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Abstract

We present TMop, the first open-source
tool for automatic Translation Memory
(TM) cleaning. The tool implements a
fully unsupervised approach to the task,
which allows spotting unreliable transla-
tion units (sentence pairs in different lan-
guages, which are supposed to be trans-
lations of each other) without requiring
labeled training data. TMop includes a
highly configurable and extensible set of
filters capturing different aspects of trans-
lation quality. It has been evaluated on
a test set composed of 1,000 translation
units (TUs) randomly extracted from the
English-Italian version of MyMemory, a
large-scale public TM. Results indicate its
effectiveness in automatic removing “bad”
TUs, with comparable performance to a
state-of-the-art supervised method (76.3
vs. 77.7 balanced accuracy).

1 Introduction

Computer-assisted translation (CAT) refers to a
framework in which the work of human translators
is supported by machines. Its advantages, espe-
cially in terms of productivity and translation con-
sistency, have motivated huge investments both
economic (by the translation industry) and intel-
lectual (by the research community). Indeed, the
high market potential of solutions geared to speed
up the translation process and reduce its costs has
attracted increasing interest from both sides.

Advanced CAT tools currently integrate the
strengths of two complementary technologies:
translation memories (TM - a high-precision
mechanism for storing and retrieving previously
translated segments) and machine translation (MT
- a high-recall technology for translating unseen

segments). The success of the integration has de-
termined the quick growth of market shares that
are held by CAT, as opposed to fully manual trans-
lation that became a niche of the global transla-
tion market. However, differently from MT that
is constantly improving and reducing the distance
from human translation, core TM technology has
slightly changed over the years. This is in contrast
with the fact that TMs are still more widely used
than MT, especially in domains featuring high text
repetitiveness (e.g. software manuals).

Translation memories have a long tradition in
CAT, with a first proposal dating back to (Arth-
ern, 1979). They consist of databases that store
previously translated segments, together with the
corresponding source text. Such (source, target)
pairs, whose granularity can range from the phrase
level to the sentence or even the paragraph level,
are called translation units (TUs). When working
with a CAT tool, each time a segment of a docu-
ment to be translated matches with the source side
of a TU, the corresponding target is proposed as
a suggestion to the user. The user can also store
each translated (source, target) pair in the TM for
future use, thus increasing the size and the cover-
age of the TM. Due to such constant growth, in
which they evolve over time incorporating users
style and terminology, the so-called private TMs
represent an invaluable asset for individual trans-
lators and translation companies. Collaboratively-
created public TMs grow in a less controlled way
but still remain a practical resource for the transla-
tors’ community at large.

The usefulness of TM suggestions mainly de-
pends on two factors: the matching process and
the quality of the TU. To increase recall, the re-
trieval is based on computing a “fuzzy match”
score. Depending on how the matching is per-
formed, its output can be a mix of perfect and par-
tial matches requiring variable amounts of correc-
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tions by the user. For this reason, most prior works
on TM technology focused on improving this as-
pect (Gupta et al., 2014; Bloodgood and Strauss,
2014; Vanallemeersch and Vandeghinste, 2015;
Chatzitheodoroou, 2015; Gupta et al., 2015).

The other relevant factor, TU quality, relates to
the reliability of the target translations. Indeed,
a perfectly matching source text associated to a
wrong translation would make the corresponding
suggestion useless or, even worse, an obstacle to
productivity. On this aspect, prior research is lim-
ited to the work proposed in (Barbu, 2015), which
so far represents the only attempt to automatically
spot false translations in the bi-segments of a TM.
However, casting the problem as a supervised bi-
nary classification task, this approach highly de-
pends on the availability of labelled training data.

Our work goes beyond the initial effort of Barbu
(2015) in two ways. First, we propose a config-
urable and extensible open source framework
for TM cleaning. In this way, we address the de-
mand of easy-to-use TM management tools whose
development is out of the reach of individual trans-
lators and translation companies. Such demand is
not only justified by productivity reasons (remove
bad suggestions as a cause of slow production),
but also for usability reasons. Loading, searching
and editing a TM are indeed time-consuming and
resource-demanding operations. In case of very
large databases (up to millions of TUs) the accu-
rate removal of useless units can significantly in-
crease usability. Though paid, the few existing
tools that incorporate some data cleaning meth-
ods (e.g. Apsic X-Bench1) only implement very
simple syntactic checks (e.g. repetitions, open-
ing/closing tags consistency). These are insuffi-
cient to capture the variety of errors that can be en-
countered in a TM (especially in the public ones).

