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Abstract

Distributional semantic models (DSMs)
are often evaluated on artificial simi-
larity datasets containing single words
or fully compositional phrases. We
present a large-scale multilingual eval-
uation of DSMs for predicting the de-
gree of semantic compositionality of nom-
inal compounds on 4 datasets for En-
glish and French. We build a total of
816 DSMs and perform 2,856 evaluations
using word2vec, GloVe, and PPMI-based
models. In addition to the DSMs, we com-
pare the impact of different parameters,
such as level of corpus preprocessing, con-
text window size and number of dimen-
sions. The results obtained have a high
correlation with human judgments, being
comparable to or outperforming the state
of the art for some datasets (Spearman’s
ρ=.82 for the Reddy dataset).

1 Introduction

Distributional semantic models (DSMs) use con-
text information to represent the meaning of lexi-
cal units as vectors. They normally focus on the
accurate semantic representation of single words.
It is based on single words that many optimiza-
tions for these models have been proposed (Lin,
1999; Erk and Padó, 2010; Baroni and Lenci,
2010). This is particularly true for word embed-
dings, that is, a type of DSM where distributional
vectors are obtained as a by-product of training a
neural network to learn a function between words
and their contexts (Mikolov et al., 2013a).

Simultaneously, there has been intensive re-
search on models to compose individual word vec-
tors in order to create representations for larger
units such as phrases, sentences and even whole

documents (Mitchell and Lapata, 2010; Mikolov
et al., 2013a). Larger units can often be assumed
to have their meanings derived from their parts ac-
cording to the language’s grammar, but this is not
always the case (Sag et al., 2002). Many multi-
word units are associated with idiomatic interpre-
tations, unrelated to the meaning of the component
words (e.g. silver bullet, eager beaver).

Precision-oriented NLP applications need to
be able to identify partly-compositional and id-
iomatic cases and ensure meaning preservation
during processing. Compositionality identifica-
tion is a first step towards complete semantic inter-
pretation in tasks such as machine translation (to
translate non-compositional compounds as a unit),
word sense disambiguation (to avoid assigning a
sense to parts of non-compositional compounds),
and semantic parsing (to identify complex predi-
cates and their arguments).

Even when larger units are explicitly repre-
sented in DSMs (McCarthy et al., 2003; Reddy
et al., 2011; Mikolov et al., 2013c; Ferret, 2014),
it is not clear whether the quality of these repre-
sentations is comparable to the representations of
single words. In particular, when building vectors
for larger units, their generally lower frequencies
in corpora (Kim and Baldwin, 2006) may com-
bine with morphosyntactic phenomena to increase
sparsity even further, often requiring non-trivial
preprocessing (lemmatization and word reorder-
ing) to conflate variants.

This paper presents a large-scale multilingual
evaluation of DSMs and their parameters for the
task of compositionality prediction of nominal
compounds in French and English. We exam-
ine parameters like the level of corpus prepro-
cessing, the size of the context window and the
number of dimensions for context representation.
Additionally, we compare standard DSMs based
on positive pointwise mutual information (PPMI)
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against widely used word embedding tools such as
word2vec, henceforth w2v (Mikolov et al., 2013c),
and GloVe (Pennington et al., 2014). We start with
a discussion of related work (§2) and the materials
and methods used (§3). We report on the evalua-
tions performed (§4) and finish with conclusions
and future work (§5).

2 Related Work

We define nominal compounds as conventional
noun phrases composed by two or more words,
such as science fiction (Nakov, 2013). In English,
they are often expressed as noun compounds but
their syntactic realization may vary for different
languages. For instance, one of the equivalent
forms in French involves a denominal adjective
used as modifier (e.g. cell death and the corre-
sponding mort cellulaire).1 In this paper, we focus
on 2-word nominal compounds involving modi-
fiers that are nouns (e.g. word embedding) or ad-
jectives (e.g. hard time).

