
finding the synonyms and antonyms of opinion
seed words through WordNet. Following this, a
number of methods have been proposed based on
frequent item mining and dependency information
to extract product aspects (Zhuang et al., 2006; So-
masundaran and Wiebe, 2009; Qiu et al., 2011).
These models heavily depend on predefined rules
which work well only when the aspect terms are
restricted to a small group of nouns.

Supervised learning approaches generally
model aspect extraction as a standard sequence

labeling problem. Jin and Ho (2009) and Li et
al. (2010) proposed to use hidden Markov models
(HMM) and conditional random fields (CRF),
respectively with a set of manually-extracted fea-
tures. More recently, different neural models (Yin
et al., 2016; Wang et al., 2016) were proposed to
automatically learn features for CRF-based aspect
extraction. Rule-based models are usually not
refined enough to categorize the extracted aspect
terms. On the other hand, supervised learning
requires large amounts of labeled data for training
purposes.

Unsupervised approaches, especially topic
models, have been proposed subsequently to avoid
reliance on labeled data. Generally, the outputs
of those models are word distributions or rank-
ings for each aspect. Aspects are naturally ob-
tained without separately performing extraction
and categorization. Most existing works (Brody
and Elhadad, 2010; Zhao et al., 2010; Mukher-
jee and Liu, 2012; Chen et al., 2014) are based
on variants and extensions of LDA (Blei et al.,
2003). Recently, Wang et al. (2015) proposed a re-
stricted Boltzmann machine (RBM)-based model
to simultaneously extract aspects and relevant sen-
timents of a given review sentence, treating as-
pects and sentiments as separate hidden variables
in RBM. However, the RBM-based model pro-
posed in (Wang et al., 2015) relies on a substantial
amount of prior knowledge such as part-of-speech
(POS) tagging and sentiment lexicons. A biterm
topic model (BTM) that generates co-occurring
word pairs was proposed in (Yan et al., 2013).
We experimentally compare ABAE and BTM on
multiple tasks in this paper.

Attention models (Mnih et al., 2014) have re-
cently gained popularity in training neural net-
works and have been applied to various nat-
ural language processing tasks, including ma-
chine translation (Bahdanau et al., 2015; Luong
et al.,, 2015), sentence summarization (Rush et al.,
2015), sentiment classification (Chen et al., 2016;
Tang et al., 2016), and question answering (Her-
mann et al., 2015). Rather than using all available
information, attention mechanism aims to focus
on the most pertinent information for a task. Un-
like previous works, in this paper, we apply atten-
tion to an unsupervised neural model. Our experi-
mental results demonstrate its effectiveness under
an unsupervised setting for aspect extraction.
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3 Model Description

We describe the Attention-based Aspect Extrac-
tion (ABAE) model in this section. The ultimate
goal is to learn a set of aspect embeddings, where
each aspect can be interpreted by looking at the
nearest words (representative words) in the em-
bedding space. We begin by associating each
word w in our vocabulary with a feature vector
e, € RY. We use word embeddings for the feature
vectors as word embeddings are designed to map
words that often co-occur in a context to points
that are close by in the embedding space (Mikolov
et al., 2013). The feature vectors associated with
the words correspond to the rows of a word em-
bedding matrix E € RY*?, where V is the vo-
cabulary size. We want to learn embeddings of
aspects, where aspects share the same embedding
space with words. This requires an aspect embed-
ding matrix T € REXA where K, the number
of aspects defined, is much smaller than V. The
aspect embeddings are used to approximate the
aspect words in the vocabulary, where the aspect
words are filtered through an attention mechanism.

Each input sample to ABAE is a list of indexes
for words in a review sentence. Given such an
input, two steps are performed as shown in Fig-
ure 1. First, we filter away non-aspect words by
down-weighting them using an attention mecha-
nism, and construct a sentence embedding zs from
weighted word embeddings. Then, we try to re-
construct the sentence embedding as a linear com-
bination of aspect embeddings from T. This pro-
cess of dimension reduction and reconstruction,
where ABAE aims to transform sentence embed-
dings of the filtered sentences (z;) into their re-
constructions (rs) with the least possible amount
of distortion, preserves most of the information of
the aspect words in the K embedded aspects. We
next describe the process in detail.

