Multi-Modal Representations for Improved Bilingual Lexicon Learning

Ivan Vulié¢
Language Technology Lab, DTAL
University of Cambridge
iv250@cam.ac.uk

Stephen Clark
Computer Laboratory
University of Cambridge
sc609@cam.ac.uk

Abstract

Recent work has revealed the potential of
using visual representations for bilingual
lexicon learning (BLL). Such image-based
BLL methods, however, still fall short
of linguistic approaches. In this paper,
we propose a simple yet effective multi-
modal approach that learns bilingual se-
mantic representations that fuse linguis-
tic and visual input. These new bilingual
multi-modal embeddings display signifi-
cant performance gains in the BLL task for
three language pairs on two benchmark-
ing test sets, outperforming linguistic-only
BLL models using three different types
of state-of-the-art bilingual word embed-
dings, as well as visual-only BLL models.

1 Introduction

Bilingual lexicon learning (BLL) is the task of
finding words that share a common meaning
across different languages. It plays an impor-
tant role in a variety of fundamental tasks in IR
and NLP, e.g. cross-lingual information retrieval
and statistical machine translation. The major-
ity of current BLL models aim to learn lexicons
from comparable data. These approaches work
by (1) mapping language pairs to a shared cross-
lingual vector space (SCLVS) such that words are
close when they have similar meanings; and (2)
extracting close lexical items from the induced
SCLVS. Bilingual word embedding (BWE) in-
duced models currently hold the state-of-the-art on
BLL (Hermann and Blunsom, 2014; Gouws et al.,
2015; Vuli¢ and Moens, 2016).

Although methods for learning SCLVSs are pre-
dominantly text-based, this space need not be lin-
guistic in nature: Bergsma and van Durme (2011)
and Kiela et al. (2015) used labeled images from
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the Web to learn bilingual lexicons based on visual
features, with features derived from deep convolu-
tional neural networks (CNNs) leading to the best
results (Kiela et al., 2015). However, vision-based
BLL does not yet perform at the same level as
state-of-the-art linguistic models. Here, we unify
the strengths of both approaches into one single
multi-modal vision-language SCLVS.

It has been found in multi-modal semantics
that linguistic and visual representations are often
complementary in terms of the information they
encode (Deselaers and Ferrari, 2011; Bruni et al.,
2014; Silberer and Lapata, 2014). This is the first
work to test the effectiveness of the multi-modal
approach in a BLL setting. Our contributions
are: We introduce bilingual multi-modal seman-
tic spaces that merge linguistic and visual com-
ponents to obtain semantically-enriched bilingual
multi-modal word representations. These repre-
sentations display significant improvements for
three language pairs on two benchmarking BLL
test sets in comparison to three different bilingual
linguistic representations (Mikolov et al., 2013;
Gouws et al., 2015; Vuli¢ and Moens, 2016), as
well as over the uni-modal visual representations
from Kiela et al. (2015).

We also propose a weighting technique based
on image dispersion (Kiela et al., 2014) that gov-
erns the influence of visual information in fused
representations, and show that this technique leads
to robust multi-modal models which do not require
fine tuning of the fusion parameter.

2 Methodology

2.1 Linguistic Representations

We use three representative linguistic BWE mod-
els. Given a source and target vocabulary V*°
and V7, BWE models learn a representation of
each word w € V° U VT as a real-valued vec-
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tor: Wing = | {mg e Z”g], where f,lf”g €
R is the value of the k-th cross-lingual feature
for w. Similarity between w,v € VS U VT
is computed through a similarity function (SF),
siMying(w,v) = SF(Wiing, Viing), €.8., cosine.

Type 1: M-EMB This type of BWE induc-
tion model assumes the following setup for learn-
ing the SCLVS (Mikolov et al., 2013; Faruqui
and Dyer, 2014; Dinu et al., 2015; Lazaridou et
al., 2015a): First, two monolingual spaces, R%s
and R?T, are induced separately in each language
using a standard monolingual embedding model.
The bilingual signal is provided in the form of
word translation pairs (z;,%;), where z; € V5,
Y; € VT, and x; € RYs, yi € RYT . Train-
ing is cast as a multivariate regression problem:
it implies learning a function that maps the source
language vectors to their corresponding target lan-
guage vectors. A standard approach (Mikolov et
al., 2013; Dinu et al., 2015) is to assume a linear
map W € R%*47 which is learned through an
Lo-regularized least-squares error objective. Any
previously unseen source language word vector
Xy may be mapped into the target embedding
space R as Wx,,. After mapping all vectors X,
x € V9, the target space R?T serves as a SCLVS.