Semantically, nominal compounds may dis-
play a wide range of idiomaticity, from composi-
tional cases like access road to idiomatic or non-
compositional cases like gravy train, whose mean-
ing is unrelated to its parts.2 Even when there is
a level of compositionality in the compound, the
contribution of each word may vary considerably,
independently from its status as a syntactic head
or modifier, as cash in cash cow versus tears in
crocodile tears. Indeed, various annotation scales
have been proposed as means to collect human
judgments about compositionality. Particularly for
nominal compounds, Reddy et al. (2011) used a
6-point scale to collect judgments on the literal
or figurative use of nominal compounds and its
components in English. Similar judgments have
also been collected for 244 German compounds,
for which an average of 30 judgments on a scale
from 1 to 7 were gathered through crowdsourcing
(Roller et al., 2013). An alternative to multi-point
scales is the binary judgment adopted by Farah-
mand et al. (2015), for a dataset of English nomi-
nal compounds.

There has been much interest in creating se-
mantic representations of larger units, such as
phrases (Mikolov et al., 2013b), sentences and

1In French, one can also use a preposition and optional
determiner, like cancer du poumon (lung cancer).

2It refers to an initiative that provides money to many peo-
ple without much effort.

documents (Le and Mikolov, 2014), and in exam-
ining whether it is possible to accurately derive the
semantics of a compound or multiword expression
from its parts (McCarthy et al., 2003; Baldwin
et al., 2003; Tratz and Hovy, 2010; Reddy et al.,
2011). For the latter, proposals include using addi-
tive and multiplicative functions to combine vector
representations of component words (Mitchell and
Lapata, 2008; Reddy et al., 2011), calculating the
overlap between the components and the expres-
sion (McCarthy et al., 2003) and looking at the
literality of translations into multiple languages
(Salehi et al., 2014). Other proposals to explicitly
represent the semantics of nominal compounds in-
clude the use of paraphrases (Lauer, 1995; Nakov,
2008; Hendrickx et al., 2013), and inventories of
semantic relations (Girju et al., 2005).

The ability of DSMs for accurately capturing
semantic information may be affected by a num-
ber of factors involved in constructing the models,
such as the source corpus, context representation,
and parameters of the model. Relevant corpus pa-
rameters include size (Ferret, 2013; Mikolov et al.,
2013c) and quality (Lapesa and Evert, 2014). Fac-
tors related to context representation include the
context window size and the number of context
dimensions adopted for a model (Lapesa and Ev-
ert, 2014); the choice of contexts to be used with
targets (syntactic dependencies vs. bag-of-words)
(Agirre et al., 2009); the use of morphosyntactic
information (Padó and Lapata, 2003; Padó and La-
pata, 2007); context filtering (Riedl and Biemann,
2012; Padró et al., 2014a); and dimensionality re-
duction methods (van de Cruys et al., 2012). Im-
portant model parameters that have been studied
include the choice of association and similarity
measures (Curran and Moens, 2002) and the use
of subsampling and negative sampling techniques
(Mikolov et al., 2013c). However, the particular
effects may be heterogeneous and depend on the
task and model (Lapesa and Evert, 2014). In this
paper, we examine the impact of both corpus and
context parameters for a variety of models, for the
task of nominal compound compositionality pre-
diction in English and French.

For the choice of particular DSM, contradictory
results have been published showing the superi-
ority of neural models (Baroni et al., 2014) and
of more traditional but carefully designed models
(Levy et al., 2015). The former were also reported
as a better fit to behavioral data on semantic prim-
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ing tasks (Mandera et al., 2016). Moreover, these
evaluations are often performed on single-word
similarity tasks (Freitag et al., 2005; Camacho-
Collados et al., 2015) and little has been said about
the use of word embeddings for the compositional-
ity prediction of multiword expressions. Two no-
table exceptions are the recent works of Salehi et
al. (2015) and Yazdani et al. (2015). Salehi et al.
(2015) show that word embeddings are more accu-
rate in predicting compositionality than a simplis-
tic count-based DSM. Yazdani et al. (2015) focus
on the composition function, using a lightly super-
vised neural network to learn the best combination
strategy for individual word vectors. In order to
consolidate previous punctual results, we present
a large-scale and systematic evaluation, compar-
ing DSMs and their parameters, on several com-
positionality datasets.

3 Materials and Methods

We examine the impact of corpus parameters re-
lated to the target language and the degree of cor-
pus preprocessing adopted. We also investigate
context parameters related to the size of the con-
text window and the number of dimensions used
to represent context.

