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Abstract

For many of the world’s languages, there
are no or very few linguistically annotated
resources. On the other hand, raw text, and
often also dictionaries, can be harvested
from the web for many of these languages,
and part-of-speech taggers can be trained
with these resources. At the same time,
previous research shows that eye-tracking
data, which can be obtained without ex-
plicit annotation, contains clues to part-
of-speech information. In this work, we
bring these two ideas together and show
that given raw text, a dictionary, and eye-
tracking data obtained from naive partici-
pants reading text, we can train a weakly
supervised PoS tagger using a second-
order HMM with maximum entropy emis-
sions. The best model use type-level ag-
gregates of eye-tracking data and signifi-
cantly outperforms a baseline that does not
have access to eye-tracking data.

1 Introduction

According to Ethnologue, there are around 7,000
languages in the world.1 For most of these lan-
guages, no or very little linguistically annotated
resources are available. This is why over the
past decade or so, NLP researchers have focused
on developing unsupervised algorithms that learn
from raw text, which for many languages is widely
available on the web. An example is part-of-
speech (PoS) tagging, in which unsupervised ap-
proaches have been increasingly successful (see
Christodoulopoulos et al. (2010) for an overview).
The performance of unsupervised PoS taggers can
be improved further if dictionary information is
available, making it possible to constrain the PoS

1http://www.ethnologue.com/world

tagging process. Again, dictionary information
can be harvested readily from the web for many
languages (Li et al., 2012).

In this paper, we show that PoS tagging perfor-
mance can be improved further by using a weakly
supervised model which exploits eye-tracking data
in addition to raw text and dictionary informa-
tion. Eye-tracking data can be obtained by get-
ting native speakers of the target language to read
text while their gaze behavior is recorded. Read-
ing is substantially faster than manual annota-
tion, and competent readers are available for lan-
guages where trained annotators are hard to find
or non-existent. While high quality eye-tracking
equipment is still expensive, $100 eye-trackers
such as the EyeTribe are already on the market,
and cheap eye-tracking equipment is likely to be
widely available in the near future, including eye-
tracking by smartphone or webcam (Skovsgaard et
al., 2013; Xu et al., 2015).

Gaze patterns during reading are strongly in-
fluenced by the parts of speech of the words be-
ing read. Psycholinguistic experiments show that
readers are less likely to fixate on closed-class
words that are predictable from context. Read-
ers also fixate longer on rare words, on words that
are semantically ambiguous, and on words that are
morphologically complex (Rayner, 1998). These
findings indicate that eye-tracking data should be
useful for classifying words by part of speech,
and indeed Barrett and Søgaard (2015) show that
word-type-level aggregate statistics collected from
eye-tracking corpora can be used as features for
supervised PoS tagging, leading to substantial
gains in accuracy across domains. This leads us
to hypothesize that gaze data should also improve
weakly supervised PoS tagging.

In this paper, we test this hypothesis by ex-
perimenting with a PoS tagging model that uses
raw text, dictionary information, and eye-tracking
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Figure 1: Second-order HMM. In addition to
the transitional probabilities of the antecedent
state zi−1 in first-order HMMs, second-order mod-
els incorporate transitional probabilities from the
second-order antecedent state zi−2.

data, but requires no explicit annotation. We start
with a state-of-the-art unsupervised PoS tagging
model, the second-order hidden Markov model
with maximum entropy emissions of Li et al.
(2012), which uses only textual features. We aug-
ment this model with a wide range of features de-
rived from an eye-tracking corpus at training time
(type-level gaze features). We also experiment
with token-level gaze features; the use of these
features implies that eye-tracking is available both
at training time and at test time. We find that eye-
tracking features lead to a significant increase in
PoS tagging accuracy, and that type-level aggre-
gates work better than token-level features.

