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Abstract

To create accessible content for deaf users,
we investigate automatically synthesizing
animations of American Sign Language
(ASL), including grammatically important
facial expressions and head movements.
Based on recordings of humans perform-
ing various types of syntactic face and
head movements (which include idiosyn-
cratic variation), we evaluate the efficacy
of Continuous Profile Models (CPMs) at
identifying an essential “latent trace” of
the performance, for use in producing
ASL animations. A metric-based evalua-
tion and a study with deaf users indicated
that this approach was more effective than
a prior method for producing animations.

1 Introduction and Motivation

While there is much written content online, many
people who are deaf have difficulty reading text
or may prefer sign language. For example, in the
U.S., standardized testing indicates that a major-
ity of deaf high school graduates (age 18+) have
a fourth-grade reading level or below (Traxler,
2000) (U.S. fourth-grade students are typically age
9). While it is possible to create video-recordings
of a human performing American Sign Language
(ASL) for use on websites, updating such material
is expensive (i.e., re-recording). Thus, researchers
investigate technology to automate the synthesis
of animations of a signing virtual human, to make
it more cost-effective for organizations to provide
sign language content online that is easily updated
and maintained. Animations can be automatically
synthesized from a symbolic specification of the
message authored by a human or perhaps by ma-
chine translation, e.g. (Ebling and Glauert, 2013;
Filhol et al., 2013; Stein et al., 2012).
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1.1 ASL Syntactic Facial Expressions

Facial expressions are essential in ASL, conveying
emotion, semantic variations, and syntactic struc-
ture. Prior research has verified that ASL ani-
mations with missing or poor facial expressions
are significantly less understandable for deaf users
(Kacorri et al., 2014; Kacorri et al., 2013b; Ka-
corri et al., 2013a). While artists can produce indi-
vidual animations with beautiful expressions, such
work is time-consuming. For efficiently maintain-
able online content, we need automatic synthesis
of ASL from a sparse script representing the lexi-
cal items and basic elements of the sentence.

Specifically, we are studying how to model and
generate ASL animations that include syntactic
facial expressions, conveying grammatical infor-
mation during entire phrases and therefore con-
strained by the timing of the manual signs in a
phrase (Baker-Shenk, 1983). Generally speaking,
in ASL, upper face movements (examined in this
paper) convey syntactic information across entire
phrases, with the mouth movements conveying
lexical or adverbial information.

The meaning of a sequence of signs performed
with the hands depends on the co-occuring fa-
cial expression. (While we use the term ‘“fa-
cial expressions,” these phenomena also include
movements of the head.) For instance, the ASL
sentence “BOB LIKE CHOCOLATE” (English:
“Bob likes chocolate.”) becomes a yes/no ques-
tion (English: “Does Bob like chocolate?””), with
the addition of a YesNo facial expression during
the sentence. The addition of a Negative facial ex-
pression during the verb phrase “LIKE CHOCO-
LATE” changes the meaning of the sentence to
“Bob doesn’t like chocolate.” (The lexical item
NOT may optionally be used.) For interroga-
tive questions, a WhQuestion facial expression
must occur during the sentence, e.g., “BOB LIKE
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WHAT.” The five types of ASL facial expressions
investigated in this paper include:

e YesNo: The signer raises his eyebrows while
tilting the head forward to indicate that the
sentence is a polar question.

e WhQuestion: The signer furrows his eye-
brows and tilts his head forward during a sen-
tence to indicate an interrogative question,
typically with a “WH” word such as what,
who, where, when, how, which, etc.

e Rhetorical: The signer raises his eyebrows
and tilts his head backward and to the side
to indicate a rhetorical question.

e Topic: The signer raises his eyebrows and
tilts his head backward during a clause-initial
phrase that should be interpreted as a topic.

e Negative: The signer shakes his head left
and right during the verb phrase to indicate
negated meaning, often with the sign NOT.

1.2 Prior Work

A survey of recent work of several researchers on
producing animations of sign language with fa-
cial expressions appears in (Kacorri, 2015). There
is recent interest in data-driven approaches using
facial motion-capture of human performances to
generate sign language animations: For example,
(Schmidt et al., 2013) used clustering techniques
to select facial expressions that co-occur with indi-
vidual lexical items, and (Gibet et al., 2011) stud-
ied how to map facial motion-capture data to ani-
mation controls.