Second, our approach to TM cleaning is fully
unsupervised. This is to cope with the lack of la-
belled training data which, due to the high acqui-
sition costs, represents a bottleneck rendering su-
pervised solutions unpractical. It is worth remark-
ing that also current approaches to tasks closely re-
lated to TM cleaning (e.g. MT quality estimation
(Mehdad et al., 2012; C. de Souza et al., 2014))
suffer from the same problem. Besides not being
customised for the specificities of the TM clean-
ing scenario (their usefulness for the task should
be demonstrated), their dependence on labelled

1http://www.xbench.net/

training data is a strong requirement from the TM
cleaning application perspective.

2 The TM cleaning task

The identification of “bad” TUs is a multifaceted
problem. First, it deals with the recognition of a
variety of errors. These include:

• Surface errors, such as opening/closing tags
inconsistencies and empty or suspiciously
long/short translations;

• Language inconsistencies, for instance due to
the inversion between the source and target
languages;

• Translation fluency issues, such as typos and
grammatical errors (e.g. morpho-syntactic
disagreements, wrong word ordering);

• Translation adequacy issues, such as the pres-
ence of untranslated terms, wrong lexical
choices or more complex phenomena (e.g.
negation and quantification errors) for which
a syntactically correct target can be a seman-
tically poor translation of the source segment.

The severity of the errors is another aspect to
take into account. Deciding if a given error makes
a TU useless is often difficult even for humans.
For instance, judging about the usefulness of a TU
whose target side has missing/extra words would
be a highly subjective task.2 For this reason, iden-
tifying “bad” TUs with an automatic approach
opens a number of problems related to: i) defining
when a given issue becomes a real error (e.g. the
ratio of acceptable missing words), ii) combining
potentially contradictory evidence (e.g. syntactic
and semantic issues), and iii) making these actions
easily customisable by different users having dif-
ferent needs, experience and quality standards.

What action to take when one or more errors
are identified in a TU is also important. Ideally,
a TM cleaning tool should allow users either to
simply flag problematic TUs (leaving the final de-
cision to a human judgment), or to automatically
remove them without further human intervention.

Finally, two critical aspects are the external
knowledge and resources required by the TM-
cleaning process. On one side, collecting evidence

2Likely, the perceived severity of a missing word out of n
perfectly translated terms will be inversely proportional to n.
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for each TU can involve processing steps that ac-
cess external data and tools. On the other side,
decision making can require variable amounts of
labelled training data (i.e. positive/negative exam-
ples of “good”/“bad” TUs). For both tasks, the
recourse to external support can be an advantage
in terms of performance due to the possibility to
get informed judgments taken from models trained
in a supervised fashion. At the same time, it can
be a limitation in terms of usability and portabil-
ity across languages. When available, external re-
sources and tools (e.g. syntactic/semantic parsers)
can indeed be too slow to process huge amounts
of data. Most importantly, labelled training data
are usually difficult to acquire. In case of need, a
TM cleaning tool should hence minimise the de-
pendence of its performance from the availability
of external resources.

All these aspects were considered in the design
of TMop, whose capability to cope with a vari-
ety of errors, customise its actions based on their
severity and avoid the recourse to external knowl-
edge/resources are described in the next section.

3 The TMop framework

TMop (Translation Memory open-source purifier)
is an open-source TM cleaning software written
in Python. It consists of three parts: core, filters
and policy managers. The core, the main part of
the software, manages the workflow between fil-
ters, policy managers and input/output files. The
filters (§3.2) are responsible for detecting “bad”
TUs. Each of them can detect a specific type of
problems (e.g. formatting, fluency, adequacy) and
will emit an accept or reject judgment for each
TU. Policy managers (§3.3) collect the individual
results from each filter and take a final decision for
each TM entry based on different possible strate-
gies. Filters, policies and basic parameters can be
set by means of a configuration file, which was
structured by keeping ease of use and flexibility as
the main design criteria.

TMop implements a fully unsupervised ap-
proach to TM cleaning. The accept/reject criteria
are learned from the TM itself and no training data
are required to inform the process.3 Nevertheless,
the filters’ output could be also used to instantiate
feature vectors in any supervised learning scenario
supported by training data.