3.1 Corpora Preprocessing
We use the lemmatized and POS-tagged versions
of the ukWaC for English (∼2 billion tokens) and
frWaC (∼1.6 billion tokens) for French (Baroni et
al., 2009) to train the models and build vector rep-
resentations of words and compounds. For each
corpus, we re-tokenize all target compounds as a
single word with a separator (e.g. monkey business
→ monkey business) and re-tag them using a sin-
gle manually selected tag per compound to handle
POS-tagging errors.3 All forms are then lower-
cased (surface forms, lemmas and POS-tags); and
noisy tokens, with special characters, numbers or
punctuation, are removed. Additionally, ligatures
are normalized for French (e.g. œ → oe) and a
spellchecker4 is applied to normalize words across
English spelling variants (e.g. color→ colour).

To test the influence of preprocessing in model
accuracy, for each corpus, we generate four vari-
ants with different degrees of abstraction:

1. surface+: the original corpus with no prepro-
cessing, containing surface forms.

3We use a simplified tag set (e.g. v instead of vvz).
4https://hunspell.github.io

2. surface: stopword removal; generating a cor-
pus of surface forms of content words.

3. lemma: stopword removal and lemmatiza-
tion; generating a corpus of lemmas of con-
tent words.

4. lemmaPOS: stopword removal, lemmatiza-
tion and POS-tagging; generating a corpus of
content words, represented as lemma/tag.

The operation of stopword removal eliminates
from the corpus all function words, leaving only
nouns, adjectives, adverbs and verbs. In lemma-
tized corpora, the lemmas of proper names are re-
placed by placeholders.

3.2 Compositionality Datasets
For evaluation, we use nominal compound compo-
sitionality datasets for English (Reddy, Reddy++
and Farahmand) and for French (FR-comp). They
provide annotations as to whether a given com-
pound is more idiomatic or more compositional.

Reddy contains compositionality judgments for
90 compounds and their individual word compo-
nents, in a scale of literality from 0 (idiomatic) to
5 (literal), collected with Mechanical Turk (Reddy
et al., 2011). For each compound, compositional-
ity scores are averaged over its annotators. Com-
pounds included in the dataset were selected to
balance frequency range and degree of composi-
tionality (low, middle and high). We use only the
global compositionality score, ignoring individ-
ual word judgments. With a few exceptions (e.g.
sacred cow), most compounds are formed exclu-
sively by nouns.

Reddy++ is a new resource created for this eval-
uation (Ramisch et al., 2016). It extends the Reddy
set with an additional 90 English nominal com-
pounds, in a total of 180 entries. Scores also range
from 0 to 5 and were collected through Mechan-
ical Turk and averaged over the annotators. The
extra 90 entries include some adjective-noun com-
pounds and are balanced with respect to frequency
and compositionality. We focus our evaluation
on this combined dataset, since it includes Reddy.
However, to allow comparison with state of the art,
we also report results individually for Reddy.

Farahmand contains 1042 English compounds
extracted from Wikipedia with binary non-
compositionality judgments by four experts
(Farahmand et al., 2015). We consider a com-
pound as non-compositional if at least two judges
agree that it is non-compositional, following Yaz-
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dani et al. (2015). In our evaluations, we use the
sum of all judgments in order to have a single
numeral compositionality score, ranging from 0
(compositional) to 4 (idiomatic).

FR-comp is also a new resource created for this
evaluation (Ramisch et al., 2016). It contains 180
adjective-noun and noun-adjective compounds in
French, such as belle-mère (mother-in-law, lit.
beautiful-mother) and carte bleue (credit card, lit.
blue card). This dataset was constructed in the
same manner as the extension to Reddy, that is, us-
ing crowdsourcing and average numerical scores.
Special care was taken to guarantee that annotators
were native speakers by asking them to provide
paraphrases along with compositionality scores.

The new datasets Reddy++ and FR-comp are
similar to Reddy. For instance, the average stan-
dard deviation of compound scores given by dif-
ferent annotators is σ = 1.17 for the new com-
pounds in Reddy++, σ = 1.15 for FR-comp and
σ = 0.99 for Reddy. Their detailed evaluation is
presented by Ramisch et al. (2016).