In the most closely related prior work, we had
investigated how to generate a face animation
based on a set of video recordings of a human
signer performing facial expressions (Kacorri et
al., 2016), with head and face movement data au-
tomatically extracted from the video, and with in-
dividual recordings labeled as each of the five syn-
tactic types, as listed in section 1.1. We wanted to
identify a single exemplar recording in our dataset,
for each of the syntactic types, that could be used
as the basis for generating the movements of vir-
tual human character. (In a collection of record-
ings of face and head movement, there will nat-
urally be non-essential individual variation in the
movements; thus, it may be desirable to select a
recording that is maximally stereotypical of a set
of recordings.) To do so, we made use of a variant
of Dynamic Time Warping (DTW) as a distance
metric to select the recording with minimal pair-

wise normalized DTW distance from all of the ex-
amples of each syntactic type. We had used this
“centroid” recording as the basis for producing a
novel animation of the face and head movements
for a sign language sentence.

2 Method

In this paper, we present a new methodology for
generating face and head movements for sign lan-
guage animations, given a set of human recordings
of various syntactic types of facial expressions.
Whereas we had previously selected a single ex-
emplar recording of a human performance to serve
as a basis for producing an animation (Kacorri et
al., 2016), in this work, we investigate how to con-
struct a model that generalizes across the entire set
of recordings, to produce an “average” of the face
and head movements, which can serve as a basis
for generating an animation. To enable compar-
ison of our new methodology to our prior tech-
nique, we make use of an identical training dataset
as in (Kacorri et al., 2016) and an identical ani-
mation rendering pipeline, described in (Huener-
fauth and Kacorri, 2015a). Briefly, the animation
pipeline accepts a script of the hand location, hand
orientation, and hand-shape information to pose
and move the arms of the character over time, and
it also accepts a file containing a stream of face
movement information in MPEG4 Facial Anima-
tion Parameters format (ISO/IEC, 1999) to pro-
duce a virtual human animation.

2.1 Dataset and Feature Extraction

ASL is a low-resource language, and it does not
have a writing system in common use. Therefore,
ASL corpora are generally small in size and in
limited supply; they are usually produced through
manual annotation of video recordings. Thus,
researchers generally work with relatively small
datasets. In this work, we make use of two datasets
that consist of video recordings of humans per-
forming ASL with annotation labeling the times in
the video when each of the five types of syntactic
facial expressions listed in section 1.1 occur.

The training dataset used in this study was de-
scribed in (Kacorri et al., 2016), and consists of
199 examples of facial expressions performed by
a female signer recorded at Boston University.
While the Training dataset can naturally be par-
titioned into five subsets, based on each of the five
syntactic facial expression types, because adjacent
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Type Subgroup “_A” Subgroup “B”
(Num. of Videos) (Num. of Videos)

YesNo Immediately pre- Not immediately
ceded by a facial preceded by an
expression with  eyebrow-raising
raised  eyebrows, expression. (10)
e.g. Topic. (9)

WhQuestion | Performed during Performed during
a single word, a phrase consist-
namely the wh- ing of multiple
word (e.g., what, words. (8)
where, when). (4)

Rhetorical Performed during Performed during
a single word, a phrase consist-
namely the wh- ing of multiple
word (e.g., what, words. (8)
where, when). (2)

Topic Performed during a  Performed during
single word. (29) a phrase consist-

ing of multiple
words. (15)

Negative Immediately pre- Not immediately
ceded by a facial preceded by
expression with  eyebrow-raising
raised  eyebrows, expression. (25)
e.g. Topic. (16)

Table 1: Ten subgroups of the training dataset.

facial expressions or phrase durations may affect
the performance of ASL facial expressions, in this
work, we sub-divide the dataset further, into ten
sub-groups, as summarized in Table 1.

The “gold-standard” dataset used in this study
was shared with the research community by
(Huenerfauth and Kacorri, 2014); we use 10 ex-
amples of ASL facial expressions (one for each
sub-group listed in Table 1) performed by a male
signer who was recorded at the Linguistic and As-
sistive Technologies laboratory.

