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Abstract

We release the Simple Paraphrase
Database, a subset of of the Paraphrase
Database (PPDB) adapted for the task
of text simplification. We train a super-
vised model to associate simplification
scores with each phrase pair, producing
rankings competitive with state-of-the-
art lexical simplification models. Our
new simplification database contains
4.5 million paraphrase rules, making it
the largest available resource for lexical
simplification.

1 Motivation

Language is complex, and the process of reading
and understanding language is difficult for many
groups of people. The goal of text simplification
is to rewrite text in order to make it easier to un-
derstand, for example, by children (De Belder and
Moens, 2010), language learners (Petersen and
Ostendorf, 2007), people with disabilities (Rello
et al., 2013; Evans et al., 2014), and even by
machines (Siddharthan et al., 2004). Automatic
text simplification (Napoles and Dredze, 2010;
Wubben et al., 2012; Xu et al., 2016) has the po-
tential to dramatically increase access to informa-
tion by making written documents available at all
reading levels.

Full text simplification involves many steps,
including grammatical restructuring and summa-
rization (Feng, 2008). One of the most basic
subtasks is lexical simplification (Specia et al.,
2012)– replacing complicated words and phrases
with simpler paraphrases. While there is active re-
search in the area of lexical simplification (Coster
and Kauchak, 2011a; Glavaš and Štajner, 2015;
Paetzold, 2015), existing models have been by-
and-large limited to single words. Often, how-

medical practitioner → doctor
legislative texts → laws
hypertension → high blood pressure
prevalent → very common
significant quantity → a lot
impact negatively → be bad

Table 1: In lexical simplification, it is often necessary to re-
place single words with phrases or phrases with single words.
The above are examples of such lexical simplifications cap-
tured by the Simple PPDB resource.

ever, it is preferable, or even necessary to para-
phrase a single complex word with multiple sim-
pler words, or to paraphrase multiple words with a
single word. For example, it is difficult to imagine
a simple, single-word paraphrase of hypertension,
but the three-word phrase high blood pressure is a
very good simplification (Table 1). Such phrasal
simplifications are overlooked by current lexical
simplification models, and thus are often unavail-
able to the end-to-end text simplification systems
that require them.

Recent research in data-driven paraphrasing has
produced enormous resources containing millions
of meaning-equivalent phrases (Ganitkevitch et
al., 2013). Such resources capture a wide range of
language variation, including the types of lexical
and phrasal simplifications just described. In this
work, we apply state-of-the-art machine learned
models for lexical simplification in order to iden-
tify phrase pairs from the Paraphrase Database
(PPDB) applicable to the task of text simplifica-
tion. We introduce Simple PPDB,1 a subset of the
Paraphrase Database containing 4.5 million sim-
plifying paraphrase rules. The large scale of Sim-
ple PPDB will support research into increasingly
advanced methods for text simplification.

1http://www.seas.upenn.edu/˜nlp/
resources/simple-ppdb.tgz
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2 Identifying Simplification Rules

2.1 Paraphrase Rules
The Paraphrase Database (PPDB) is currently
the largest available collection of paraphrases.
Each paraphrase rule in the database has an
automatically-assigned quality score between 1
and 5 (Pavlick et al., 2015). In this work, we use
the PPDB-TLDR2 dataset, which contains 14 mil-
lion high-scoring lexical and phrasal paraphrases,
and is intended to give a generally good tradeoff
between precision and recall. To preprocess the
data, we lemmatize all of the phrases, and remove
rules which differ only by morphology, punctu-
ation, or stop words, or which involve phrases
longer than 3 words. The resulting list contains
7.5 million paraphrase rules covering 625K unique
lemmatized words and phrases.

2.2 Lexical Simplification Model
Our goal is to build a model which can accurately
identify paraphrase rules that both 1) simplify the
input phrase and 2) preserve its meaning. That
is, we want to avoid a model which favors “sim-
ple” words (e.g. the, and) even when they capture
none of the meaning of the input phrase. We there-
fore train our model to make a three-way distinc-
tion between rules which simplify the input, rules
which make the input less simple, and rules which
generate bad paraphrases.