Type 2: G-EMB Another collection of BWE in-
duction models optimizes two monolingual objec-
tives jointly, with the cross-lingual objective act-
ing as a cross-lingual regularizer during training
(Gouws et al., 2015; Soyer et al., 2015). In a sim-
plified formulation (Luong et al., 2015), the ob-
jective is: v(Monog + Monor) + dBi. The mono-
lingual objectives Monog and Monor ensure that
similar words in each language are assigned sim-
ilar embeddings and aim to capture the seman-
tic structure of each language, whereas the cross-
lingual objective B¢ ensures that similar words
across languages are assigned similar embeddings,
and ties the two monolingual spaces together into
a SCLVS. Parameters «y and ¢ govern the influence
of the monolingual and bilingual components.!
The bilingual signal used as the cross-lingual reg-
ularizer during the joint training is obtained from
sentence-aligned parallel data. We opt for the Bil-

ISetting v = 0 reduces the model to the bilingual models
trained solely on parallel data (Hermann and Blunsom, 2014;
Chandar et al., 2014). v = 1 results in the models from
Gouws et al. (2015) and Soyer et al. (2015). Although they
use the same data sources, all G-EMB models differ in the
choice of monolingual and cross-lingual objectives.

BOWA model from Gouws et al. (2015) as the rep-
resentative model to be included in the compar-
isons, due to its solid performance and robustness
in the BLL task (Luong et al., 2015), its reduced
complexity reflected in fast computations on mas-
sive datasets and its public availability.?

Type 3: V-EMB The third set of models re-
quires a different bilingual signal to induce a
SCLVS: document alignments. Vuli¢ and Moens
(2016) created a collection of pseudo-bilingual
documents by merging every pair of aligned doc-
uments in the data, in a way that preserves im-
portant local information — which words appeared
next to which other words (in the same language),
and which words appeared in the same region of
the document (in different languages). This col-
lection was then used to train word embeddings
with monolingual skip-gram with negative sam-
pling using word2vec. With pseudo-bilingual
documents, the “context” of a word is redefined
as a mixture of neighboring words (in the origi-
nal language) and words that appeared in the same
region of the document (in the foreign language).
Bilingual contexts for each word in each pseudo-
bilingual document steer the final model towards
constructing a SCLVS.

2.2 Visual Representations

Only a few studies have tried to make use of the in-
tuition that words in different languages denoting
the same concepts are similarly grounded in the
perceptual system (bicycles resemble each other
irrespective of whether we call them bicyle, vélo,
fiets or Fahrrad, see Fig. 1) (Bergsma and van
Durme, 2011; Kiela et al., 2015). Although the
idea is promising, such visual methods are still
limited in comparison with linguistic ones, es-
pecially for more abstract concepts (Kiela et al.,
2015). Recent findings in multi-modal semantics
suggest that visual representations encode pieces
of semantic information complementary to lin-
guistic information derived from text (Deselaers
and Ferrari, 2011; Silberer and Lapata, 2014).

We compute visual representations in a similar
fashion to Kiela et al. (2015): For each word we
retrieve n images from Google image search (see
Fig. 1), and for each image we extract the pre-
softmax layer of an AlexNet (Krizhevsky et al.,
2012) that has been pre-trained on the ImageNet

“https://github.com/gouwsmeister/bilbowa
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Figure 1: Example images for several languages.

classification task (Deng et al., 2009; Russakovsky
et al., 2015) using Caffe (Jia et al., 2014).