3.3 DSM Models

We build three types of DSMs: models based
on sparse PPMI cooccurrence vectors, as well as
those constructed with word2vec and GloVe.

PPMI For each target word or compound, we
extract from the corpus its neighboring nouns and
verbs in a symmetric sliding window of w words
to the left/right5, using a linear decay weighting
scheme with respect to its distance d to the target
(Levy et al., 2015). In other words, each cooccur-
rence count of target-context pairs is incremented
by w+ 1− d instead of 1. The representation of a
target is a vector containing the positive pointwise
mutual information (PPMI) association scores be-
tween the target and its contexts.6

In PPMI-thresh, we follow Padró et al. (2014b)
to select the top k most relevant contexts (highest
PPMI) for each target. No further dimensionality
reduction is applied.

In PPMI-TopK, we use a fixed global list of
1000 contexts, built by looking at the most fre-
quent words in the corpus: the top 50 are skipped,
and the next 1000 are taken (Salehi et al., 2015).
No further dimensionality reduction is applied.

5Syntactic context definition is planned as future work.
6PPMI vectors are built using minimantics https://

github.com/ceramisch/minimantics.

In PPMI-SVD, for each target, contexts that ap-
pear less than 1000 times are discarded.7 We then
use the Dissect toolkit8 (Dinu et al., 2013) in order
to build a PPMI matrix and reduce its dimension-
ality using singular value decomposition (SVD) to
factorize the matrix.

w2v Uses the word2vec toolkit based on neural
networks to predict target/context cooccurrence
(Mikolov et al., 2013a). We build models from
two variants of word2vec: CBOW (w2v-cbow)
and skipgram (w2v-sg). In both cases, the configu-
rations are the default ones, except for the follow-
ing: no hierarchical softmax; negative sampling of
25; frequent-word downsampling weight of 10−6;
runs 15 training iterations. We use the default min-
imum word count threshold of 5.

glove We use the count-based DSM of Penning-
ton et al. (2014), which implements a factorization
of the co-occurrence count matrix. The configura-
tions are the default ones, except for the follow-
ing: internal cutoff parameter xmax = 75; builds
co-occurrence matrix in 15 iterations. Due to the
large vocabulary size, we use a minimum word
count threshold of 5 for lemma-based models, 15
for surface and 20 for surface+.

For each DSM, we evaluate the influence of a
set of parameters. By varying the values of these
parameters, we build a total of 408 models per lan-
guage. The parameters are:

• WORDFORM: Refers to one of the four variants
of each corpus: surface+, surface, lemma, and
lemmaPOS.

• WINDOWSIZE: Indicates within how many
words to the left/right we are searching for
target-context co-occurrence pairs. In this work
we explore windows of sizes of 1, 4 and 8.

• DIMENSION: Each model is constructed to
have a maximum number of final dimensions
for each vector. We generate models with 250,
500 and 750 dimensions.

3.4 Compositionality Prediction

To predict the compositionality of a nominal com-
pound w1w2 using the DSMs, we use as a mea-
sure the cosine similarity between the compound

7Aggressive filtering was required because SVD seems
quite sensitive to low-frequency contexts.

8http://clic.cimec.unitn.it/composes/toolkit/
index.html
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vector representation v(w1w2) and the sum of the
vector representations of the component words:

cos( v(w1w2), v(w1 + w2) )

where for v(w1 +w2) we use the normalized sum

v(w1 + w2) =
v(w1)
||v(w1)|| +

v(w2)
||v(w2)|| .

In this framework, a compound is compositional
if the compound representation is close to the sum
of its components representations (cosine is close
to 1), and it is idiomatic otherwise.

One possible improvement of the predictive
model would consist in using more sophisticated
composition functions instead of sum, such as
the multiplicative model of Mitchell and Lapata
(2008). However, we want to first assess the per-
formance of a simple additive function. Other op-
timized functions like the ones proposed by Yaz-
dani et al. (2015) could also be verified, but are out
of the scope of this paper, since they are based on
supervised learning.