Data. We collect our training data in two phases.
First, we sample 1,000 phrases from the vocab-
ulary of the PPDB. We limit ourselves to words
which also appear at least once in the Newsela
corpus for text simplifcation (Xu et al., 2015),
in order to ensure that we focus our model on
the types of words for which the final resource is
most likely to be applied. For each of these 1,000
words/phrases, we sample up to 10 candidate para-
phrases from PPDB, stratified evenly across para-
phrase quality scores. We ask workers on Ama-
zon Mechanical Turk to rate each of the chosen
paraphrase rules on a scale from 1 to 5 to indi-
cate how well the paraphrase preserves the mean-
ing of the original phrase. We use the same an-
notation design used in Pavlick et al. (2015). We
have 5 workers judge each pair, omitting workers
who do not provide correct answers on the em-
bedded gold-standard pairs which we draw from
WordNet. For 62% of the paraphrase rules we had

2http://paraphrase.org/#/download

scored, the average human rating falls below 3, in-
dicating that the meaning of the paraphrase differs
substantially from that of the input. We assign all
of these rules to the “bad paraphrase” class.

We take the remaining 3,758 meaning-
preserving paraphrase rules (scored ≥3 in the
above annotation task) and feed them into a
second annotation task, in which we identify
rules that simplify the input. We use the same
annotation interface as in Pavlick and Nenkova
(2015), which asks workers to choose which of
the two phrases is simpler, or to indicate that
there is no difference in complexity. We collect 7
judgements per pair and take the majority label,
discarding pairs for which the majority opinion
was that there was no difference. We include each
rule in our training data twice, once as an instance
of a “simplifying” rule, and once in the reverse
direction as an instance of a “complicating” rule.

In the end, our training dataset contains 11,829
pairs, with the majority class being “bad para-
phrase” (47%), and the remaining split evenly
between “simplifying” and “complicating” para-
phrase rules (26% each).

Features. We use a variety of features that have
been shown in prior work to give good signal
about phrases’ relative complexity. The fea-
tures we include are as follows: phrase length
in words and in characters, frequency according
to the Google NGram corpus (Brants and Franz,
2006), number of syllables, the relative frequency
of usage in Simple Wikipedia compared to normal
Wikipedia (Pavlick and Nenkova, 2015), charac-
ter unigrams and bigrams, POS tags, and the aver-
aged Word2Vec word embeddings for the words in
the phrase (Mikolov et al., 2013). For each phrase
pair 〈e1, e2〉, for each feature f , we include f(e1),
f(e2) and f(e1)−f(e2).3 We also include the co-
sine similarity of the averaged word embeddings
and the PPDB paraphrase quality score as features.

We train a multi-class logistic regression
model4 to predict if the application of a paraphrase
rule will result in 1) simpler output, 2) more com-
plex output, or 3) non-sense output.

Performance. Table 2 shows the performance of
the model on cross-validation, compared to several
baselines. The full model achieves 60% accuracy,

3We do not compute the difference f(e1) − f(e2) for
sparse features, i.e. character ngrams and POS tags.

4http://scikit-learn.org/
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Acc Prec.
Random 47.1% 0.0%
Simple/Regular Wiki. Ratio 49.1% 47.6%
Length in Characters 51.4% 47.3%
Google Ngram Frequency 51.4% 44.2%
Number of Syllables 51.5% 45.3%
Supervised Model, W2V 54.7% 46.3%
Supervised Model, Full 60.4% 52.9%

Table 2: Accuracy on 10-fold cross-validation, and precision
for identifying simplifying rules. Folds are constructed so
that train and test vocabularies are disjoint.

5 points higher than the strongest baseline, a su-
pervised model which uses only word embeddings
as features.

2.3 Simple PPDB

We run the trained model described above over
all 7.5 million paraphrase rules. From the pre-
dictions, we construct Simple PPDB: a list of 4.5
million simplifying paraphrase rules. A rule in
Simple PPDB is represented as a triple, consist-
ing of a syntactic category, and input phrase, and
a simplified output phrase. Each rule is associated
with both a paraphrase quality score from 1 to 5
(taken from PPDB 2.0), and simplification con-
fidence score from 0 to 1.0 (our classifier’s con-
fidence in the prediction that the rule belongs to
the “simplifying” class). Note that ranking via
the confidence scores of a classification model has
not, to our knowledge, been explored in previous
work on lexical simplification. The remainder of
this paper evaluates the quality of the simplifica-
tion ranking. For an evaluation of the paraphrase
quality ranking, see Pavlick et al. (2015). Table 3
shows examples of some of the top ranked para-
phrases according to Simple PPDB’s simplifica-
tion score for several input phrases.