3.1 Sentence Embedding with Attention
Mechanism

We construct a vector representation z; for each
input sentence s in the first step. In general, we
want the vector representation to capture the most
relevant information with regards to the aspect
(topic) of the sentence. We define the sentence
embedding z; as the weighted summation of word
embeddings e,,,, ¢ = 1, ..., n corresponding to the
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Figure 1: An example of the ABAE structure.
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For each word w; in the sentence, we compute
a positive weight a; which can be interpreted as
the probability that w; is the right word to focus
on in order to capture the main topic of the sen-
tence. The weight a; is computed by an attention
model, which is conditioned on the embedding of
the word e,,, as well as the global context of the
sentence:
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where y; is simply the average of the word em-
beddings, which we believe captures the global
context of the sentence. M € R?*? is a matrix
mapping between the global context embedding
ys and the word embedding e,, and is learned as
part of the training process. We can think of the
attention mechanism as a two-step process. Given
a sentence, we first construct its representation by
averaging all the word representations. Then the
weight of a word is assigned by considering two
things. First, we filter the word through the trans-
formation M which is able to capture the rele-
vance of the word to the K aspects. Then we
capture the relevance of the filtered word to the
sentence by taking the inner product of the filtered
word to the global context y.



3.2 Sentence Reconstruction with Aspect
Embeddings

We have obtained the sentence embedding. Now
we describe how to compute the reconstruction of
the sentence embedding. As shown in Figure 1,
the reconstruction process consists of two steps of
transitions, which is similar to an autoencoder. In-
tuitively, we can think of the reconstruction as a
linear combination of aspect embeddings from T

rs =T -p; (5)

where rg is the reconstructed vector representa-
tion, py is the weight vector over K aspect embed-
dings, where each weight represents the probabil-
ity that the input sentence belongs to the related
aspect. p; can simply be obtained by reducing z,
from d dimensions to K dimensions and then ap-
plying a softmax non-linearity that yields normal-
ized non-negative weights:

p: = softmax(W - zs + b) (6)
where W, the weighted matrix parameter, and b,
the bias vector, are learned as part of the training
process.

3.3 Training Objective

ABAE is trained to minimize the reconstruction
error. We adopted the contrastive max-margin ob-
jective function used in previous work (Weston
etal., 2011; Socher et al., 2014; Lyyer et al., 2016).
For each input sentence, we randomly sample m
sentences from our training data as negative sam-
ples. We represent each negative sample as n;
which is computed by averaging its word embed-
dings. Our objective is to make the reconstructed
embedding r; similar to the target sentence em-
bedding zs; while different from those negative
samples. Therefore, the unregularized objective
J is formulated as a hinge loss that maximize the
inner product between r; and z; and simultane-
ously minimize the inner product between r, and
the negative samples:

J(0) = Z Zmax(O, 1 —rszs+rsn;) (7)

seD i=1

where D represents the training data set and § =
{E, T,M, W, b} represents the model parame-
ters.
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Domain #Reviews | #Labeled sentences
Restaurant 52,574 3,400
Beer 1,586,259 9,245

Table 1: Dataset description.

3.4 Regularization Term

We hope to learn vector representations of the
most representative aspects for a review dataset.
However, the aspect embedding matrix T may suf-
fer from redundancy problems during training. To
ensure the diversity of the resulting aspect embed-
dings, we add a regularization term to the objective
function J to encourage the uniqueness of each as-
pect embedding:

U@®) =T, T, 1| (8)

where I is the identity matrix, and T, is T with
each row normalized to have length 1. Any non-
diagonal element ¢;;(i % 7) in the matrix T), - T,
corresponds to the dot product of two different as-
pect embeddings. U reaches its minimum value
when the dot product between any two different
aspect embeddings is zero. Thus the regularization
term encourages orthogonality among the rows of
the aspect embedding matrix T and penalizes re-
dundancy between different aspect vectors. Our
final objective function L is obtained by adding J
and U:

L(9) = J(0) + \U(0) )

where A\ is a hyperparameter that controls the
weight of the regularization term.

4 Experimental Setup
4.1 Datasets

We evaluate our method on two real-word
datasets. The detailed statistics of the datasets are
summarized in Table 1.