3.5 Evaluation Setup
We evaluate the compositionality models and
their parameters on the datasets described in Sec-
tion 3.2. For Reddy, Reddy++ and FR-comp, we
report Spearman’s ρ correlation between the rank-
ing provided by humans and those calculated from
the models. We follow Yazdani et al. (2015) and
report the best F1 score (BF1) obtained for the
Farahmand dataset, by calculating the F1 score for
the top k compounds classified as positive (non-
compositional), for all possible values of k.

Given the high number of experiments we per-
formed, we report the best performance of each
model type. For instance, the performances re-
ported for w2v-cbow using different values of
WINDOWSIZE are the best configurations across
all possible values of other parameters such as
DIMENSION and WORDFORM. This avoids re-
porting local maxima that can arise if one fixes
all other parameters when evaluating a given one
(Lapesa and Evert, 2014).

For Reddy++ and Farahmand, we distinguish
between strict evaluation, reported in the form of
wider bars in the figures, and loose evaluation,
shown as narrow blue bars in the figures. Strict
evaluation corresponds to the performance of the
model only on those compounds that have a vec-
tor representation in all underlying DSMs, 175

out of 180 for Reddy++ and 913 out of 1042 for
Farahmand. Loose evaluation considers the full
dataset, using a fallback strategy for the imputa-
tion of missing values, assigning the average com-
positionality score to absent compounds (Salehi
et al., 2015). This is particularly important for
Farahmand, which contains more rare compounds
such as universe human and mankind instruction
so that 129 compounds are missing in the corpus.
Only strict evaluation is reported for FR-comp, as
all compounds are frequent enough in FRWaC.

The vectors generated by w2v and glove have
some non-determinism due to random initializa-
tion. To assess its impact on results, we report the
average of 3 runs using identical configurations
and use error bars in the graphics.9

4 Results

We report results on each dataset separately and
then discuss findings that hold for all datasets.

4.1 Reddy++ and Reddy Datasets

Figure 1 summarizes the results for Reddy++
dataset.10 Overall, w2v-cbow (ρ = 0.73), w2v-sg
(ρ = 0.73), PPMI-SVD (ρ = 0.72) and PPMI-
thresh (ρ = 0.71) obtain similar results. In spite
of this, except for the two best w2v models, all
differences were deemed statistically significant
(Wilcoxon rank correlation test, p < 0.05).

Figure 1(b) shows the influence of the degree
of corpus preprocessing (shown as WORDFORM

in these figures). The results are heterogeneous,
as the best w2v models seem to profit from the
presence of stopwords, unlike the other models
for which more preprocessing (lemma and lemma-
POS) leads to better results. One exception is
PPMI-SVD for which the use of lemmaPOS dras-
tically reduces performance.11

For WINDOWSIZE, Figure 1(c), although in-
creasing context size seems to help DSMs (at least
up to 4), for the best w2v models, a better result is
obtained with limited context of 1 word left/right.
Probably the interaction between the subsampling
strategy and randomized window size explains
why increasing this value does not improve the

9Error bars are barely visible because results are stable.
10In the remainder of this section, we will discuss strict

evaluation results (outer bars).
11Further investigation must be done to determine the

cause of this reduction as an increase in vocabulary size alone
is insufficient to explain the effect, given that both surface
forms outperform it.
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(a) Overall best Spearman’s ρ per DSM. (b) Best Spearman’s ρ per DSM and WORDFORM.

(c) Best Spearman’s ρ per DSM and WINDOWSIZE. (d) Best Spearman’s ρ per DSM and DIMENSION.

Figure 1: Spearman’s ρ for different DSM parameters on Reddy++ dataset.

results. PPMI-SVD can use extra information
from larger window sizes (WINDOWSIZE=8) bet-
ter than models based on context filtering. This
is probably related to the aggressive context filter,
which keeps only very salient cooccurrences even
in large windows.

The results for context vector dimensional-
ity, Figure 1(d), show, as expected, that the
best results are obtained with larger dimensions
(DIMENSION=750) for all models, except for
glove, which displays very similar results indepen-
dently of the number of dimensions.