3 Evaluation

To evaluate Simple PPDB, we apply it in a set-
ting intended to emulate the way it is likely to be
used in practice. We use the Newsela Simplifica-
tion Dataset (Xu et al., 2015), a corpus of manu-
ally simplified news articles. This corpus is cur-
rently the cleanest available simplification dataset
and is likely to be used to train and/or evaluate the
simplification systems that we envision benefitting
most from Simple PPDB.

We draw a sample of 100 unique word types
(“targets”) from the corpus for which Simple

PPDB has at least one candidate simplification.
For each target, we take Simple PPDB’s full list
of simplification rules which are of high quality
according to the PPDB 2.0 paraphrase score5 and
which match the syntactic category of the target.
On average, Simple PPDB proposes 8.8 such can-
didate simplifications per target.

Comparison to existing methods. Our base-
lines include three existing methods for gener-
ating lists of candidates that were proposed in
prior work. The methods we test for generating
lists of candidate paraphrases for a given target
are: the WordNetGenerator, which pulls syn-
onyms from WordNet (Devlin and Tait, 1998;
Carroll et al., 1999), the KauchakGenerator,
which generates candidates based on automatic
alignments between Simple Wikipedia and normal
Wikipedia (Coster and Kauchak, 2011a), and the
GlavasGenerator, which generates candidates
from nearby phrases in vector space (Glavaš and
Štajner, 2015) (we use the pre-trained Word2Vec
VSM (Mikolov et al., 2013)).

For each generated list, we follow Horn et al.
(2014)’s supervised SVM Rank approach to rank
the candidates for simplicity. We reimplement the
main features of their model: namely, word fre-
quencies according to the Google NGrams cor-
pus (Brants and Franz, 2006) and the Simple
Wikipedia corpus, and the alignment probabili-
ties according to automatic word alignments be-
tween Wikipedia and Simple Wikipedia sentences
(Coster and Kauchak, 2011b). We omit the lan-
guage modeling features since our evaluation does
not consider the context in which the substitution
is to be applied.

All of these methods (the three generation meth-
ods and the ranker) are implemented as part of the
LEXenstein toolkit (Paetzold and Specia, 2015).
We use the LEXenstein implementations for the
results reported here, using off-the-shelf configu-
rations and treating each method as a black box.

Setup. We use each of the generate-and-rank
methods to produce a ranked list of simplification
candidates for each of the 100 targets drawn from
the Newsela corpus. When a generation method
fails to produce any candidates for a given tar-
get, we simply ignore that target for that partic-
ular method. This is to avoid giving Simple PPDB

5Heuristically, we define “high quality” as≥3.5 for words
and ≥4 for phrases.
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keenly omit employment opportunity remedied
most strongly leave out a new job set right
deeply delete it opportunity be fixed
strongly be removed business opportunity be corrected
eagerly forget about it the job to be resolved
very be ignored labour be solved

Table 3: Examples of top-ranked simplifications proposed by Simple PPDB for several input words. Often, the best simplifi-
cation for a single word is a multiword phrase, or vice-versa. These many-to-one mappings are overlooked when systems use
only length or frequency as a proxy for simplicity.

an unfair advantage, since, by construction, PPDB
will have full coverage of our list of 100 targets. In
the end, the GlavasGenerator is evaluated over 95,
the WordNetGenerator over 82, and the Kauchak-
Generator over 48. The results in Table 4 do not
change significantly if we restrict all systems to
the 48 targets which the KauchakGenerator is ca-
pable of handling. Since the GlavasGenerator is
capable of producing an arbitrary number of can-
didates for each target, we limit the length of each
of its candidate lists to be equal to the number
of candidates produced by Simple PPDB for that
same target.