(1) Citysearch corpus: This is a restaurant
review corpus widely used by previous
works (Ganu et al., 2009; Brody and Elhadad,
2010; Zhao et al., 2010), which contains over
50,000 restaurant reviews from Citysearch
New York. Ganu et al. (2009) also provided
a subset of 3,400 sentences from the corpus
with manually labeled aspects. These anno-
tated sentences are used for evaluation of as-
pect identification. There are six manually
defined aspect labels: Food, Staff, Ambience,
Price, Anecdotes, and Miscellaneous.



(2) BeerAdvocate: This is a beer review corpus
introduced in (McAuley et al., 2012), con-
taining over 1.5 million reviews. A subset
of 1,000 reviews, corresponding to 9,245 sen-
tences, are annotated with five aspect labels:
Feel, Look, Smell, Taste, and Overall.

4.2 Baseline Methods

To validate the performance of ABAE, we com-
pare it against a number of baselines:

(1) LocLDA (Brody and Elhadad, 2010): This
method uses a standard implementation of
LDA. In order to prevent the inference of
global topics and direct the model towards
rateable aspects, each sentence is treated as a
separate document.

(2) k-means: We initialize the aspect matrix T’
by using the k-means centroids of the word
embeddings. To show the power of ABAE,
we compare its performance with using the k-

means centroids directly.

(3) SAS (Mukherjee and Liu, 2012): This is a hy-
brid topic model that jointly discovers both
aspects and aspect-specific opinions. This
model has been shown to be competitive
among topic models in discovering meaning-
ful aspects (Mukherjee and Liu, 2012; Wang
et al., 2015).

(4) BTM (Yan et al., 2013): This is a biterm topic
model that is specially designed for short texts
such as texts from social media and review
sites. The major advantage of BTM over con-
ventional LDA models is that it alleviates the
problem of data sparsity in short documents by
directly modeling the generation of unordered
word-pair co-occurrences (biterms) over the
corpus. It has been shown to perform better
than conventional LDA models in discovering
coherent topics.

4.3 Experimental Settings

Review corpora are preprocessed by removing
punctuation symbols, stop words, and words ap-
pearing less than 10 times. For LocLDA, we use
the open-source implementation GibbsLDA++!
and for BTM, we use the implementation released
by (Yan et al., 2013)?. We tune the hyperparame-
ters of all topic model baselines on a held-out set

"http://gibbslda.sourceforge.net
*http://code.google.com/p/btm/
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with grid search using the topic coherence metric
to be introduced later in Eq 10: for LocLDA, the
Dirichlet priors &« = 0.05 and 8 = 0.1; for SAS
and BTM, o = 50/ K and $ = 0.1. We run 1,000
iterations of Gibbs sampling for all topic models.

For the ABAE model, we initialize the word
embedding matrix E with word vectors trained by
word2vec with negative sampling on each dataset,
setting the embedding size to 200, window size to
10, and negative sample size to 5. The parameters
we use for training word embeddings are standard
with no specific tuning to our data. We also initial-
ize the aspect embedding matrix T with the cen-
troids of clusters resulting from running k-means
on word embeddings. Other parameters are initial-
ized randomly. During the training process, we fix
the word embedding matrix E and optimize other
parameters using Adam (Kingma and Ba, 2014)
with learning rate 0.001 for 15 epochs and batch
size of 50. We set the number of negative samples
per input sample m to 20, and the orthogonality
penalty weight A to 1 by tuning the hyperparam-
eters on a held-out set with grid search. The re-
sults reported for all models are the average over
10 runs.

Following (Brody and Elhadad, 2010; Zhao
et al., 2010), we set the number of aspects for the
restaurant corpus to 14. We experimented with
different number of aspects from 10 to 20 for the
beer corpus. The results showed no major dif-
ference, so we also set it to 14. As in previ-
ous work (Brody and Elhadad, 2010; Zhao et al.,
2010), we manually mapped each inferred aspect
to one of the gold-standard aspects according to its
top ranked representative words. In ABAE, repre-
sentative words of an aspect can be found by look-
ing at its nearest words in the embedding space
using cosine as the similarity metric.