Each image is thus represented as a 4096-
dimensional feature vector extracted from a con-
volutional neural network (CNN). We use two
methods for computing visual similarity: (1)
CNN-MAX produces a single visual vector by
taking the pointwise maximum across the n im-
age vector representations from the image set.
The representation of each word w € VS U VT
in a visual SCLVS is now a real-valued vector
Wois = [[1%, ..., "], where f"* € R denotes
the score for the k-th visual cross-lingual fea-
ture for w within a d,-dimensional visual SCLVS
(dy = 4096). As before, similarity between two
words w,v € VIUVT is computed by applying a
similarity function on their representations in the
visual SCLVS: simys(w,v) = SF(Wyis, Vuis)s
e.g. cosine. (2) CNN-AVGMAX: An alternative
strategy, introduced by Bergsma and van Durme
(2011), is to consider the similarities between in-
dividual images from the two sets and take the av-
erage of the maximum similarity scores as the final
similarity sim;s(w, v).

2.3 Multi-Modal Representations

We experiment with two ways of fusing infor-
mation stemming from the linguistic and visual
modalities. Following recent work in multi-modal
semantics (Bruni et al., 2014; Kiela and Bottou,
2014), we construct representations by concate-
nating the centered and Ly-normalized linguistic
and visual feature vectors:

&)

Winm = @ X Wiing || (1 — @) X Wyis

where || denotes concatenation and « is a pa-
rameter governing the contributions of each uni-
modal representation. The final similarity may
again be computed by applying an SF on the multi-
modal representations. We call this method Early-
Fusion. Note that it is possible only with CNN-
MAX. The alternative is not to build a full multi-
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modal (MM) representation, but instead to com-
bine the individual similarity scores from each
uni-modal SCLVS. The similarity sim(w,v) be-
tween two words w and v is:

a X $iMiing(w,v) + (1 — @) X siMyis(w,v) =
=a X SF(wling,Vling) + (1 - Of) X SF(in57vvis)

where « again controls for the importance of the
uni-modal scores in the final combined scores. We
call this method Late-Fusion®.

3 Experimental Setup

Task: Bilingual Lexicon Learning Given a
source language word wg, the task is to find a tar-
get language word wy closest to wg in the SCLVS,
and the resulting pair (ws, wy) is a bilingual lexi-
con entry. Performance is measured using the BLL
standard Top 1 accuracy (Accy) metric (Gaussier
et al., 2004; Gouws et al., 2015).

Test Sets We work with three language pairs:
English-Spanish/Dutch/Italian ~ (EN-ES/NL/IT),
and two benchmarking BLL test sets:

(1) BERGSMAS500: consisting of a set of 500
ground truth noun pairs for the three language
pairs, it is considered a benchmarking test set in
prior work on BLL using vision (Bergsma and van
Durme, 2011)*. Translation direction in our tests
is EN — ES/IT/NL.

(2) VULIC1000: constructed to measure the gen-
eral performance of linguistic BLL models from
comparable Wikipedia data (Vuli¢ and Moens,
2013), this is considered a benchmarking test set
for (linguistic) BLL models from comparable data
(Vulié and Moens, 2016)°. It comprises 1,000
nouns in ES, IT, and NL, along with their one-
to-one ground-truth word translations in EN com-
piled semi-automatically. Translation direction is
ES/IT/NL — EN.

Training Data and Setup We used standard
training data and suggested settings to learn
M/G/V-EMB model representations. M-EMB and
G-EMB were trained on the full cleaned and tok-
enized Wikipedias from the Polyglot website (Al-
Rfou et al., 2013). V-EMB was trained on the
full tokenized document-aligned Wikipedias from

3Under the assumption of having the centered and Lo-
normalized feature vectors, and cos as SF, Early-Fusion may
be transformed into Late-Fusion with adapted weighting:
a? x c08(Wiing, Viing) + (1 — 04)2 X €08(Wyis, Vuis)
“http://www.clsp.jhu.edu/~sbergsma/LexImg/
Shttp://www.cl.cam.ac.uk/~dk427/bli.html



Pair: B: EN—ESIV: ES—EN

B: EN—ITIV: IT—EN

B: EN—NLIV: NL—EN

Models M-EMB G-EMB V-EMB M-EMB G-EMB V-EMB M-EMB G-EMB V-EMB
Linguistic

d = 300 0.71 0.77 0.60 0.73 0.68 0.82 0.77 0.76 0.63 0.71 0.75 0.79 0.77 0.76 0.59 0.75 0.74 0.79
Visual

