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Abstract

Recent work has shown that simple vector
subtraction over word embeddings is surpris-
ingly effective at capturing different lexical
relations, despite lacking explicit supervision.
Prior work has evaluated this intriguing result
using a word analogy prediction formulation
and hand-selected relations, but the generality
of the finding over a broader range of lexical
relation types and different learning settings
has not been evaluated. In this paper, we carry
out such an evaluation in two learning settings:
(1) spectral clustering to induce word rela-
tions, and (2) supervised learning to classify
vector differences into relation types. We find
that word embeddings capture a surprising
amount of information, and that, under suit-
able supervised training, vector subtraction
generalises well to a broad range of relations,
including over unseen lexical items.

1 Introduction

Learning to identify lexical relations is a fundamen-
tal task in natural language processing (“NLP”), and
can contribute to many NLP applications including
paraphrasing and generation, machine translation,
and ontology building (Banko et al., 2007; Hen-
drickx et al., 2010).

Recently, attention has been focused on iden-
tifying lexical relations using word embeddings,
which are dense, low-dimensional vectors ob-
tained either from a “predict-based” neural net-
work trained to predict word contexts, or a “count-
based” traditional distributional similarity method
combined with dimensionality reduction. The skip-
gram model of Mikolov et al. (2013a) and other
similar language models have been shown to per-
form well on an analogy completion task (Mikolov
et al., 2013b; Mikolov et al., 2013c; Levy and
Goldberg, 2014a), in the space of relational sim-

ilarity prediction (Turney, 2006), where the task
is to predict the missing word in analogies such
as A:B :: C: –?–. A well-known example involves
predicting the vector queen from the vector com-
bination king − man + woman, where linear
operations on word vectors appear to capture the
lexical relation governing the analogy, in this
case OPPOSITE-GENDER. The results extend to
several semantic relations such as CAPITAL-OF

(paris−france+poland ≈ warsaw) and mor-
phosyntactic relations such as PLURALISATION

(cars − car + apple ≈ apples). Remarkably,
since the model is not trained for this task, the re-
lational structure of the vector space appears to be
an emergent property.

The key operation in these models is vector dif-
ference, or vector offset. For example, the paris−
france vector appears to encode CAPITAL-OF, pre-
sumably by cancelling out the features of paris
that are France-specific, and retaining the features
that distinguish a capital city (Levy and Goldberg,
2014a). The success of the simple offset method
on analogy completion suggests that the difference
vectors (“DIFFVEC” hereafter) must themselves
be meaningful: their direction and/or magnitude
encodes a lexical relation.

Previous analogy completion tasks used with
word embeddings have limited coverage of lexical
relation types. Moreover, the task does not explore
the full implications of DIFFVECs as meaningful
vector space objects in their own right, because
it only looks for a one-best answer to the particu-
lar lexical analogies in the test set. In this paper,
we introduce a new, larger dataset covering many
well-known lexical relation types from the linguis-
tics and cognitive science literature. We then apply
DIFFVECs to two new tasks: unsupervised and su-
pervised relation extraction. First, we cluster the
DIFFVECs to test whether the clusters map onto
true lexical relations. We find that the clustering
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works remarkably well, although syntactic relations
are captured better than semantic ones.

Second, we perform classification over the DIFF-
VECs and obtain remarkably high accuracy in a
closed-world setting (over a predefined set of word
pairs, each of which corresponds to a lexical re-
lation in the training data). When we move to an
open-world setting including random word pairs
— many of which do not correspond to any lexical
relation in the training data — the results are poor.
We then investigate methods for better attuning the
learned class representation to the lexical relations,
focusing on methods for automatically synthesis-
ing negative instances. We find that this improves
the model performance substantially.

We also find that hyper-parameter optimised
count-based methods are competitive with predict-
based methods under both clustering and super-
vised relation classification, in line with the find-
ings of Levy et al. (2015a).