5 Evaluation and Results

We describe the evaluation tasks and report the
experimental results in this section. We evaluate
ABAE on two criteria:

e [s it able to find meaningful and semantically
coherent aspects?

e Is it able to improve aspect identification per-
formance on real-world review datasets?

5.1 Aspect Quality Evaluation

Table 2 presents all 14 aspects inferred by ABAE
for the restaurant domain. Compared to gold-



Inferred Aspects Representative Words Gold Aspects
Main Dishes beef, duck, pork, mahi, filet, veal
Dessert gelato, banana, caramel, cheesecake, pudding, vanilla
Drink bottle, selection, cocktail, beverage, pinot, sangria Food
Ingredient cucumber, scallion, smothered, stewed, chilli, cheddar
General cooking, homestyle, traditional, cuisine, authentic, freshness
Physical Ambience wall, lighting, ceiling, wood, lounge, floor Ambi

S .. . . . mbience
Adjectives intimate, comfy, spacious, modern, relaxing, chic
Staff waitstaff, server, staff, waitress, bartender, waiter

. . . . . Staff

Service unprofessional, response, condescending, aggressive, behavior, rudeness
Price charge, paid, bill, reservation, came, dollar Price
Anecdotes celebrate, anniversary, wife, fiance, recently, wedding Anecdotes
Location park, street, village, avenue, manhattan, brooklyn
General excellent, great, enjoyed, best, wonderful, fantastic Misc.
Other aged, reward, white, maison, mediocrity, principle

Table 2: List of inferred aspects for restaurant reviews (left), with top representative words for each
inferred aspect (middle), and the corresponding gold-standard aspect labels (right). Inferred aspect labels

(left) were assigned manually.
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Figure 2: Average coherence score versus number
of top n terms for the restaurant domain (top) and
beer domain (bottom).

standard labels, the inferred aspects are more fine-
grained. For example, it can distinguish main
dishes from desserts, and drinks from food.

5.1.1 Coherence Score

In order to objectively measure the quality of as-
pects, we use coherence score as a metric which
has been shown to correlate well with human judg-
ment (Mimno et al., 2011). Given an aspect z and
a set of top NV words of z, S* = {wf, ..., w3}, the
coherence score is calculated as follows:

N n—1

ZZZ09D2

n=2 =1

(wy, wi) +1

cE5) D1 (wyp)

(10)
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where Dj(w) is the document frequency of word
w and Do (w1, ws) is the co-document frequency
of words w; and wsy. A higher coherence score
indicates a better aspect interpretability, i.e., more
meaningful and semantically coherent.

Figure 2 shows the average coherence
score of each model which is computed as
%Zle C(zk; S*) on both the restaurant do-
main and beer domain. From the results, we
make the following observations: (1) ABAE
outperforms previous models for all ranked
buckets. (2) BTM performs slightly better than
LocLDA and SAS. This may be because BTM
directly models the generation of biterms, while
conventional LDA just implicitly captures such
patterns by modeling word generation from the
document level. (3) It is interesting to note that
performing k-means on the word embeddings is
sufficient to perform better than all topic model
baselines, including BTM. This indicates that
neural word embedding is a better model for
capturing co-occurrence than LDA, even for
BTM which specifically models the generation of
co-occurring word pairs.

k-means | LocLDA | SAS | BTM | ABAE
Restaurant 11 8 9 9 11
Beer 9 8 8 9 10

Table 3: Number of coherent aspects. K (number
of aspects) = 14 for all models.

5.1.2 User Evaluation

As we want to discover a set of aspects that the
human user finds agreeable, it is also necessary
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Figure 3: Average p@n over all coherent aspects for the restaurant domain (left) and beer domain (right).

to carry out user evaluation directly. Following
the experimental setting in (Chen et al., 2014), we
recruited three human judges. Each aspect is la-
beled as coherent if the majority of judges assess
that most of its top 50 terms coherently represent a
product aspect. The numbers of coherent aspects
discovered by each model are shown in Table 3.
ABAE discovers the most number of coherent as-
pects compared with other models.