To extract face and head movement information
from the video, a face-tracker (Visage, 2016) was
used to produce a set of MPEG4 facial animation
parameters for each frame of video: These values
represent face-landmark or head movements of the
human appearing in the video, including 14 fea-
tures used in this study: head_x, head_y, head_z,
head_pitch, head_yaw, head_roll, raise_l_i_brow,
raise_r_i_brow, raise_l_.m_brow, raise_r_m_brow,
raise_l_o_brow, raise_r_o_brow, squeeze_l_brow,
squeeze_r-brow. The first six values represent
head location and orientation. The next six values
represent vertical movement of the outer (“o0.”
middle (“m_”), or inner (“i.”) portion of the right
(“r.”) or left (“1.”) eyebrows. The final values rep-
resent horizontal movement of the eyebrows.

2.2 Continuous Profile Models (CPM)

Continuous Profile Model (CPM) aligns a set
of related time series data while accounting for
changes in amplitude. This model has been
previously evaluated on speech signals and on
other biological time-series data (Listgarten et al.,
2004). With the assumption that a noisy, stochas-
tic process generates the observed time series data,
the approach automatically infers the underlying
noiseless representation of the data, the so-called
“latent trace.” Figure 6 (on the last page of this
paper) shows an example of multiple time series
in unaligned and aligned space, with CPM identi-
fying the the latent trace.

Given a set K of observed time series 2% =
(z, 25, ..., 2%;), CPM assumes there is a latent
trace 7 = (z1, 22, ..., zp7). While not a require-
ment of the model, the length of the time se-
ries data is assumed to be the same (/V) and the
length of the latent trace used in practice is M =
(24¢) N, where an ideal M would be large relative
to IV to allow precise mapping between observed
data and an underlying point on the latent trace.
Higher temporal resolution of the latent trace also
accommodates flexible alignments by allowing an
observational series to advance along the latent
trace in small or large jumps (Listgarten, 2007).

Continuous Profile Models (CPMs) build on
Hidden Markov Models (HMMs) (Poritz, 1988)
and share similarities with Profile HMMs which
augment HMMs by two constrained-transition
states: ‘Insert’ and ‘Delete’ (emitting no observa-
tions). Similar to the Profile HMM, the CPM has
strict left-to-right transition rules, constrained to
only move forward along a sequence. Figure 1 in-
cludes a visualization we created, which illustrates
the graphical model of a CPM.

2.3 Obtaining the CPM Latent Trace

We applied the CPM model to time align and co-
herently integrate time series data from multiple
ASL facial expression performances of a partic-
ular type, e.g., Topic_A as listed in section 2.1,
with the goal of using the inferred ‘latent traces’
to drive ASL animations with facial expressions
of that type. This section describes our work to
train the CPM and to obtain the latent traces; im-
plementation details appear in Appendix A.

The input time-series data for each CPM model
is the face and head movement data extracted from
ASL videos of one of the facial expression types,
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Figure 1: Depiction of a CPM for series z*, with
hidden state variables wf underlying each obser-
vation z¥. The table illustrates the state-space:
time-state/scale-state pairs mapped to the hidden
variables, where time states belong to the integer
set (1...M) and scale states belong to an ordered
set, here with 7 evenly spaced scales in logarith-

mic space as in (Listgarten et al., 2004).

as shown in Table 2. For each dataset, all the train-
ing examples are stretched (resampled using cubic
interpolation) to meet the length of the longest ex-
ample in the set. The length of time series, IV,
corresponds to the duration in video frames of the
longest example in the data set. The recordings in
the training set have 14 dimensions, corresponding
to the 14 facial features listed in Section 2.1. As
discussed above, the latent trace has a time axis of
length M, which is approximately double the tem-
poral resolution of the original training examples.

CPM Models Training Data Latent Trace
#Ezamples X N x | M x #Features
#Features where M = (2 4 &) N
YesNo_A 9x51x14 105 x 14
YesNo_B 10x 78 x 14 160 x 14
WhQuestion A | 4x24x 14 50x 14
WhQuestion B | 8x41x 14 84 x 14
Rhetorical_A 2x16x 14 33x 14
Rhetorical B 8x55x 14 113x 14
Topic_ A 290x29x 14 60 x 14
Topic_B 15x45x 14 93x 14
Negative A 16 x 67 x 14 138 x 14
Negative_B 25x76x 14 156 x 14

Table 2: Training data and the obtained latent
traces for each of the CPM models on ASL facial
expression subcategories.