CNN-Max 0.51 0.35 0.51 0.35 0.51 0.35 0.54 0.22 0.54 0.22 0.54 0.22 0.56 0.33 0.56 0.33 0.56 0.33
CNN-AvgMax  0.55 0.38 0.54 0.38 0.54 0.38 0.56 0.25 0.56 0.25 0.56 0.25 0.60 0.34 0.60 0.34 0.60 0.34
Multi-modal with global o

Max-E-0.5 0.76 0.79 0.66 0.79 0.71 0.83 0.83 0.75 0.72 0.70 0.80 0.80 0.85 0.80 0.69 0.78 0.80 0.81
Max-E-0.7 0.75 0.80 0.62 0.76 0.70 0.85 0.81 0.77 0.66 0.73 0.78 0.82 0.84 0.80 0.61 0.79 0.80 0.82
Max-L-0.7 0.76 0.80 0.64 0.78 0.71 0.85 0.82 0.77 0.69 0.73 0.80 0.82 0.85 0.82 0.64 0.79 0.81 0.83
Avg-L-0.5 0.77 0.78 0.68 0.79 0.73 0.83 084 0.77 0.75 0.70 0.81 0.79 0.86 0.80 0.76 0.78 0.83 0.81
Avg-L-0.7 0.77 0.81 0.66 0.79 0.72 0.85 0.83 0.78 0.72 0.75 0.80 0.83 0.86 0.83 0.70 0.81 0.81 0.83
Multi-modal with image dispersion (ID) weighting

Max-E-ID 0.76 0.80 0.66 0.78 0.71 0.84 0.81 0.77 0.69 0.73 0.80 0.81 0.84 0.80 0.64 0.79 0.81 0.82
Max-L-ID 0.77 0.80 0.66 0.78 0.72 0.85 0.82 0.77 0.70 0.73 0.80 0.81 0.84 0.82 0.65 0.79 0.81 0.82
Avg-L-ID 0.77 0.81 0.67 0.79 0.73 0.84 0.83 0.78 0.74 0.73 0.80 0.83 0.85 0.82 0.72 0.80 0.82 0.82

Table 1: Summary of the Accy scores on BERGSMAS00 (regular font) and VULIC1000 (italic) across all
BLL runs. M/G/V-EMB denotes the BWE linguistic model. Other settings are in the form Y-Z-0.W: (1)
Y denotes the visual metric, (2) Z denotes the fusion model: E is for Early-Fusion, L is for Late-Fusion,
and (3) 0.W denotes the o value. Highest scores per column are in bold.

LinguaTools®. The 100K most frequent words
were retained for all models.

We followed related work (Mikolov et al., 2013;
Lazaridou et al., 2015a) for learning the mapping
W in M-EMB: starting from the BNC word fre-
quency list (Kilgarriff, 1997), the 6,318 most fre-
quent EN words were translated to the three other
languages using Google Translate. The lists were
subsequently cleaned, removing all pairs that con-
tain IT/ES/NL words occurring in the test sets and
least frequent pairs, to build the final 3x 5K train-
ing pairs. We trained two monolingual SGNS
models, using SGD with a global learning rate
of 0.025. For G-EMB, as in the original work
(Gouws et al., 2015), the bilingual signal for
the cross-lingual regularization was provided in
the first 500K sentences from Europarl.v7 (Tiede-
mann, 2012). We used SGD with a global learning
rate 0.15. For V-EMB, monolingual SGNS was
trained on pseudo-bilingual documents using SGD
with a global learning rate 0.025. All BWEs were
trained with d = 300.” Other parameters are: 15
epochs, 15 negatives, subsampling rate 1e —4. We
report results with two o standard values: 0.5 and
0.7 (more weight assigned to the linguistic part).