For a coherent aspect, each of its top terms is
labeled as correct if and only if the majority of
judges assess that it reflects the related aspect. We
adopt precision@n (or p@n) to evaluate the re-
sults, which was also used in (Mukherjee and Liu,
2012; Chen et al., 2014). Figure 3 shows the aver-
age p@n results over all coherent aspects for each
domain. We can see that the user evaluation results
correlate well with the coherence scores shown in
Figure 2, where ABAE substantially outperforms
all other models for all ranked buckets, especially
for large values of n.

5.2 Aspect Identification

We evaluate the performance of sentence-level as-
pect identification on both domains using the an-
notated sentences shown in Table 1. The evalua-
tion criterion is to judge how well the predictions
match the true labels, measured by precision, re-
call, and F} scores. The results* are shown in Ta-
ble 4 and Table 5.

Given a review sentence, ABAE first assigns
an inferred aspect label which corresponds to the
highest weight in p; calculated as shown in Equa-
tion 6 . And we then assign the gold-standard label
to the sentence according to the mapping between
inferred aspects and gold-standard labels.

3 k-means assigns a sentence an inferred aspect whose em-
bedding is the closest to the averaged word embeddings of the
sentence.

“Note that the values of P/R/F; reported are the average
over 10 runs (except some values taken from published re-
sults in Table 4). Thus the Fi values cannot be computed
directly from corresponding P/R values

394

Aspect Method | Precision | Recall Fy
LocLDA 0.898 0.648 | 0.753
ME-LDA 0.874 0.787 | 0.828
SAS 0.867 0.772 | 0.817
Food BTM 0.933 0.745 | 0.816
SERBM 0.891 0.854 | 0.872
k-means® 0.931 0.647 | 0.755
ABAE 0.953 0.741 | 0.828
LocLDA 0.804 0.585 | 0.677
ME-LDA 0.779 0.540 | 0.638
SAS 0.774 0.556 | 0.647
Staff BTM 0.828 0.579 | 0.677
SERBM 0.819 0.582 | 0.680
k-means 0.789 0.685 | 0.659
ABAE 0.802 0.728 | 0.757
LocLDA 0.603 0.677 | 0.638
ME-LDA 0.773 0.558 | 0.648
SAS 0.780 0.542 | 0.640
Ambience BTM 0.813 0.599 | 0.685
SERBM 0.805 0.592 | 0.682
k-means 0.730 0.637 | 0.677
ABAE 0.815 0.698 | 0.740

Table 4: Aspect identification results on the restau-
rant domain. The results of LocLDA and ME-
LDA are taken from (Zhao et al., 2010); the results
of SAS and SERBM are taken from (Wang et al.,
2015).

For the restaurant domain, we follow the exper-
imental settings of previous work (Brody and El-
hadad, 2010; Zhao et al., 2010; Wang et al., 2015)
to make our results comparable. To do that, (1)
we only used the single-label sentences for eval-
uation to avoid ambiguity (about 83% of labeled
sentences have a single label), and (2) we only
evaluated on three major aspects, namely Food,
Staff, and Ambience. The other aspects do not
show clear patterns in either word usage or writ-
ing style, which makes these aspects very hard
for even humans to identify. Besides the base-
line models, we also compare the results with
other published models, including MaxEnt-LDA
(ME-LDA) (Zhao et al., 2010) and SERBM (Wang
etal., 2015). SERBM has reported state-of-the-art
results for aspect identification on the restaurant
corpus to date. However, SERBM relies on a sub-
stantial amount of prior knowledge.



Aspect Method | Precision | Recall Py
k-means 0.720 0.815 | 0.737
LocLDA 0.938 0.537 | 0.675
Feel SAS 0.783 0.695 | 0.730
BTM 0.892 0.687 | 0.772
ABAE 0.815 0.824 | 0.816
k-means 0.533 0.413 | 0.456
LocLDA 0.399 0.655 | 0.487
Taste SAS 0.543 0.496 | 0.505
BTM 0.616 0.467 | 0.527
ABAE 0.637 0.358 | 0.456
k-means 0.844 0.295 | 0422
LocLDA 0.560 0.488 | 0.489
Smell SAS 0.336 0.673 | 0.404
BTM 0.541 0.549 | 0.527
ABAE 0.483 0.744 | 0.575
k-means 0.697 0.828 | 0.740
LocLDA 0.651 0.873 | 0.735
Taste+Smell SAS 0.804 0.759 | 0.769
BTM 0.885 0.760 | 0.815
ABAE 0.897 0.853 | 0.866
k-means 0.915 0.696 | 0.765
LocLDA 0.963 0.676 | 0.774
Look SAS 0.958 0.705 | 0.806
BTM 0.953 0.854 | 0.872
ABAE 0.969 0.882 | 0.905
k-means 0.693 0.648 | 0.639
LocLDA 0.558 0.690 | 0.603
Overall SAS 0.618 0.664 | 0.619
BTM 0.699 0.715 | 0.700
ABAE 0.654 0.828 | 0.725