To demonstrate our experiments, Figure 6 il-
lustrates one of the subcategories, Rhetorical B.
(This figure appears at the end of the paper, due
to its large size.) We illustrate the training set,
before and after the alignment and amplitude nor-
malization with the CPM, and the obtained latent
trace for this subcategory. Figure 6a and Figure
6b illustrate each of the 8 training examples with a
subplot extending from [0, N] in the x-axis, which
is the observed time axis in video frames. Each
of the 14 plots represents one of the head or face
features. Figure 6c illustrates the learned latent
trace with a subplot extending from [0, M] in the
x-axis, which is the latent time axis. While the
training set for this subcategory is very small and
has high variability, upon visual inspection of Fig-
ure 6, we can observe that the learned latent trace
shares similarities with most of the time series in
the training set without being identical to any of
them.

We expect that during the Rhetorical facial ex-
pression (Section 2.1), the signer’s eyebrows will
rise and the head will be tilted back and to the side.
In the latent trace, the inner, middle, and outer por-
tions of the left eyebrow rise (Figure 6c¢, plots 7, 9,
11), and so do the inner, middle, and outer portions
of the right eyebrow (Figure 6c¢, plots 8, 10, 12).
Note how the height of the lines in those plots rise,
which indicates increased eyebrow height. For the
Rhetorical facial expression, we would also ex-
pect symmetry in the horizontal displacement of
the eyebrows, and we see such mirroring in the
latent-trace: In (Figure 6c¢, plots 13-14), note the
tendency for the line in plot 13 (left eyebrow) to
increase in height as the line in plot 14 (right eye-
brow) decreases in height, and vice versa.

3 Evaluation

This section presents two forms of evaluation of
the CPM latent trace model for ASL facial expres-
sion synthesis. In Section 3.1, the CPM model will
be compared to a “gold-standard” performance of
each sub-category of ASL facial expression using
a distance-metric-based evaluation, and in Section
3.2, the results of a user-study will be presented, in
which ASL signers evaluated animations of ASL
based upon the CPM model.

To provide a basis of comparison, in this sec-
tion, we evaluate the CPM approach in compari-
son to an alternative approach that we call ‘Cen-
troid’, which we described in prior work in (Ka-
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corri et al., 2016), where we used a multivariate
DTW to select one of the time series in the train-
ing set as a representative performance of the fa-
cial expression. The centroid examples are actual
recordings of human ASL signers that are used
to drive an animation. Appendix A lists the co-
denames of the videos from the training dataset
selected as centroids and the codenames of the
videos used in the gold-standard dataset (Huener-
fauth and Kacorri, 2014).

3.1 Metric Evaluation

The gold-standard recordings of a male ASL
signer were described in Section 2.1. In addition
to the video recordings (which were processed to
extract face and head movement data), we have an-
notation of the timing of the facial expressions and
the sequence of signs performed on the hands. To
compare the quality of our CPM model and that
of the Centroid approach, we used each method
to produce a candidate sequence of face and head
movements for the sentence performed by the hu-
man in the gold-standard recording. Thus, the ex-
tracted facial expressions from the human record-
ing can serve as a gold standard for how the face
and head should move. In this section, we com-
pare: (a) the distance of the CPM latent trace
from the gold standard to (b) the distance of the
centroid form the gold standard. It is notable
that these gold-standard recordings were previ-
ously “unseen” during the creation of the CPM
or Centroid models, that is, they were not used in
the training data set during the creation of either
model.

Since there was variability in the length of the
latent trace, centroid, and gold-standard videos,
for a fairer comparison, we first resampled these
time series, using cubic interpolation, to match
the duration (in milliseconds) of the gold-standard
ASL sentence, and then we used multivariate
DTW to estimate their distance, following the
methodology of (Kacorri et al., 2016) and (Ka-
corri and Huenerfauth, 2015). In prior work (Ka-
corri and Huenerfauth, 2015), we had shown that
a scoring algorithm based on DTW had moderate
(yet significant) correlation with scores that partic-
ipants assigned to ASL animation with facial ex-
pressions.

