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Abstract

Traditional event detection methods heav-
ily rely on manually engineered rich fea-
tures. Recent deep learning approaches al-
leviate this problem by automatic feature
engineering. But such efforts, like tra-
dition methods, have so far only focused
on single-token event mentions, whereas
in practice events can also be a phrase.
We instead use forward-backward recur-
rent neural networks (FBRNNSs) to detect
events that can be either words or phrases.
To the best our knowledge, this is one
of the first efforts to handle multi-word
events and also the first attempt to use
RNNs for event detection. Experimental
results demonstrate that FBRNN is com-
petitive with the state-of-the-art methods
on the ACE 2005 and the Rich ERE 2015
event detection tasks.

1 Introduction

Automatic event extraction from natural text is
an important and challenging task for natural lan-
guage understanding. Given a set of ontologized
event types, the goal of event extraction is to iden-
tify the mentions of different event types and their
arguments from natural texts. In this paper we fo-
cus on the problem of extracting event mentions,
which can be in the form of a single word or mul-
tiple words. In the current literature, events have
been annotated in two different forms:

o Event trigger: a single token that is consid-
ered to signify the occurrence of an event.
Here a token is not necessarily a word, for
example, in order to capture a death event,
the phrase “kick the bucket” is concatenated
into a single token “kick_the_bucket”. This
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scheme has been used in the ACE and Light
ERE data and has been followed in most stud-
ies on event extraction.

Event nugget: a word or a phrase of multi-
ple words that most clearly expresses the oc-
currence of an event. This scheme is recently
introduced to remove the limitation of single-
token event triggers and has been adopted by
the rich ERE data for event annotation.

Existing event extraction work often heavily relies
on a rich set of hand-designed features and utilizes
existing NLP toolkits and resources (Ji and Grish-
man, 2008; Patwardhan and Riloff, 2009; Liao and
Grishman, 2010; McClosky et al., 2011; Huang
and Riloff, 2012; Li et al., 2013a; Li et al., 2013b;
Liet al., 2014). Consequently, it is often challeng-
ing to adapt prior methods to multi-lingual or non-
English settings since they require extensive lin-
guistic knowledge for feature engineering and ma-
ture NLP toolkits for extracting the features with-
out severe error propagation.

By contrast, deep learning has recently emerged
as a compelling solution to avoid the afore-
mentioned problems by automatically extracting
meaningful features from raw text without relying
on existing NLP toolkits. There have been some
limited attempts in using deep learning for event
detection (Nguyen and Grishman, 2015; Chen et
al., 2015) which apply Convolutional Neural Net-
works (CNNs) to a window of text around poten-
tial triggers to identify events. These efforts out-
perform traditional methods, but there remain two
major limitations:

e So far they have, like traditional methods,
only focused on the oversimplified scenario
of single-token event detection.

e Such CNN-based approaches require a fixed
size window. In practice it is often unclear
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Given Sentence Example: an unknown man had [broken into] a house last November
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Figure 1: The Proposed Forward-Backward Recurrent Neural Network (FBRNN) Model, with the ex-
ample sentence “an unknown man had [broken into] a house last November” and event nugget candidate

“broken into”

how large this window needs to be in order to
capture necessary context to make decision
for an event candidate.

Recurrent Neural Networks (RNNs), by con-
trast, is a natural solution to both problems above
because it can be applied to inputs of variable
length which eliminates both the requirement of
single-token event trigger and the need for a
fixed window size. Using recurrent nodes with
Long Short Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) or Gated Recurrent Units
(GRU) (Cho et al., 2014), RNN is potentially ca-
pable of selectively deciding the relevant context
to consider for detecting events.

In this paper we present a forward-backward re-
current neural network (FBRNN) to extract (pos-
sibly multi-word) event mentions from raw text.
Although RNNs have been studied extensively in
other NLP tasks (Cross and Huang, 2016; Tai
et al., 2015; Socher et al., 2014; Paulus et al.,
2014), to the best of our knowledge, this is the
first work to use RNNs for event detection. This
is also one of the first efforts to handle multi-word
event nuggets. Experimental results confirm that
FBRNN is competitive compared to the state-of-
the-art on the ACE 2005 dataset and the Rich ERE
2015 event detection task.

2 Proposed Model

Let z = [wp, w1, ..., wy,| be a sentence. We first go
over each word and phrase and heuristically ex-

370

tract a set of event candidates. The task is then
to predict for each candidate given the sentence
whether it is an event and, if so, its type. Figure 1
demonstrates our proposed model for this task.