4 Results and Discussion

Table 1 summarizes Acc; scores, focusing on
interesting comparisons across different dimen-

Shttp://linguatools.org/tools/corpora/

"Similar trends were observed with all models and d =
64, 500. We also vary the window size from 4 to 16 in steps of
4, and always report the best scoring linguistic embeddings.
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sions There is a marked difference in per-
formance on BERGSMAS500 and VULIC1000:
visual-only BLL models on VULIC1000 perform
two times worse than linguistic-only BLL models.
This is easily explained by the increased abstract-
ness of test words in VULIC1000 in comparison
to BERGSMA500°, which highlights the need for
a multi-modal approach.

Multi-Modal vs. Uni-Modal The multi-modal
models outperform both linguistic and visual
models across all setups and combinations on
BERGSMAS500. On VULIC1000 multi-modal
models again outperform their uni-modal compo-
nents in both modalities. In the latter case, im-
provements are dependent on the amount of vi-
sual information included in the model, as gov-
erned by «. Since the dataset also contains highly
abstract words, the inclusion of visual informa-
tion may be detrimental to performance. These
models outperform the uni-modal models across
a wide variety of settings: they outperform the
three linguistic-only BLL models that held best re-
ported Accy scores on the evaluation set (Vuli¢ and
Moens, 2016). The largest improvements are sta-
tistically significant according to McNemar’s test,
p < 0.01. We find improvements on both test sets
for all three BWE types.

The relative ranking of the visual metrics intro-

8Similar rankings of different models are also visible with
more lenient Accig scores, not reported for brevity.

°The average image dispersion value (Kiela et al., 2014),
which indicates abstractness, on VULIC1000 is 0.711 com-
pared to 0.642 on BERGSMAS500.



duced in Kiela et al. (2015) extends to the MM
setting: Late-Fusion with CNN-AVGMAX is the
most effective MM BLL model on average, but all
other tested MM configurations also yield notable
improvements.

Concreteness To measure concreteness, we use
an unsupervised data-driven method, shown to
closely mirror how concrete a concept is: image
dispersion (ID) (Kiela et al., 2014). ID is defined
as the average pairwise cosine distance between
all the image representations/vectors {i; .. .1i,} in
the set of images for a given word w:

doa

j<k<n

2
n(n —1)

15 - 1g

Ii; |1k |

id(w) = 2

Intuitively, more concrete words display more
coherent visual representations and consequently
lower ID scores (see Footnote 9 again). The low-
est improvements on VULIC 1000 are reported for
the IT-EN language pair, which is incidentally the
most abstract test set.

There is some evidence that abstract concepts
are also perceptually grounded (Lakoff and John-
son, 1999), albeit in a more complex way, since
abstract concepts will relate more varied situations
(Barsalou and Wiemer-Hastings, 2005). Conse-
quently, uni-modal visual representations are not
powerful enough to capture all the semantic in-
tricacies of such abstract concepts, and the lin-
guistic components are more beneficial in such
cases. This explains an improved performance
with a = 0.7, but also calls for a more intelligent
decision mechanism on how much perceptual in-
formation to include in the multi-modal models.
The decision should be closely related to the de-
gree of a concept’s concreteness, e.g., €q. (2).

Image Dispersion Weighting The intuition that
the inclusion of visual information may lead to
negative effects in MM modeling has been ex-
ploited by Kiela et al. (2014) in their work on
image-dispersion filtering: Although the filtering
method displays some clear benefits, its short-
coming lies in the fact that it performs a binary
decision which can potentially discard valuable
perceptual information for less concrete concepts.
Here, we introduce a weighting scheme where the
perceptual information is weighted according to
its ID value. Early-Fusion is now computed as:

Wmm = a(id) X Wiing || (1 — a(id)) X Wyis
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Late-Fusion model becomes:
a(id) X SF(Wiing, Viing) + (1 — a(id)) X SF(Wuyis, Vuis)

a(id) denotes a weight that is proportional to the
ID score of the source language word w: we opt
for a simple approach and specify a(id) = id(w).
Instead of having one global parameter «, the ID
weighting adjusts the amount of information lo-
cally according to each concept’s concreteness.
The results are summarised in Table 1. All
multi-modal models with ID-based weighting are
outperforming their uni-modal components. The
ID-weighted BLL models reach (near-)optimal
BLL results across a variety of language-vision
combinations without any fine-tuning.