Examining the Reddy dataset alone, the same
trends for all parameters were found, but with
higher results. The overall best performances on
Reddy were quite similar: w2v-cbow (ρ = 0.82),
w2v-sg (ρ = 0.81), PPMI-SVD (ρ = 0.80) and
PPMI-thresh (ρ = 0.79), and the differences are
significant except for the two best w2v models.
The 90 compounds added to Reddy++ seem to
be more difficult to assess than the original ones,
probably because they include many adjectives,

which have been found harder to judge for com-
positionality than nouns (Ramisch et al., 2016).

4.2 Farahmand Dataset

Figure 2(a) shows the overall best model for the
Farahmand dataset. PPMI-SVD reached a BF1
score of 0.52, with DIMENSION=750, WINDOW-
SIZE=4, using lemma, and both w2v (BF1=0.51)
obtain comparable results with similar configura-
tions.

These results show a marked difference be-
tween the loose (the narrower bars in the figures)
and the strict evaluation (wider bars). The for-
mer uses a fallback strategy for the imputation of
missing values that does not accurately reflect how
the compositionality scores vary. Indeed, we ob-
served that compounds that do not appear very of-
ten in our corpora tend to be non-compositional,
whereas most of the compound occurrences are
compositional, increasing average compositional-
ity. For instance, the 10 most compositional com-
pounds in Reddy++ occur an average of 26551
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(a) Overall best BF1 score per DSM. (b) Best BF1 score per DSM and WORDFORM.

(c) Best BF1 score per DSM and WINDOWSIZE. (d) Best BF1 score per DSM and DIMENSION.

Figure 2: BF1 scores for different DSM parameters on Farahmand dataset.

times in the UKWaC vs 1096 times for the 10
least compositional ones. Spearman rank corre-
lation between frequency and compositionality in
Reddy++ is ρ = 0.43.12 In short, even if a fallback
strategy is adopted as the means to obtain a lower-
bound for performance, it may be unrelated to the
real performance for the missing compounds.

For most models, corpus preprocessing resulted
in better scores, with WORDFORM=lemma out-
performing all other forms of preprocessing, espe-
cially for French. Concatenating lemmas and POS
tags does not seem to help, probably due to de-
creasing word frequencies without substantial gain
in informativeness (Figure 2(b)).

The impact of WINDOWSIZE has a similar
trend to the one found for the Reddy++ and Reddy
datasets (Figure 2(c)). That is, the larger window
was preferred by most models, but the average dif-
ference between the best and the worst size for

12We report these figures for Reddy++ because Farah-
mand has many ties, given the binary nature of composition-
ality annotations.

each DSM is only 0.01. For DIMENSION, a larger
number resulted in better scores, as expected, with
750 being the best for all models in Figure 2(d).
Nonetheless, here too the average difference in
scores between DIMENSION=750 and 250 is 0.01.

4.3 FR-comp Dataset

Globally, for the FR-comp dataset, PPMI-thresh
(ρ = 0.70) outperforms glove (ρ = 0.68) and w2v
(ρ = 0.66), as can be seen in Figure 3(a).13

For morphologically rich languages like French,
Figure 3(b) indicates that working on lemmatized
data often yields better results than working on
surface forms. Lemmas conflate the frequencies
for all the many morphologically inflected vari-
ants which would otherwise be dispersed in dif-
ferent surface forms. Therefore, it is not surpris-
ing that the best results concerning WORDFORM

are achieved by lemma. These results differ from
English, where a corpus without any preprocess-

13As all compounds in the dataset occur in the corpus, only
strict evaluation results are reported.
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(a) Overall best Spearman’s ρ per DSM. (b) Best Spearman’s ρ per DSM and WORDFORM.

(c) Best Spearman’s ρ per DSM and WINDOWSIZE. (d) Best Spearman’s ρ per DSM and DIMENSION.