3The tool has been recently used also in the unsupervised
approach by Jalili Sabet et al. (2016).
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Figure 1: TMop workflow

3.1 Workflow

The input file of TMop is a TM represented as a
text file containing one TU per line in the form
(ID, source, target). The output consists of sev-
eral files, the most important of which are the ac-
cept and reject files containing the TUs identified
as “good”/“bad”, in the same format of the input.
As depicted in Figure 1, TMop filters operate in
two steps. In the first one, the learning step,
each filter i iterates over the TM or a subset of it
to gather the basic statistics needed to define its
accept/reject criteria. For instance, by computing
mean and standard deviation values for a given in-
dicator (e.g. sentence length ratio, proportion of
aligned words), quantiles or std counts in case of
normal value distributions will be used as deci-
sion boundaries. Then, in the decision step,
each filter uses the gathered information to decide
about each TU. At the end of this process, for each
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TU the policy manager collects all the decisions
taken by the filters and applies the policy set by the
user in the configuration file to assign an accept or
reject judgment. The final labels, the TUs and the
filters outputs are saved in different files.

3.2 Filters

Our filters capture different aspects of the similar-
ity between the source and the target of a TU. The
full set consists of 23 filters, which are organized
in four groups.

Basic filters (8 in total). This group (B) ex-
tends the filters proposed by Barbu (2015) and
substantially covers those offered by commercial
TM cleaning tools. They capture translation qual-
ity by looking at surface aspects, such as the pos-
sible mismatches in the number of dates, numbers,
URLs, XML tags, ref and image tags present in the
source and target segments. Other filters model the
similarity between source and target by computing
the direct and inverse ratio between the number of
characters and words, as well as the average word
length in the two segments. Finally, two filters
look for uncommon character or word repetitions.

Language identification filter (1). This filter
(LI) exploits the Langid tool (Lui and Baldwin,
2012) to verify the consistency between the source
and target languages of a TU and those indicated
in the TM. Though simple, it is quite effective
since often the two languages are inverted or even
completely different from the expected ones.

QE-derived filters (9). This group (QE) con-
tains filters borrowed from the closely-related task
of MT quality estimation, in which the complex-
ity of the source, the fluency of the target and the
adequacy between source and target are modeled
as quality indicators. Focusing on the adequacy
aspect, we exploit a subset of the features pro-
posed by C. de Souza et al. (2013). They use word
alignment information to link source and target
words and capture the quantity of meaning pre-
served by the translation. For each segment of a
TU, word alignment information is used to calcu-
late: i) the proportion of aligned and unaligned
word n-grams (n=1,2), ii) the ratio between the
longest aligned/unaligned word sequence and the
length of the segment, iii) the average length of
the aligned/unaligned word sequences, and iv) the
position of the first/last unaligned word, normal-
ized by the length of the segment. Word alignment

models can be trained on the whole TM with one
of the many existing word aligners. For instance,
the results of WE filters reported in §4 were ob-
tained using MGIZA++ (Gao and Vogel, 2008).

Word embedding filters (5). Cross-lingual
word embeddings provide a common vector rep-
resentation for words in different languages and
allow looking at the source and target segments at
the same time. In TMop, they are computed us-
ing the method proposed in (Søgaard et al., 2015)
but, instead of considering bilingual documents
as atomic concepts to bridge the two languages,
they exploit the TUs contained in the TM itself.
Given a TU and a 100-dimensional vector repre-
sentation of each word in the source and target
segments, this group of filters (WE) includes: i)
the cosine similarity between the source and tar-
get segment vectors obtained by averaging (or us-
ing the median) the source and target word vec-
tors; ii) the average embedding alignment score
obtained by computing the cosine similarity be-
tween each source word and all the target words
and averaging over the largest cosine score of each
source word; iii) the average cosine similarity be-
tween source/target word alignments; iv) a score
that merges features (ii) and (iii) by complement-
ing word alignments (also in this case obtained us-
ing MGIZA++) with the alignments obtained from
word embedding and averaging all the alignment
weights.

3.3 Policies

Decision policies allow TMop combining the out-
put of the active filters into a final decision for each
TU. Simple decision-making strategies can con-
sider the number of accept and reject judgments,
but more complex methods can be easily imple-
mented by the user (both filters and policy man-
agers can be easily modified and extended by ex-
ploiting well-documented abstract base classes).

TMop currently implements three policies:
OneNo, 20%No and MajorityVoting. The first one
copies a TU in the reject file if at least one filter
rejects it. The second and the third policy take this
decision only if at least twenty or fifty percent of
the filters reject the TU respectively.

These three policies reflect different TM clean-
ing strategies. The first one is a very aggressive
(recall-oriented) solution that tends to flag more
TUs as “bad”. The third one is a more conser-
vative (precision-oriented) solution, as it requires

52



at least half of the judgments to be negative for
pushing a TU in the reject file. Depending on the
user needs and the overall quality of the TM, the
choice of the policy will allow keeping under con-
trol the number of false positives (“bad” TUs ac-
cepted) and false negatives (“good” TUs rejected).