2 The Dundee Treebank

The Dundee Treebank (Barrett et al., 2015) is a
Universal Dependency annotation layer that has
recently been added to the world’s largest eye-
tracking corpus, the Dundee Corpus (Kennedy et
al., 2003). The English portion of the corpus con-
tains 51,502 tokens and 9,776 types in 2,368 sen-
tences. The Dundee Corpus is a well-known and
widely used resource in psycholinguistic research.
The corpus enables researchers to study the read-
ing of contextualized, running text obtained un-
der relatively naturalistic conditions. The eye-
movements in the Dundee Corpus were recorded
with a high-end eye-tracker, sampling at 1000 Hz.
The corpus contains the eye-movements of ten na-
tive English speakers as they read the same twenty
newspaper articles from The Independent. The
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Figure 2: Tagging accuracy on development data
(token-level) as a function of number of iterations
on baseline and full model.

corpus was augmented with Penn Treebank PoS
annotation by Frank (2009). When construct-
ing the Dundee Treebank, this PoS annotation
was checked and corrected if necessary. In the
present paper, we use Universal PoS tags (Petrov
et al., 2011), which were obtained by automati-
cally mapping the original Penn Treebank annota-
tion of the Dundee Treebank to Universal tags.

3 Type-constrained second-order HMM
PoS tagging

We build on the type-constrained second-order
hidden Markov model with maximum entropy
emissions (SHMM-ME) proposed by Li et al.
(2012). This model is an extension of the
first-order max-ent HMM introduced by Berg-
Kirkpatrick et al. (2010). Li et al. (2012) de-
rive type constraints from crowd-sourced tag dic-
tionaries obtained from Wiktionary. Using type
constraints means confining the emissions for a
given word to the tags specified by the Wiktionary
for that word. Li et al. (2012) report a con-
siderable improvement over state-of-the-art unsu-
pervised PoS tagging models by using type con-
straints. In our experiments, we use the tag dictio-
naries they made available2 to facilitate compari-
son. Li et al.’s model was evaluated across nine
languages and outperformed a model trained on
the Penn Treebank tagset, as well as a models that
use parallel text. We follow Li et al.’s approach, in-
cluding the mapping of the Penn Treebank tags to

2https://code.google.com/archive/p/
wikily-supervised-pos-tagger/
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w-1 Dundee log frequency
Dundee forward transitional log probability
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Table 1: Features in feature selection groups.

the Universal PoS tags (Petrov et al., 2011). Fig-
ure 1 shows a graphical representation of a second-
order hidden Markov model.

Li et al. explore two aspects of type-constrained
HMMs for unsupervised PoS tagging: the use of a
second-order Markov model, and the use of textual
features modeled by maximum entropy emissions.
They find that both aspects improve tagging accu-
racy and report the following results for English
using Universal PoS tags on the Penn Treebank:
first-order HMM 85.4, first-order HMM with max-
ent emissions 86.1, second-order HMM 85.0, and
second-order HMM with max-ent emissions 87.1.
Li et al. employ a set of basic textual features for
the max-ent versions, which encode word identity,
presence of a hyphen, a capital letter, or a digit,
and word suffixes of two to three letters.

4 Experiments

Features Based on the eye-movement data in
the Dundee Corpus, we compute token-level val-
ues for 22 features pertaining to gaze and comple-

Features TA

NOGAZEDUN 81.03
NOGAZEBNC 80.69
BASIC 80.30
EARLY 79.96
LATE 79.87
REGFROM 79.62
CONTEXT 79.53

Best Group Comb (All) 81.37
Best Gaze-Only Comb (BASIC-LATE) 80.45

Table 2: Tagging accuracy on the development set
(token-level) for all individual feature groups, for
the best combination of groups and for the best
gaze-only combination of groups.

ment them with another nine non-gaze features.
Word length and word frequency are known to
correlate and interact with gaze features. We use
frequency counts from both a large corpus (the
British National Corpus, BNC) and the Dundee
Corpus itself. From these corpora, we also ob-
tain forward and backward transitional probabil-
ities, i.e., the conditional probabilities of a word
given the previous or next word.