Figure 2 shows an example of a DTW distance
scoring between the gold standard and each of the
latent trace and the centroid, for one face feature

o= Centroid
e~ Gold Standard

T T T
0 1000 2000 3000 0 1000 2000 3000 4000

Figure 2: DTW distances on the squeeze_l_brow
feature (left eyebrow horizontal movement), dur-
ing a Negative_A facial expression: (left) between
the CPM latent trace and gold standard and (right)
between the centroid and gold standard. The time-
line is given in milliseconds.

.
rgd

p

ance from Gold Standard

jormalized Dist

DTW N

W
category

Figure 3: Overall normalized DTW distances for
latent trace and centroid (left) and per each subcat-
egory of ASL facial expression (right).

(horizontal movement of the left eyebrow) during
a Negative_A facial expression. Given that the
centroid and the training data for the latent trace
are driven by recordings of a (female) signer and
the gold standard is a different (male) signer, there
are differences between these facial expressions
due to idiosyncratic aspects of individual signers.
Thus the metric evaluation in this section is chal-
lenging because it is an inter-signer evaluation.

Figure 3 illustrates the overall calculated DTW
distances, including a graph with the results bro-
ken down per subcategory of ASL facial expres-
sion. The results indicate that the CPM latent trace
is closer to the gold standard than the centroid is.
Note that the distance values are not zero since the
latent trace and the centroid are being compared
to a recording from a different signer on novel,
previously unseen, ASL sentences. The results
in these graphs suggest that the latent trace model
out-performed the centroid approach.
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Figure 4: Screenshots of YesNo_A stimuli of three
types: a) neutral, b) centroid, and c) latent trace.

3.2 User Evaluation

To further assess our ASL synthesis approach,
we conducted a user study where ASL signers
watched short animations of ASL sentences with
identical hand movements but differing in their
face, head, and torso movements. There were
three conditions in this between-subjects study:
a) animations with a static neutral face through-
out the animation (as a lower baseline), b) ani-
mations with facial expressions driven by the cen-
troid human recording, and c) animations with fa-
cial expressions driven by the CPM latent trace
based on multiple recordings of a human perform-
ing that type of facial expression. Figure 4 il-
lustrates screenshots of each stimulus type for a
YesNo_A facial expression. The specific sentences
used for this study were drawn from a standard
test set of stimuli released to the research commu-
nity by (Huenerfauth and Kacorri, 2014) for eval-
uating animations of sign language with facial ex-
pressions.

All three types of stimuli (neutral, centroid and
latent trace), shared identical animation-control
scripts specifying the hand and arm movements;
these scripts were hand-crafted by ASL signers in
a pose-by-pose manner. For the neutral anima-
tions, we did not specify any torso, head, nor face
movements; rather, we left them in their neutral
pose throughout the sentences. As for the cen-
troid and latent trace animations, we applied the
head and face movements (as specified by the cen-
troid model or by the latent trace model) only to
the portion of the animation where the facial ex-
pression of interest occurs, leaving the head and
face for the rest of the animation to a neutral pose.
For instance, during a stimulus that contains a Wh-
question, the face and head are animated only dur-
ing the Wh-question, but they are left in a neutral

pose for the rest of the stimulus (which may in-
clude other sentences). The period of time when
the facial expression occurred was time-aligned
with the subset of words (the sequence of signs
performed on the hands) for the appropriate syn-
tactic domain; the phrase-beginning and phrase-
ending was aligned with the performance of the
facial expression. Thus, the difference in appear-
ance between our animation stimuli was subtle:
The only portion of the animations that differed
between the three conditions (neutral, centroid,
and latent-trace) was the face and the head move-
ments during the span of time when the syntac-
tic facial expression should occur (e.g., during the
Wh-question).

We resampled the centroid and CPM time se-
ries, using cubic interpolation, to match the dura-
tion (in milliseconds) of the animation they would
be applied to. To convert the centroid and latent
trace time series into the input for the animation-
generation system, we used the MPEG4-features-
to-animation pipeline described in (Kacorri et al.,
2016). That platform is based upon the open-
source EMBR animation system for producing hu-
man animation (Heloir and Kipp, 2009); specif-
ically, the facial expressions were represented as
an EMBR PoseSequence with a pose defined ev-
ery 133 milliseconds.