Human judgments. For each of the proposed
rules from all four systems, we collect human
judgements on Amazon Mechanical Turk, using
the same annotation interface as before. That is,
we ask 7 workers to view each pair and indicate
which of the two phrases is simpler, or to indicate
that there is no difference. We take the majority la-
bel to be the true label for each rule. Workers show
moderate agreement on the 3-way task (κ = 0.4
± 0.03), with 14% of pairs receiving unanimous
agreement and 37% receiving the same label from
6 out of 7 annotators. We note that the κ metric
is likely a lower bound, as it punishes low agree-
ment on pairs for which there is little difference in
complexity, and thus the “correct” answer is not
clear (e.g. for the pair 〈matter, subject〉, 3 annota-
tors say that matter is simpler, 2 say that subject is
simpler, and 2 say there is no difference).

Results. Table 4 compares the different meth-
ods in terms of how well they rank simplifying
rules above non-simplifying rules. Simple PPDB’s
ranking of the relative simplicity achieves an av-
eraged precision of 0.72 (0.77 P@1), compared
to 0.70 (0.69 P@1) achieved by the Horn et al.
(2014) system– i.e. the KauchakGenerator+SVM
Ranker. We hypothesize that the performance
difference between these two ranking systems is

Avg. Prec. P@1
Glavas+SVR 0.21 0.13
Wordnet+SVR 0.53 0.50
Kauchak+SVR 0.70 0.69
Simple PPDB 0.72 0.77

Table 4: Precision of relative simplification rankings of three
existing lexical simplification methods compared to the Sim-
ple PPDB resource in terms of Average Precision and P@1
(both range from 0 to 1 and higher is better). All of the ex-
isting methods were evaluated using the implementations as
provided in the LEXenstein toolkit.

likely due to a combination of the additional fea-
tures applied in Simple PPDB’s model (e.g. word
embeddings) and the difference in training data
(Simple PPDB’s model was trained on 11K para-
phrase pairs with trinary labels, while the Horn et
al. (2014) model was trained on 500 words, each
with a ranked list of paraphrases). Table 5 pro-
vides examples of the top-ranked simplification
candidates proposed by each of the methods de-
scribed.

alarm
Glavas enrage, perturb, stun
WordNet horrify, dismay, alert, appall, appal
Kauchak pure, worry
PPDB worry, concern, alert

genuine
Glavas credible, sort, feign, phoney, good na-

turedness, sincere, sincerely, insincere,
bonafide

WordNet real, actual, unfeigned, literal, echt, true
Kauchak thermal
PPDB true, real, actual, honest, sincere

Table 5: Examples of candidate simplifications proposed by
Simple PPDB and by three other generate-and-rank methods.
Bold words were rated by humans to be simpler than the tar-
get word. Note that these candidates are judged on simplicity,
not on their goodness as paraphrases.

In addition, Simple PPDB offers the largest
coverage (Table 6). It has a total vocabulary of
624K unique words and phrases, and provides
the largest number of potential simplifications for

146



Avg. PPs Total
per Input Vocab.

Glavas+SVR ∞ ∞
Kauchak+SVR 4.4 127K
Wordnet+SVR 6.7 155K
Simple PPDB 8.8 624K

Table 6: Overall coverage of three existing lexical simplifica-
tion methods compared to the Simple PPDB resource. Glavas
is marked as∞ since it generates candidates based on near-
ness in vector space, and in theory could generate as many
words/phrases as are in the vocabulary of the vector space.

each target– for the 100 targets drawn from the
Newsela corpus, PPDB provided an average of 8.8
candidates per target. The next best generator, the
WordNet-based system, produces only 6.7 candi-
dates per target on average, and has a total vocab-
ulary of only 155K words.

4 Conclusion

We have described Simple PPDB, a subset of the
Paraphrase Database adapted for the task of text
simplification. Simple PPDB is built by apply-
ing state-of-the-art machine learned models for
lexical simplification to the largest available re-
source of lexical and phrasal paraphrases, result-
ing in a web-scale resource capable of supporting
research in data-driven methods for text simplifi-
cation. We have shown that Simple PPDB offers
substantially increased coverage of both words
and multiword phrases, while maintaining high
quality compared to existing methods for lexical
simplification. Simple PPDB, along with the hu-
man judgements collected as part of its creation, is
freely available with the publication of this paper.6
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