5 Conclusion

We have presented a novel approach to bilin-
gual lexicon learning (BLL) that combines lin-
guistic and visual representations into new bilin-
gual multi-modal (MM) models. Two simple yet
effective ways to fuse the linguistic and visual in-
formation for BLL have been described. Such
MM models outperform their linguistic and vi-
sual uni-modal component models on two stan-
dard benchmarking BLL test sets for three lan-
guage pairs. Comparisons with three different
state-of-the-art bilingual word embedding induc-
tion models demonstrate that the gains of MM
modeling are generally applicable.

As future work, we plan to analyse the ability of
multi-view representation learning algorithms to
yield fused multi-modal representations in bilin-
gual settings (Lazaridou et al., 2015b; Rastogi et
al., 2015; Wang et al., 2015), as well as to ap-
ply multi-modal bilingual spaces in other tasks
such as zero-short learning (Frome et al., 2013) or
cross-lingual MM information search and retrieval
following paradigms from monolingual settings
(Pereira et al., 2014; Vuli¢ and Moens, 2015).

The inclusion of perceptual data, as this pa-
per reveals, seems especially promising in bilin-
gual settings (Rajendran et al., 2016; Elliott et al.,
2016), since the perceptual information demon-
strates the ability to transcend linguistic borders.

Acknowledgments

This work is supported by ERC Consolidator
Grant LEXICAL (648909) and KU Leuven Grant
PDMK/14/117. SC is supported by ERC Starting
Grant DisCoTex (306920). We thank the anony-
mous reviewers for their helpful comments.



References

Rami Al-Rfou, Bryan Perozzi, and Steven Skiena.
2013. Polyglot: Distributed word representations
for multilingual NLP. In CoNLL, pages 183-192.

Lawrence W. Barsalou and Katja Wiemer-Hastings.
2005. Situating abstract concepts. In D. Pecher and
R. Zwaan, editors, Grounding cognition: The role
of perception and action in memory, language, and
thought, pages 129—-163.

Shane Bergsma and Benjamin van Durme. 2011.
Learning bilingual lexicons using the visual similar-
ity of labeled web images. In IJCAI, pages 1764—
1769.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni.
2014. Multimodal distributional semantics. Journal
of Artiifical Intelligence Research, 49:1-47.

Sarath A.P. Chandar, Stanislas Lauly, Hugo Larochelle,
Mitesh M. Khapra, Balaraman Ravindran, Vikas C.
Raykar, and Amrita Saha. 2014. An autoencoder
approach to learning bilingual word representations.
In NIPS, pages 1853-1861.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Fei-Fei Li. 2009. ImageNet: A large-scale
hierarchical image database. In CVPR, pages 248—
255.

Thomas Deselaers and Vittorio Ferrari. 2011. Vi-
sual and semantic similarity in ImageNet. In CVPR,
pages 1777-1784.

Georgiana Dinu, Angeliki Lazaridou, and Marco Ba-
roni. 2015. Improving zero-shot learning by miti-
gating the hubness problem. In ICLR Workshop Pa-
pers.

D. Elliott, S. Frank, K. Sima’an, and L. Specia. 2016.
Multi30K: Multilingual English-German Image De-
scriptions. CoRR, abs/1605.00459.

Manaal Faruqui and Chris Dyer. 2014. Improving
vector space word representations using multilingual
correlation. In EACL, pages 462—471.

Andrea Frome, Gregory S. Corrado, Jonathon Shlens,
Samy Bengio, Jeffrey Dean, Marc’ Aurelio Ranzato,
and Tomas Mikolov. 2013. Devise: A deep visual-
semantic embedding model. In NIPS, pages 2121—
2129.

Eric Gaussier, Jean-Michel Renders, Irina Matveeva,
Cyril Goutte, and Hervé Déjean. 2004. A geometric
view on bilingual lexicon extraction from compara-
ble corpora. In ACL, pages 526-533.

Stephan Gouws, Yoshua Bengio, and Greg Corrado.
2015. BilBOWA: Fast bilingual distributed repre-
sentations without word alignments. In ICML, pages
748-756.