All gaze features are averaged over the ten read-
ers and normalized linearly to a scale between 0
and 1. We divide the set of 31 features, which we
list in Table 1, into the following seven groups in
order to examine for their individual contribution:

1. EARLY measures of processing such as first-
pass fixation duration. Fixations on previous
words are included in this group due to pre-
view benefits. Early measures capture lexical
access and early syntactic processing.

2. LATE measures of processing such as number
of regressions to a word and re-fixation prob-
ability. These measures reflect late syntactic
processing and disambiguation in general.

3. BASIC word-level features, e.g., mean fixa-
tion duration and fixation probability. These
metrics do not belong explicitly to early or
late processing measures.

4. REGFROM includes a small selection of mea-
sures based on regressions departing from a
token. It also includes counts of long regres-
sions3. The token of departure of a regression

3defined as saccades going further back than wi−2
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System TA

Baseline (Li et al., 2012) 79.77

NoTextFeats 74.61
NoTextFeats + Best Group Comb (token) 79.56
NoTextFeats + Best Group Comb (type) 81.94*

Token-level features

Best Gaze Group (BASIC) 80.42*
Best Gaze-Only Comb (BASIC+LATE) 80.45*
Best Single Group (NOGAZEDUN) 80.61*
Best Group Comb (All) 81.00*

Type-averaged features

Best Gaze Group (BASIC) 81.28*
Best Gaze-Only Comb (BASIC+LATE) 81.38*
Best Group (NOGAZEDUN) 81.52*
Best Group Comb (All) 82.44*

Table 3: Tagging accuracy for the baseline, for
models with no text features and for our gaze-
enriched models using type and token gaze fea-
tures. Significant improvements over the baseline
marked by * (p < 10−3, McNemar’s test).

can have syntactic relevance, e.g., in garden
path sentences.

5. CONTEXT features of the surrounding to-
kens. This group contains features relating to
the fixations of the words in near proximity of
the token. The eye can only recognize words
a few characters to the left, and seven to eight
characters to the right of the fixation (Rayner,
1998). Therefore it is useful to know the fix-
ation pattern around the token.

6. NOGAZEBNC includes word length and
word frequency obtained from the British Na-
tional Corpus, as well as forward and back-
ward transitional probabilities. These were
computed using the KenLM language model-
ing toolkit (Heafield, 2011) with Kneser-Ney
smoothing for unseen bigrams.

7. NOGAZEDUN includes the same features as
NOGAZEBNC, but computed on the Dundee
Corpus. They were extracted using CMU-
Cambridge language modeling toolkit.4

Setup The Dundee Corpus does not include a
standard train-development-test split, so we di-

4http://www.speech.cs.cmu.edu/SLM/toolkit.html

Feature groups Accuracy ∆

All groups 81.00
−NOGAZEBNC 80.80 −0.20
−NOGAZEDUN 80.28 −0.52*
−BASIC 80.20 −0.08
−EARLY 79.78 −0.42*
−LATE 79.53 −0.25
−REGFROM 79.24 −0.29*
−CONTEXT (Baseline) 79.77 +0.53*

Table 4: Results of an ablation study over fea-
ture groups on the test set on token-level features.
Significant differences with previous model are
marked by * (p < 0.05, McNemar’s test).

vided it into a training set containing 46,879 to-
kens/1,896 sentences, a development set contain-
ing 5,868 tokens/230 sentences, and a test set of
5,832 tokens/241 sentences.

To tune the number of EM iterations required
for the SHMM-ME model, we ran several exper-
iments on the development set using 1 through
50 iterations. The result is fairly consistent for
both the baseline (the original model of Li et al.
(2012)) and the full model (which includes all fea-
ture groups in Table 1). Tagging accuracy as a
function of number of iterations is graphed in Fig-
ure 2. The best number of iterations on the full
model is five, which we will use for the remaining
experiments.