For each event candidate, which consists of
a continuous span of texts [w;, ..., w;], we split
the sentence into three parts: the left con-
text [wo, ..., w;—1], the event nugget candidate
[w;, ..., w;] and the right context [w;i1, ..., wy].
For instance, for event candidate ‘“broken into”
and given sentence “an unknown man had broken
into a house last November”’; [an, unknown, man,
had], [broken, into] and [a, house, last, Novem-
ber] are the left context, the event nugget candidate
and the right context respectively. For each part,
we learn a separate RNN to produce a represen-
tation. Before feeding the data into the network,
each word is represented as a real-valued vector
that is formed by concatenating a word embedding
with a branch embedding, which we describe be-
low:

e Word embedding: Several studies have in-
vestigated methods for representing words as
real-valued vectors in order to capture the
hidden semantic and syntactic properties of
words (Collobert and Weston, 2008; Mikolov
et al., 2013). Such embeddings are typically
learned from large unlabeled text corpora,
consequently can serve as good initializa-
tions. In our work, we initialize the word em-
bedding with the pretrained 300-diemension
word2vec (Mikolov et al., 2013).



e Branch embedding: The relative position
of a word to the current event nugget candi-
date may contain useful information toward
how the word should be used or interpreted
in identifying events. It is thus a common
practice to include an additional embedding
for each word that characterizes its relative
position to the event nugget candidate. In
this work, to reduce the complexity of our
model and avoid overfitting, we only learn
embeddings for three different positions: the
left branch, the nugget branch and the right
branch respectively. This is illustrated using
three different colors in Figure 1.

Now each word is represented as a real-valued
vector, formed by concatenating its word and
branch embeddings. The sequence of words in
the left, nugget and right branches will each pass
through a separate Recurrent Neural Network. For
the left and nugget branches, we process the words
from left to right, and use the opposite direction
(from right to left) for the right context, thus the
name Forward-Backward RNN (FBRNN).

The output of each recurrent neural network is a
fixed size representation of its input. We concate-
nate the representations from the three branches
and pass it through a fully connected neural net-
work with a softmax output node that classifies
each event candidate as an event of specific type
or a non-event. Note that in cases where an event
candidate can potentially belong to multiple event
types, one can replace the softmax output node
with a set of binary output nodes or a sigmoid to
allow for multi-label prediction for each event can-
didate.

To avoid overfitting, we use dropout (Hinton
et al.,, 2012; Srivastava et al., 2014) with rate
of 0.5 for regularization. The weights of the re-
current neural networks as well as the fully con-
nected neural network are learned by minimizing
the log-loss on the training data via the Adam
optimizer (Kingma and Ba, 2015) which per-
forms better that other optimization methods like
AdaDelta (Zeiler, 2012), AdaGrad (Duchi et al.,
2011), RMSprop and SGD. During training, the
word and branch embeddings are updated to learn
effective representations for this specific task.

3 Experiments

In this section, we first empirically examine some
design choices for our model and then compare
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the proposed model to the current state-of-the-art
on two different event detection datasets.

3.1 Datasets, candidate generation and
hyper-parameters

We experiment on two different corpora, ACE
2005 and Rich ERE 2015.

e ACE 2005: The ACE 2005 corpus is anno-
tated with single-token event triggers and has
eight event types and 33 event subtypes that,
along with the “non-event” class, constitutes
a 34-class classification problem. In our ex-
periments we used the same train, develop-
ment and test sets as the previous studies on
this dataset (Nguyen and Grishman, 2015; Li
et al., 2013b). Candidate generation for this
corpus is based on a list of candidate event
trigger words created from the training data
and the PPDB paraphrase database. Given a
sentence, we go over each token and extract
the tokens that appear in this high-recall list
as event candidates, which we then classify
with our proposed FBRNN model.

Rich ERE 2015: The Rich ERE 2015 cor-
pus was released in the TAC 2015 competi-
tion and annotated at the nugget level, thus
addressing phrasal event mentions. The Rich
ERE 2015 corpus has nine event types and
38 event subtypes, forming a 39-class clas-
sification problem (considering ‘“non-event”
as an additional class). We utilized the same
train and test sets that have been used in the
TAC 2015 event nugget detection competi-
tion. A subset of the provided train set was
set aside as our development set. To gener-
ate event nugget candidates, we first followed
the same strategy that we used for the ACE
2005 dataset experiment to identify single-
token event candidates. We then expand the
single-token event candidates using a heuris-
tic rule based on POS tags.