193

Karl Moritz Hermann and Phil Blunsom. 2014. Multi-
lingual models for compositional distributed seman-
tics. In ACL, pages 58-68.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross B. Girshick, Sergio
Guadarrama, and Trevor Darrell. 2014. Caffe: Con-
volutional architecture for fast feature embedding.
In ACM Multimedia, pages 675-678.

Douwe Kiela and Léon Bottou. 2014. Learning image
embeddings using convolutional neural networks for
improved multi-modal semantics. In EMNLP, pages
36-45.

Douwe Kiela, Felix Hill, Anna Korhonen, and Stephen
Clark. 2014. Improving multi-modal representa-
tions using image dispersion: Why less is sometimes
more. In ACL, pages 835-841.

Douwe Kiela, Ivan Vuli¢, and Stephen Clark. 2015.
Visual bilingual lexicon induction with transferred
ConvNet features. In EMNLP, pages 148—158.

Adam Kilgarriff. 1997. Putting frequencies in the
dictionary. International Journal of Lexicography,
10(2):135-155.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. 2012. ImageNet classification with deep con-
volutional neural networks. In NIPS, pages 1106—
1114.

George Lakoff and Mark Johnson. 1999. Philosophy
in the flesh: The embodied mind and its challenge to
Western thought.

Angeliki Lazaridou, Georgiana Dinu, and Marco Ba-
roni. 2015a. Hubness and pollution: Delving into
cross-space mapping for zero-shot learning. In ACL,
pages 270-280.

Angeliki Lazaridou, Nghia The Pham, and Marco Ba-
roni. 2015b. Combining language and vision with
a multimodal skip-gram model. In NAACL-HLT,
pages 153-163.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Bilingual word representations with
monolingual quality in mind. In Proceedings of the
1st Workshop on Vector Space Modeling for Natural
Language Processing, pages 151-159.

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. 2013.
Exploiting similarities among languages for ma-
chine translation. CoRR, abs/1309.4168.

Jose Costa Pereira, Emanuele Coviello, Gabriel Doyle,
Nikhil Rasiwasia, Gert R. G. Lanckriet, Roger Levy,
and Nuno Vasconcelos. 2014. On the role of corre-
lation and abstraction in cross-modal multimedia re-
trieval. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 36(3):521-535.



Janarathanan Rajendran, Mitesh M. Kapra, Sarath
Chandar, and Balaraman Ravindran. 2016. Bridge
correlational neural networks for multilingual multi-
modal representation learning. In NAACL.

Pushpendre Rastogi, Benjamin Van Durme, and Raman
Arora. 2015. Multiview LSA: Representation learn-
ing via generalized CCA. In NAACL, pages 556—
566.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, An-
drej Karpathy, Aditya Khosla, Michael S. Bernstein,
Alexander C. Berg, and Fei-Fei Li. 2015. ImageNet
large scale visual recognition challenge. Interna-
tional Journal of Computer Vision, 115(3):211-252.

Carina Silberer and Mirella Lapata. 2014. Learn-
ing grounded meaning representations with autoen-
coders. In ACL, pages 721-732.

Hubert Soyer, Pontus Stenetorp, and Akiko Aizawa.
2015. Leveraging monolingual data for crosslingual
compositional word representations. In /CLR.

Jorg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In LREC, pages 2214-2218.

Ivan Vuli¢ and Marie-Francine Moens. 2013. A study
on bootstrapping bilingual vector spaces from non-
parallel data (and nothing else). In EMNLP, pages
1613-1624.

Ivan Vuli¢ and Marie-Francine Moens. 2015. Mono-
lingual and cross-lingual information retrieval mod-
els based on (bilingual) word embeddings. In SI-
GIR, pages 363-372.

Ivan Vuli¢ and Marie-Francine Moens. 2016.
Bilingual distributed word representations from
document-aligned comparable data. Journal of Arti-
ficial Intelligence Research, 55:953-994.

Weiran Wang, Raman Arora, Karen Livescu, and
Jeff A. Bilmes. 2015. On deep multi-view repre-
sentation learning. In /ICML, pages 1083-1092.

194