Table 5: Aspect identification results on the beer
domain.

We make the following observations from Ta-
ble 4: (1) ABAE outperforms all other models
on F score for aspects Staff and Ambience. (2)
The F; score of ABAE for Food is worse than
SERBM while its precision is very high. We an-
alyzed the errors and found that most of the sen-
tences we failed to recognize as Food are general
descriptions without specific food words appear-
ing. For example, the true label for the sentence
“The food is prepared quickly and efficiently.” is
Food. ABAE assigns Staff to it as the highly fo-
cused words according to the attention mechanism
are quickly and efficiently which are more related
to Staff. In fact, although this sentence contains the
word food, we think it is a rather general descrip-
tion of service. (3) ABAE substantially outper-
forms k-means for this task although both meth-
ods perform well for extracting coherent aspects
as shown in Figure 2 and Figure 3. This shows the
power brought by the attention mechanism, which
is able to capture the main topic of a sentence by
only focusing on aspect-related words.

For the beer domain, in addition to the five gold-
standard aspect labels, we also combined Taste
and Smell to form a single aspect — Taste+Smell.
This is because these two aspects are very similar
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Figure 4: Visualization of the attention layer.

and many words can be used to describe both as-
pects. For example, the words spicy, bitter, fresh,
sweet, etc. are top ranked representative words in
both aspects, which makes it very hard even for
humans to distinguish them. Since Taste and Smell
are highly correlated and difficult to separate in
real life, a natural way to evaluate is to treat them
as a single aspect.

We can see from Table 5 that due to the issue de-
scribed above, all models perform poorly on Taste
and Smell. ABAE outperforms previous models in
F1 scores on all aspects except for Taste. The re-
sults demonstrate the capability of ABAE in iden-
tifying separable aspects.

Aspect Method | Precision | Recall Fy
Food ABAE™ 0.898 0.739 | 0.791
ABAE 0.953 0.741 | 0.828
Staff ABAE™ 0.784 0.669 | 0.693
ABAE 0.802 0.728 | 0.757
Ambience ABAE™ 0.782 0.660 | 0.703
ABAE 0.815 0.698 | 0.740

Table 6: Comparison between ABAE and ABAE™
on aspect identification on the restaurant domain.

5.3 Validating the Effectiveness of Attention
Model

Figure 4 shows the weights of words assigned by
the attention model for some example sentences.
As we can see, the weights learned by the model
correspond very strongly with human intuition. In
order to evaluate how attention model affects the
overall performance of ABAE, we conduct exper-
iments to compare ABAE and ABAE™ on aspect
identification, where ABAE™ denotes the model
in which the attention layer is switched off and
sentence embedding is calculated by averaging its
word embeddings: z; = %Z?:l €y;. The re-
sults on the restaurant domain are shown in Ta-
ble 6. ABAE achieves substantially higher pre-
cision and recall on all aspects compared with



ABAE™, which demonstrates the effectiveness of
the attention mechanism.

6 Conclusion

We have presented ABAE, a simple yet effective
neural attention model for aspect extraction. In
contrast to LDA models, ABAE explicitly cap-
tures word co-occurrence patterns and overcomes
the problem of data sparsity present in review cor-
pora. Our experimental results demonstrated that
ABAE not only learns substantially higher qual-
ity aspects, but also more effectively captures the
aspects of reviews than previous methods. To the
best of our knowledge, we are the first to propose
an unsupervised neural approach for aspect extrac-
tion. ABAE is intuitive and structurally simple,
and also scales up well. All these benefits make it
a promising alternative to LDA-based methods in
practice.
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