4 Benchmarking

We test TMop on the English-Italian version of
MyMemory,4 one of the world’s largest collabo-
rative public TMs. This dump contains about 11M
TUs coming from heterogeneous sources: aggre-
gated private TMs, either provided by translators
or automatically extracted from the web/corpora,
as well as anonymous contributions of (source,
target) bi-segments. Its uncontrolled sources call
for accurate cleaning methods (e.g. to make it
more accurate, smaller and manageable).

From the TM we randomly extracted a subset
of 1M TUs to compute the statistics of each filter
and a collection of 2,500 TUs manually annotated
with binary labels. Data annotation was done by
two Italian native speakers properly trained with
the same guidelines prepared by the TM owner for
periodic manual revisions. After agreement com-
putation (Cohen’s kappa is 0.78), a reconciliation
ended up with about 65% positive and 35% nega-
tive examples. This pool is randomly split in two
parts. One (1,000 instances) is used as test set
for our evaluation. The other (1,500 instances) is
used to replicate the supervised approach of Barbu
(2015), which leverages human-labelled data to
train an SVM binary classifier. We use it as a
term of comparison to assess the performance of
the different groups of filters.

To handle the imbalanced (65%-35%) data dis-
tribution, and equally reward the correct classifi-
cation on both classes, we evaluate performance
in terms of balanced accuracy (BA), computed as
the average of the accuracies on the two classes
(Brodersen et al., 2010).

In Table 1, different combinations of the four
groups of filters are shown with results aggregated
with the 20%No policy, which, on this data, re-
sults to be the best performing policy among the
ones implemented in TMop. Based on the statis-
tics collected in the learning phase of each
filter, the accept/reject criterion applied in these
experiments considers as “good” all the TUs for

4http://mymemory.translated.net

Filters BA↑
(Barbu, 2015) 77.7
B 52.8
LI 69.0
QE 71.2
WE 65.0
B + LI 55.4
B + QE 70.1
B + WE 68.7
QE + LI 71.7
QE + WE 67.9
LI + WE 68.1
B + QE + LI 72.9
B + WE + LI 70.3
B + QE + WE 73.3
B + QE + LI + WE 76.3

Table 1: Balanced accuracy of different filter combinations
on a 1,000 TU, EN-IT test set. B=Basic, LI=language identi-
fication, QE=quality estimation, WE=word embedding.

which the filter value is below one standard devia-
tion from the mean and “bad” otherwise.

Looking at the results, it is worth noting that the
LI, QE and WE groups, both alone and in combi-
nation, outperform the basic filters (B), which sub-
stantially represent those implemented by com-
mercial tools. Although relying on an external
component (the word aligner), QE filters produce
the best performance in isolation, showing that
word alignment information is a good indicator of
translation quality. The results obtained by com-
bining the different groups confirm their comple-
mentarity. In particular, when using all the groups,
the performance is close to the results achieved by
the supervised method by Barbu (2015), which re-
lies on human-labelled data (76.3 vs. 77.7).

The choice of which filter combination to use
strongly depends on the application scenario and
it is often a trade-off. A first important aspect
concerns the type of user. When the expertise to
train a word aligner is not available, combining B,
WE and LI is the best solution, though it comes
at the cost of lower accuracy. Another aspect is
the processing time that the user can afford. TM
cleaning is an operation conceived to be performed
once in a while (possibly overnight), once the TM
has grown enough to justify a new sanity check.
However, although it does not require real-time
processing, the size of the TM can motivate the
selection of faster filter combinations. An analy-
sis of the efficiency of the four groups, made by
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counting the number of processed TUs per sec-
ond,5 indicates that B and QE are the fastest filters
(processing on average ∼2,000 TUs/sec.). The LI
filter is slower, processing ∼300 TUs per second,
while the large number of times the cosine similar-
ity score is computed does not allow the WE filter
to process more than 50 TUs per second.

5 Conclusion

We presented TMop, the first open-source tool
for automatic Translation Memory (TM) clean-
ing. We summarised its design criteria, work-
flow and main components, also reporting some
efficiency and performance indicators. TMop is
implemented in Python and can be downloaded,
together with complete documentation, from
https://github.com/hlt-mt/TMOP. Its
license is FreeBSD, a very open permissive non-
copyleft license, compatible with the GNU GPL
and with any use, including commercial.
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