We perform a grid search over all combinations
of the seven feature groups, using five EM iter-
ations for training, evaluating the resulting mod-
els on token-level features of the development set.
We observe that the best single feature group is
NOGAZEDUN, the best single group of gaze fea-
tures is BASIC, the best gaze-only group combi-
nation is BASIC-LATE and the best group combi-
nation is obtained by including all seven feature
groups. Using all feature groups outperforms any
individual feature group on development data. The
performance of all the individual groups and of the
best group combinations can be seen in Table 2.
We run experiments on the test set and report re-
sults using the best single group (NOGAZEDUN),
the best single gaze group (BASIC), the best gaze-
only group combination (BASIC-LATE) and the
best group combination (all features).

Following Barrett and Søgaard (2015), we con-
trast the token-level gaze features with features ag-
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gregated at the type level. Type-level aggregation
was used by Barrett and Søgaard (2015) for super-
vised PoS tagging: A lexicon of word types was
created and the features values were averaged over
all occurrences of each type in the training data.

As our baseline, we train and evaluate the origi-
nal model proposed by Li et al. (2012) on the train-
test split described above, and compare it to the
models that make use of eye-tracking measures.

To get an estimate of the effect of the textual
features of Li et al., we train a model without these
features, labeled NOTEXTFEATS. We also aug-
ment this model with the best combination of fea-
ture groups.

Results The main results are presented in Ta-
ble 3. We first of all observe that both type-
and token-level gaze features lead to significant
improvements over Li et al. (2012), but type-
level features perform better than token-level. We
observe that the best individual feature group,
NOGAZEDUN, performs better than the best in-
dividual gaze feature group, BASIC and the best
gaze-only feature group, BASIC+LATE. This is
true on both type and token-level. Using the
best combination of feature groups (All features)
works best for both type- and token-level features.
Also when excluding the textual feature model
gaze helps and type-level features also work bet-
ter than token-level here.

A feature ablation study (see Table 4) supports
the hierarchical ordering of the features based on
the development set results (see Table 1).

5 Related Work

The proposed approach continues the work of Bar-
rett and Søgaard (2015) by augmenting an unsu-
pervised baseline PoS tagging model instead of a
supervised model. Our work also explores the po-
tentials of token-level features. Zelenina (2014)
is the only work we are aware of that uses gaze
features for unsupervised PoS tagging. Zelenina
(2014) employs gaze features to re-rank the output
of a standard unsupervised tagger. She reports a
small improvement with gaze features when evalu-
ating on the Universal PoS tagset, but finds no im-
provement when using the Penn Treebank tagset.

6 Discussion

The best individual feature group is NOGAZE-
DUN, indicating that just using word length and

word frequency, as well as transitional probabili-
ties, leads to a significant improvement in tagging
accuracy. However, performance increases further
when we add gaze features, which supports our
claim that gaze data is useful for weakly supervis-
ing PoS induction.

Type-level features work noticeably better than
token-level features, suggesting that access to eye-
tracking data at test time is not necessary. On the
contrary, our results support the more resource-
efficient set-up of just having eye-tracking data
available at training time. We assume that this
finding is due to the fact that eye-movement data
is typically quite noisy; averaging over all tokens
of a type reduces the noise more than just averag-
ing over the ten participants that read each token.
Thus token-level aggregation leads to more reli-
able feature values.

Our finding that the best model includes all
groups of gaze features, and that the best gaze-
only group combination works better than the best
individual gaze group suggest that different eye-
tracking features contain complementary informa-
tion. A broad selection of eye-movement features
is necessary for reliably identifying PoS classes.

7 Conclusions

We presented the first study of weakly super-
vised part-of-speech tagging with eye-tracking
data, using a type-constrained second-order hid-
den Markov model with max-ent emissions. We
performed experiments adding a broad selection
of eye-tracking features at training time (type-
level features) and at test time (token-level fea-
tures). We found significant improvements over
the baseline in both cases, but type averaging
worked better than token-level features. Our re-
sults indicate that using traces of human cognitive
processing, such as the eye-movements made dur-
ing reading, can be used to augment NLP models.
This could enable us to bootstrap better PoS tag-
gers for domains and languages for which man-
ually annotated corpora are not available, in par-
ticular once eye-trackers become widely available
through smartphones or webcams (Skovsgaard et
al., 2013; Xu et al., 2015).
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