In prior work (Huenerfauth and Kacorri,
2015b), we investigated key methodological con-
siderations in conducting a study to evaluate sign
language animations with deaf users, including
the use of appropriate baselines for comparison,
appropriate presentation of questions and instruc-
tions, demographic and technology experience
factors influencing acceptance of signing avatars,
and other factors that we have considered in the
design of this current study. Our recent work
(Kacorri et al., 2015) has established a set of de-
mographic and technology experience questions
which can be used to screen for the most critical
participants in a user study of ASL signers to eval-
uate animation. Specifically, we screened for par-
ticipants that identified themselves as “deaf/Deaf™
or “hard-of-hearing,” who had grown up using
ASL at home or had attended an ASL-based
school as a young child, such as a residential or
daytime school.

Deaf researchers (all fluent ASL signers) re-
cruited and collected data from participants, dur-
ing meetings conducted in ASL. Initial advertise-
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ments were sent to local email distribution lists
and Facebook groups. A total of 17 participants
met the above criteria, where 14 participants self-
identified as deaf/Deaf and 3 as hard-of-hearing.
Of our participants in the study, 10 had attended a
residential school for deaf students, and 7, a day-
time school for deaf students. 14 participants had
learned ASL prior to age 5, and the remaining 3
had been using ASL for over 7 years. There were
8 men and 9 women of ages 19-29 (average age
22.8). In prior work, we (Kacorri et al., 2015)
have advocated that participants in studies eval-
vating sign language animation complete a two
standardized surveys about their technology ex-
perience (MediaSharing and AnimationAttitude)
and that researchers report these values for partici-
pants, to enable comparison across studies. In our
study, participant scores for MediaSharing varied
between 3 and 6, with a mean score of 4.3, and
scores for AnimationAttitude varied from 2 to 6,
with a mean score of 3.8.

At the beginning of the study, participants
viewed a sample animation, to familiarize them
with the experiment and the questions they would
be asked about each animation. (This sample
used a different stimulus than the other ten anima-
tions shown in the study.) Next, they responded
to a set of questions that measured their subjec-
tive impression of each animation, using a 1-to-10
scalar response. Each question was conveyed us-
ing ASL through an onscreen video, and the fol-
lowing English question text was shown on the
questionnaire: (a) Good ASL grammar? (10=Per-
fect, 1=Bad); (b) Easy to understand? (10=Clear,
1=Confusing); (c) Natural? (10=Moves like per-
son, 1=Like robot). These questions have been
used in many prior experimental studies to evalu-
ate animations of ASL, e.g. (Kacorri and Huener-
fauth, 2015), and were shared with research com-
munity as a standard evaluation tool in (Huen-
erfauth and Kacorri, 2014). To calculate a sin-
gle score for each animation, the scalar response
scores for the three questions were averaged.

Figure 5 shows distributions of subjective
scores as boxplots with a 1.5 interquartile range
(IQR). For comparison, means are denoted with
a star and their values are labeled above each
boxplot. When comparing the subjective scores
that participants assigned to the animations in Fig-
ure 5, we found a significant difference (Kruskal-
Wallis test used since the data was not normally

Subjective Scores
433 504 446

* ok ¥
r (p<0.005) \f (p<0.05) )

Scores

Centroid Latent Trace Neutral

Figure 5: Subjective scores for centroid, latent
trace, and neutral animations.

distributed) between the latent trace and centroid
(p < 0.005) and between the latent trace and neu-
tral (p < 0.05).

In summary, our CPM modeling approach for
generating an animation out-performed an anima-
tion produced from an actual recording of a sin-
gle human performance (the “centroid” approach).
In prior methodological studies, we demonstrated
that it is valid to use either videos of humans or
animations (driven by a human performance) as
the baseline for comparison in a study of ASL an-
imation (Kacorri et al., 2013a). As suggested by
Figure 4, the differences in face and head move-
ments between the Centroid and CPM conditions
were subtle, yet fluent ASL signers rated the CPM
animations higher in this study.