2 Background and Related Work

A lexical relation is a binary relation r holding be-
tween a word pair (wi, wj); for example, the pair
(cart,wheel) stands in the WHOLE-PART relation.
Relation learning in NLP includes relation extrac-
tion, relation classification, and relational similarity
prediction. In relation extraction, related word pairs
in a corpus and the relevant relation are identified.
Given a word pair, the relation classification task in-
volves assigning a word pair to the correct relation
from a pre-defined set. In the Open Information Ex-
traction paradigm (Banko et al., 2007; Weikum and
Theobald, 2010), also known as unsupervised re-
lation extraction, the relations themselves are also
learned from the text (e.g. in the form of text labels).
On the other hand, relational similarity prediction
involves assessing the degree to which a word pair
(A,B) stands in the same relation as another pair
(C,D), or to complete an analogy A:B :: C: –?–. Re-
lation learning is an important and long-standing
task in NLP and has been the focus of a number of
shared tasks (Girju et al., 2007; Hendrickx et al.,
2010; Jurgens et al., 2012).

Recently, attention has turned to using vector
space models of words for relation classification
and relational similarity prediction. Distributional
word vectors have been used for detection of rela-
tions such as hypernymy (Geffet and Dagan, 2005;
Kotlerman et al., 2010; Lenci and Benotto, 2012;
Weeds et al., 2014; Rimell, 2014; Santus et al.,
2014) and qualia structure (Yamada et al., 2009).

An exciting development, and the inspiration for
this paper, has been the demonstration that vec-
tor difference over word embeddings (Mikolov
et al., 2013c) can be used to model word anal-
ogy tasks. This has given rise to a series of pa-
pers exploring the DIFFVEC idea in different con-
texts. The original analogy dataset has been used to
evaluate predict-based language models by Mnih
and Kavukcuoglu (2013) and also Zhila et al.
(2013), who combine a neural language model with
a pattern-based classifier. Kim and de Marneffe
(2013) use word embeddings to derive representa-
tions of adjective scales, e.g. hot—warm—cool—
cold. Fu et al. (2014) similarly use embeddings to
predict hypernym relations, in this case clustering
words by topic to show that hypernym DIFFVECs
can be broken down into more fine-grained rela-
tions. Neural networks have also been developed
for joint learning of lexical and relational similar-
ity, making use of the WordNet relation hierarchy
(Bordes et al., 2013; Socher et al., 2013; Xu et al.,
2014; Yu and Dredze, 2014; Faruqui et al., 2015;
Fried and Duh, 2015).

Another strand of work responding to the vector
difference approach has analysed the structure of
predict-based embedding models in order to help
explain their success on the analogy and other tasks
(Levy and Goldberg, 2014a; Levy and Goldberg,
2014b; Arora et al., 2015). However, there has been
no systematic investigation of the range of relations
for which the vector difference method is most
effective, although there have been some smaller-
scale investigations in this direction. Makrai et al.
(2013) divide antonym pairs into semantic classes
such as quality, time, gender, and distance, find-
ing that for about two-thirds of antonym classes,
DIFFVECs are significantly more correlated than
random. Necşulescu et al. (2015) train a classifier
on word pairs, using word embeddings to predict
coordinates, hypernyms, and meronyms. Roller and
Erk (2016) analyse the performance of vector con-
catenation and difference on the task of predicting
lexical entailment and show that vector concatena-
tion overwhelmingly learns to detect Hearst pat-
terns (e.g., including, such as). Köper et al. (2015)
undertake a systematic study of morphosyntac-
tic and semantic relations on word embeddings
produced with word2vec (“w2v” hereafter; see
§3.1) for English and German. They test a variety
of relations including word similarity, antonyms,
synonyms, hypernyms, and meronyms, in a novel
analogy task. Although the set of relations tested by
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Köper et al. (2015) is somewhat more constrained
than the set we use, there is a good deal of overlap.
However, their evaluation is performed in the con-
text of relational similarity, and they do not perform
clustering or classification on the DIFFVECs.

3 General Approach and Resources

We define the task of lexical relation learning
to take a set of (ordered) word pairs {(wi, wj)}
and a set of binary lexical relations R = {rk},
and map each word pair (wi, wj) as follows: (a)
(wi, wj) 7→ rk ∈ R, i.e. the “closed-world” set-
ting, where we assume that all word pairs can be
uniquely classified according to a relation in R; or
(b) (wi, wj) 7→ rk ∈ R ∪ {φ} where φ signifies
the fact that none of the relations in R apply to the
word pair in question, i.e. the “open-world” setting.