There are a number of hyper-parameters for our
model, including the dimension of the branch em-
bedding, the number of recurrent layers in each
RNN, the size of the RNN outputs, the dropout
rates for training the networks. We tune these pa-
rameters using the development set.

3.2 Exploration of different design choices

We first design some experiments to evaluate the
impact of the following design choices:



Configurations p R Fl1
+branch | 59.82 | 48.39 | 53.50
LSTM g anch [ 58.50 | 44.82 [ 50.76
GRU +branch | 63.72 | 47.68 | 54.55
-branch | 64.56 | 43.93 | 52.28

Table 1: Performance on the development set with
different configurations on Rich ERE 2015.

Methods P R F1
Sentence level in Ji and } ) 507
Grishman (2008) ’
MaxEnt with local } ) 64.7
features in Li et al. (2013b) ’
Joint beam search with local } ) 63.7
features in Li et al. (2013b) ’
Joint beam search with
local and global features in - - 65.6
Li et al. (2013b)

l
l

Table 2: Comparison with reported performance
by event detection systems without using gold en-
tity mentions and types on the ACE 2005 corpus.

CNN (Nguyen, 2015)
FBRNN

[719 | 638 | 616 |
[ 668 | 680 | 674 |

i) Different RNN structures: LSTM and GRU
are two popular recurrent network structures
that are capable of extracting long-term de-
pendencies in different ways. Here we com-
pare their performance for event detection.

ii) The effect of branch embedding: A word can

present different role and concept when it is

in a nugget branch or other branches. Here
we would examine the effect of including
branch embedding.

Table 1 shows the results of our model with dif-
ferent design choices on the development set of
the Rich ERE 2015 corpus. We note that the per-
formance of GRU is slightly better than that of
LSTM. We believe this is because GRU is a less
complex structure compared to LSTM, thus less
prone to overfitting given the limited training data
for our task. From the results we can also see that
the branch embedding performs a crucial role for
our model, producing significant improvement for
both LSTM and GRU.

Based on the results presented above, for the re-
maining experiments we will focus on GRU struc-
ture with branch embeddings.

3.3 Results on ACE 2005

Many prior studies employ gold-standard en-
tity mentions and types from manual annotation,
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Methods P R F1
1% 7523 | 47.74 | 5841
ond 73.95 | 46.61 | 57.18
3tk 73.68 | 44.94 | 55.83
4% 7373 | 44.57 | 55.56
5th 71.06 | 43.50 | 53.97

[ FBRNN | 71.58 | 48.19 [ 57.61 |

Table 3: Performance of FBRNN compared with
reported top results in TAC competition (Mita-
mura et al., 2015) on Rich ERE 2015.

which would not be available in reality during
testing. Nguyen and Grishman (2015) examined
the performance of a number of traditional sys-
tems (Li et al., 2013b) in a more realistic setting,
where entity mentions and types are acquired from
an automatic high-performing name tagger and in-
formation extraction system. In Table 2 we com-
pare the performance of our system with these re-
sults reported by Nguyen and Grishman (2015).

We first note that the deep learning methods
(CNN and FBRNN) achieve significantly better F1
performance compared to traditional methods us-
ing manually engineered features (both local and
global). Compared to CNN, our FBRNN model
achieved better recall but the precision is lower.
For the overall F1 measure, our model is compa-
rable with the CNN model.

3.4 Results on Rich ERE 2015

Table 3 reports the test performance of our model
and shows that it is competitive with the top-
ranked results obtained in the TAC 2015 event
nugget detection competition. It is interesting to
note that FBRNN is again winning in recall, but
losing in precision, a phenomenon that is consis-
tently observed in both corpora and a topic worth
a closer look for future work.

Finally, in Rich ERE test data, approximately
9% of the events are actually multi-labeled. Our
current model uses softmax output layer and is
thus innately incapable of making multi-label pre-
dictions. Despite this limitation, FBRNN achieved
competitive result on Rich ERE with only 0.8%
difference from the best reported system in the
TAC 2015 competition.

4 Conclusions

This paper proposes a novel language-independent
event detection method based on RNNs which can
automatically extract effective features from raw



text to detect event nuggets. We conducted two
experiments to compare FBRNN with the state-of-
the-art event detection systems on the ACE 2005
and Rich ERE 2015 corpora. These experiments
demonstrate that FBRNN achieves competitive re-
sults compared to the current state-of-the-art.
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