Figure 3: Spearman’s ρ for different DSM parameters on FR-comp dataset.

ing yields more accurate results. Moreover, a
smaller WINDOWSIZE leads to better results for
most models, as shown in Figure 3(c). But just as
in English, all models except glove benefit from an
increase in dimension, as shown in Figure 3(d).14

4.4 Discussion

When comparing DIMENSION across languages
and datasets, larger values often bring better per-
formance. Likewise, the lemma is usually the bet-
ter WORDFORM. The recommended WINDOW-
SIZE depends on the model and language, but for
the best models in all datasets, a window of 1 out-
performs the others. This may be a consequence of
the linear decay context weighting process, which
assigns higher weights to closer words as win-
dow size increases. As an overall conclusion, in
combination with a large dimension and a small

14For w2v, the same parameters used for English were
adopted also for French. As a sanity check, we tested a range
of negative sampling values [5, 15, 25, 35, 50], as well as sub-
sampling rates for powers of 10 in [10−3 to 10−7]. Variations
in ρ are minor and do not show any clear trend.

window size, investing in preprocessing provides
a good balance of a small vocabulary (of lem-
mas) and good accuracy. This is especially clear
for a morphologically richer language like French,
where lemmatization is homogeneously better for
all models, even in w2v, for which surface forms
were better for English.

In terms of models, the w2v models performed
better than PPMI for Reddy++, both were in a
tie for Farahmand, and w2v was outperformed
by PPMI-thresh for French. The performance of
glove for English was underwhelming, probably
because we did not perform parameter tuning. As
shown by (Salehi et al., 2015), PPMI-TopK is not
an appropriate DSM for this task, as it does not
model relevant cooccurrence very well.

The average Spearman’s ρ for Reddy over all
tested parameter configurations was 0.71 for both
w2v models and 0.67 for PPMI-SVD and PPMI-

14DSM parameters: WF: WORDFORM, D: DIMENSION,
W: WINDOWSIZE. Results in parentheses for loose evalua-
tion, using fallback.
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Model & Parameters Result
Reddy et al. (2011) .71
Salehi et al. (2014) .74
Salehi et al. (2015) .80

Best w2v (sg, WF=surface, D=750, W=1) .82 (.80)
Best PPMI (thresh, WF=surface, D=750, W=8) .80 (.80)
Best glove (WF=lemmapos, D=250, W=8) .76 (.76)

Table 1: Comparison of our best models with
state-of-the-art ρ for Reddy.14

Model & Parameters Result
Yazdani et al. (2015) .49

Best w2v (sg, WF=lemma, D=500, W=1) .51 (.47)
Best PPMI (svd, WF=lemma, D=750, W=4) .52 (.45)
Best glove (WF=lemma, D=500, W=8) .40 (.36)

Table 2: Comparison of our best models with
state-of-the-art BF1 for Farahmand.14

thresh, and this was also observed for the other
datasets. In short, both types of models can ob-
tain good results. While PPMI-thresh is a simple,
fast and inexpensive model to build, w2v has a free
and push-button implementation, and requires less
hyper-parameter tuning, as is it seems more ro-
bust to parameter variation. More generally, the
best results obtained for Reddy and Farahmand are
comparable and even outperform the state of the
art, as shown in Tables 1 and 2, when strict evalu-
ation is adopted (that is, when not using a fallback
strategy for missing compounds).

5 Conclusions

In this paper we presented a multilingual, large-
scale evaluation of DSMs for compound compo-
sitionality prediction. We have built 816 DSMs
and performed 2,856 evaluations, examining the
impact of corpus and context parameters, namely
the level of corpus preprocessing, the context win-
dow size and the number of dimensions. Evalu-
ation on 3 English datasets and a French one re-
vealed that a large dimension is consistently bet-
ter, and corpus preprocessing is usually beneficial.
The choice of window size varies according to lan-
guage and dataset, but a small window can of-
ten provide a good performance. The DSMs w2v
and PPMI alternated in providing the best results.
Moreover, the results obtained were comparable
and even outperformed the state-of-the-art.

As future work, we plan to examine the use

of a voting scheme for combining the output
of complementary DSMs. Moreover, we also
plan to combine additional sources of information
for building the models, such as multilingual re-
sources or translation data, to improve even further
the compositionality prediction. We would also
like to propose and evaluate more sophisticated
compositionality functions that take into account
the unbalanced contribution of individual words to
the global meaning of a compound.
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Muntsa Padró, Marco Idiart, Aline Villavicencio, and
Carlos Ramisch. 2014a. Comparing similarity mea-
sures for distributional thesauri. In Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation (LREC 2014), Reykjavik,
Iceland, May. European Language Resources Asso-
ciation.
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