Our starting point for lexical relation learning is
the assumption that important information about
various types of relations is implicitly embedded in
the offset vectors. While a range of methods have
been proposed for composing word vectors (Baroni
et al., 2012; Weeds et al., 2014; Roller et al., 2014),
in this research we focus exclusively on DIFFVEC

(i.e. w2 −w1). A second assumption is that there
exist dimensions, or directions, in the embedding
vector spaces responsible for a particular lexical
relation. Such dimensions could be identified and
exploited as part of a clustering or classification
method, in the context of identifying relations be-
tween word pairs or classes of DIFFVECs.

In order to test the generalisability of the DIFF-
VEC method, we require: (1) word embeddings,
and (2) a set of lexical relations to evaluate against.
As the focus of this paper is not the word embed-
ding pre-training approaches so much as the utility
of the DIFFVECs for lexical relation learning, we
take a selection of four pre-trained word embed-
dings with strong currency in the literature, as de-
tailed in §3.1. We also include the state-of-the-art
count-based approach of Levy et al. (2015a), to test
the generalisability of DIFFVECs to count-based
word embeddings.

For the lexical relations, we want a range of rela-
tions that is representative of the types of relational
learning tasks targeted in the literature, and where
there is availability of annotated data. To this end,
we construct a dataset from a variety of sources, fo-
cusing on lexical semantic relations (which are less
well represented in the analogy dataset of Mikolov
et al. (2013c)), but also including morphosyntactic
and morphosemantic relations (see §3.2).

Name Dimensions Training data
w2v 300 100× 109

GloVe 200 6× 109

SENNA 100 37× 106

HLBL 200 37× 106

w2vwiki 300 50× 106

GloVewiki 300 50× 106

SVDwiki 300 50× 106

Table 1: The pre-trained word embeddings used in
our experiments, with the number of dimensions
and size of the training data (in word tokens). The
models trained on English Wikipedia (“wiki”) are
in the lower half of the table.

3.1 Word Embeddings

We consider four highly successful word embed-
ding models in our experiments: w2v (Mikolov et
al., 2013a; Mikolov et al., 2013b), GloVe (Pen-
nington et al., 2014), SENNA (Collobert and We-
ston, 2008), and HLBL (Mnih and Hinton, 2009),
as detailed below. We also include SVD (Levy et
al., 2015a), a count-based model which factorises
a positive PMI (PPMI) matrix. For consistency of
comparison, we train SVD as well as a version
of w2v and GloVe (which we call w2vwiki and
GloVewiki, respectively) on the English Wikipedia
corpus (comparable in size to the training data of
SENNA and HLBL), and apply the preprocessing
of Levy et al. (2015a). We additionally normalise
the w2vwiki and SVDwiki vectors to unit length;
GloVewiki is natively normalised by column.1

w2v CBOW (Continuous Bag-Of-Words;
Mikolov et al. (2013a)) predicts a word from its
context using a model with the objective:

J =
1
T

T∑
i=1

log

exp

(
w>i

∑
j∈[−c,+c],j 6=0

w̃i+j

)
∑V

k=1 exp

(
w>k

∑
j∈[−c,+c],j 6=0

w̃i+j

)

where wi and w̃i are the vector representations
for the ith word (as a focus or context word, re-
spectively), V is the vocabulary size, T is the
number of tokens in the corpus, and c is the con-
text window size.2 Google News data was used

1We ran a series of experiments on normalised and unnor-
malised w2v models, and found that normalisation tends to
boost results over most of our relations (with the exception
of LEXSEMEvent and NOUNColl). We leave a more detailed
investigation of normalisation to future work.

2In a slight abuse of notation, the subscripts of w do double
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Relation Description Pairs Source Example
LEXSEMHyper hypernym 1173 SemEval’12 + BLESS (animal, dog)
LEXSEMMero meronym 2825 SemEval’12 + BLESS (airplane, cockpit)
LEXSEMAttr characteristic quality, action 71 SemEval’12 (cloud, rain)
LEXSEMCause cause, purpose, or goal 249 SemEval’12 (cook, eat)
LEXSEMSpace location or time association 235 SemEval’12 (aquarium, fish)
LEXSEMRef expression or representation 187 SemEval’12 (song, emotion)
LEXSEMEvent object’s action 3583 BLESS (zip, coat)
NOUNSP plural form of a noun 100 MSR (year, years)
VERB3 first to third person verb present-tense form 99 MSR (accept, accepts)
VERBPast present-tense to past-tense verb form 100 MSR (know, knew)
VERB3Past third person present-tense to past-tense verb form 100 MSR (creates, created)
LVC light verb construction 58 Tan et al. (2006b) (give, approval)
VERBNOUN nominalisation of a verb 3303 WordNet (approve, approval)
PREFIX prefixing with re morpheme 118 Wiktionary (vote, revote)
NOUNColl collective noun 257 Web source (army, ants)

Table 2: Description of the 15 lexical relations.

to train the model. We use the focus word vec-
tors, W = {wk}Vk=1, normalised such that each
‖wk‖ = 1.