4 Conclusion and Future Work

To facilitate the creation of ASL content that can
easily be updated or maintained, we have investi-
gated technologies for automating the synthesis of
ASL animations from a sparse representation of
the message. Specifically, this paper has focused
on the synthesis of syntactic ASL facial expres-
sions, which are essential to sentence meaning,
using a data-driven methodology in which record-
ings of human ASL signers are used as a basis for
generating face and head movements for anima-
tion. To avoid idiosyncratic aspects of a single
performance, we have modeled a facial expres-
sion based on the underlying trace of the move-
ment trained on multiple recordings of different
sentences where this type of facial expression oc-
curs. We obtain the latent trace with Continuous
Profile Model (CPM), a probabilistic generative
model that relies on Hidden Markov Models. We
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assessed our modeling approach through compar-
ison to an alternative centroid approach, where a
single performance was selected as a representa-
tive. Through both a metric evaluation and an
experimental user study, we found that the facial
expressions driven by our CPM models produce
high-quality facial expressions that are more simi-
lar to human performance of novel sentences.
While this work used the latent trace as the basis
for animation, in future work, we also plan to ex-
plore methods for sampling from the model to pro-
duce variations in face and head movement. In ad-
dition, to aid CPM convergence to a good local op-
timum, in future work we will investigate dimen-
sionality reduction approaches that are reversible
such as Principal Component Analysis (Pearson,
1901) and other pre-processing approaches similar
to (Listgarten, 2007), where the training data set is
coarsely pre-aligned and pre-scaled based on the
center of mass of the time series. In addition we
plan to further investigate how to fine-tune some
of the hyper parameters of the CPM such as spline
scaling, single global scaling factor, convergence
tolerance, and initialization of the latent trace with
a centroid. In subsequent work, we would like to
explore alternatives for enhancing CPMs by incor-
porating contextual features in the training data set
such as timing of hand movements, and preceding,
succeeding, and co-occurring facial expressions.
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A Appendix: Supplemental Material

In Section 2.3, we made use of a freely
available CPM implementation available from
http://www.cs.toronto.edu/~jenn/CPM/ in MAT-
LAB, Version 8.5.0.197613 (R2015a).

One parameter for regularizing the latent trace
(Listgarten, 2007) is a smoothing parameter (\),
with values being dataset-dependent. To select a
good A, we experimented with held-out data and
found that A = 4 and NumberO fIterations =
3 resulted in a latent trace curve that captures the
shape of the ASL features well. Other CPM pa-
rameters were:

e USE_SPLINFE = 0: if set to 1, uses spline

scaling rather than HMM scale states

e oneScaleOnly = 0: no HMM scale states

(only a single global scaling factor is applied
to each time series.)

o extraPercent(e) =0.05: slack on the length

of the latent trace M, where M = (24 ¢)N.

e [earnStateTransitions = 0: whether to

learn the HMM state-transition probabilities

e [earnGlobalScaleFactor = 1: learn single

global scale factor for each time series

Section 3.1 described how the centroids were
selected from among videos in the Boston Univer-
sity dataset (Neidle et al., 2014), and the gold stan-
dard videos were selected from among videos in a
different dataset (Huenerfauth and Kacorri, 2014).
Table 3 lists the code names of the selected videos,
using the nomenclature of each dataset.

Subcategory Centroid Codename Gold-Standard Codename
YesNo_A 2011-12-01.0037-cam2-05 Y4
YesNo_B 2011-12-01.0037-cam2-09 Y3
WhQuestion_A 2011-12-01-0038-cam2-05 w1
WhQuestion_B 2011-12-01-0038-cam2-07 w2
Rhetorical A 2011-12-01-0041-cam2-04 R3
Rhetorical B 2011-12-01.0041-cam2-02 R9
Topic-A 2012-01-27-0050-cam2-05 T4
Topic.B 2012-01-27-0051-cam2-09 T3
Negative_A 2012-01-27_0051-cam2-03 N2
Negative B 2012-01-27_0051-cam2-30 N5

Table 3: Codenames of videos selected as centoids
and gold standards for comparison in section 3.1.
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Figure 6: Example of CPM modeling for Rhetorical B: (a) training examples before CPM (each plot
shows one of the 14 face features over time, with 8 colored lines in each plot showing each of the 8
training examples), (b) after CPM time-alignment and rescaling, and (c) the final latent trace based upon

all 8 examples.
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