The GloVe model (Pennington et al., 2014) is
based on a similar bilinear formulation, framed as
a low-rank decomposition of the matrix of corpus
co-occurrence frequencies:

J =
1
2

V∑
i,j=1

f(Pij)(w>i w̃j − logPij)2 ,

where wi is a vector for the left context, wj is a
vector for the right context, Pij is the relative fre-
quency of word j in the context of word i, and f
is a heuristic weighting function to balance the in-
fluence of high versus low term frequencies. The
model was trained on English Wikipedia and the
English Gigaword corpus version 5.

The SVD model (Levy et al., 2015a) uses pos-
itive pointwise mutual information (PMI) matrix
defined as:

PPMI(w, c) = max(log
P̂ (w, c)
P̂ (w)P̂ (c)

, 0) ,

where P̂ (w, c) is the joint probability of word
w and context c, and P̂ (w) and P̂ (c) are their
marginal probabilities. The matrix is factorised by
singular value decomposition.
HLBL (Mnih and Hinton, 2009) is a log-bilinear

formulation of an n-gram language model, which
predicts the ith word based on context words (i−
n, . . . , i − 2, i − 1). This leads to the following
training objective:

J =
1
T

T∑
i=1

exp(w̃>i wi + bi)∑V
k=1 exp(w̃>i wk + bk)

,

duty, denoting either the embedding for the ith token, wi, or
kth word type, wk.

where w̃i =
∑n−1

j=1 Cjwi−j is the context embed-
ding, Cj is a scaling matrix, and b∗ is a bias term.

The final model, SENNA (Collobert and Weston,
2008), was initially proposed for multi-task train-
ing of several language processing tasks, from lan-
guage modelling through to semantic role labelling.
Here we focus on the statistical language modelling
component, which has a pairwise ranking objective
to maximise the relative score of each word in its
local context:

J =
1
T

T∑
i=1

V∑
k=1

max
[
0, 1− f(wi−c, . . . ,wi−1,wi)

+ f(wi−c, . . . ,wi−1,wk)
]
,

where the last c− 1 words are used as context, and
f(x) is a non-linear function of the input, defined
as a multi-layer perceptron.

For HLBL and SENNA, we use the pre-trained
embeddings from Turian et al. (2010), trained on
the Reuters English newswire corpus. In both cases,
the embeddings were scaled by the global stan-
dard deviation over the word-embedding matrix,
Wscaled = 0.1× W

σ(W ) .
For w2vwiki, GloVewiki and SVDwiki we used

English Wikipedia. We followed the same prepro-
cessing procedure described in Levy et al. (2015a),3

i.e., lower-cased all words and removed non-textual
elements. During the training phase, for each model
we set a word frequency threshold of 5. For the
SVD model, we followed the recommendations of
Levy et al. (2015a) in setting the context window
size to 2, negative sampling parameter to 1, eigen-
value weighting to 0.5, and context distribution
smoothing to 0.75; other parameters were assigned

3Although the w2v model trained without preprocessing
performed marginally better, we used preprocessing through-
out for consistency.
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their default values. For the other models we used
the following parameter values: for w2v, context
window = 8, negative samples = 25, hs = 0, sample
= 1e-4, and iterations = 15; and for GloVe, context
window = 15, x max = 10, and iterations = 15.

3.2 Lexical Relations
In order to evaluate the applicability of the DIFF-
VEC approach to relations of different types, we
assembled a set of lexical relations in three broad
categories: lexical semantic relations, morphosyn-
tactic paradigm relations, and morphosemantic re-
lations. We constrained the relations to be binary
and to have fixed directionality.4 Consequently we
excluded symmetric lexical relations such as syn-
onymy. We additionally constrained the dataset to
the words occurring in all embedding sets. There
is some overlap between our relations and those in-
cluded in the analogy task of Mikolov et al. (2013c),
but we include a much wider range of lexical se-
mantic relations, especially those standardly evalu-
ated in the relation classification literature. We man-
ually filtered the data to remove duplicates (e.g., as
part of merging the two sources of LEXSEMHyper
intances), and normalise directionality.

The final dataset consists of 12,458 triples
〈relation,word1,word2〉, comprising 15 relation
types, extracted from SemEval’12 (Jurgens et al.,
2012), BLESS (Baroni and Lenci, 2011), the MSR
analogy dataset (Mikolov et al., 2013c), the light
verb dataset of Tan et al. (2006a), Princeton Word-
Net (Fellbaum, 1998), Wiktionary,5 and a web lex-
icon of collective nouns,6 as listed in Table 2.7

4 Clustering

Assuming DIFFVECs are capable of capturing all
lexical relations equally, we would expect cluster-
ing to be able to identify sets of word pairs with
high relational similarity, or equivalently clusters
of similar offset vectors. Under the additional as-
sumption that a given word pair corresponds to
a unique lexical relation (in line with our defini-
tion of the lexical relation learning task in §3), a
hard clustering approach is appropriate. In order to

4Word similarity is not included; it is not easily captured
by DIFFVEC since there is no homogeneous “content” to the
lexical relation which could be captured by the direction and
magnitude of a difference vector (other than that it should be
small).

5http://en.wiktionary.org
6http://www.rinkworks.com/words/collective.

shtml
7The dataset is available at http://github.com/ivri/

DiffVec

LEXSEMAttr
LEXSEMCause
NOUNColl
LEXSEMEvent

LEXSEMHyper

LVC
LEXSEMMero
NOUNSP

PREFIX
LEXSEMRef
LEXSEMSpace

VERB3

VERB3Past
VERBPast

VERBNOUN

Figure 1: t-SNE projection (Van der Maaten and
Hinton, 2008) of DIFFVECs for 10 sample word
pairs of each relation type, based on w2v. The
intersection of the two axes identify the projection
of the zero vector. Best viewed in colour.

test these assumptions, we cluster our 15-relation
closed-world dataset in the first instance, and eval-
uate against the lexical resources in §3.2.

As further motivation, we projected the DIFF-
VEC space for a small number of samples of each
class using t-SNE (Van der Maaten and Hinton,
2008), and found that many of the morphosyntactic
relations (VERB3, VERBPast, VERB3Past, NOUNSP)
form tight clusters (Figure 1).

We cluster the DIFFVECs between all word
pairs in our dataset using spectral clustering
(Von Luxburg, 2007). Spectral clustering has two
hyperparameters: the number of clusters, and the
pairwise similarity measure for comparing DIFF-
VECs. We tune the hyperparameters over devel-
opment data, in the form of 15% of the data ob-
tained by random sampling, selecting the configura-
tion that maximises the V-Measure (Rosenberg and
Hirschberg, 2007). Figure 2 presents V-Measure
values over the test data for each of the four word
embedding models. We show results for different
numbers of clusters, from N = 10 in steps of 10,
up to N = 80 (beyond which the clustering quality
diminishes).8 Observe that w2v achieves the best
results, with a V-Measure value of around 0.36,9

which is relatively constant over varying numbers
of clusters. GloVe and SVD mirror this result,
but are consistently below w2v at a V-Measure
of around 0.31. HLBL and SENNA performed very

8Although 80 clusters � our 15 relation types, the Se-
mEval’12 classes each contain numerous subclasses, so the
larger number may be more realistic.

9V-Measure returns a value in the range [0, 1], with 1 indi-
cating perfect homogeneity and completeness.
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Figure 2: Spectral clustering results, comparing
cluster quality (V-Measure) and the number of clus-
ters. DIFFVECs are clustered and compared to the
known relation types. Each line shows a different
source of word embeddings.

w2v GloVe HLBL SENNA
LEXSEMAttr 0.49 0.54 0.62 0.63
LEXSEMCause 0.47 0.53 0.56 0.57
LEXSEMSpace 0.49 0.55 0.54 0.58
LEXSEMRef 0.44 0.50 0.54 0.56
LEXSEMHyper 0.44 0.50 0.43 0.45
LEXSEMEvent 0.46 0.47 0.47 0.48
LEXSEMMero 0.40 0.42 0.42 0.43
NOUNSP 0.07 0.14 0.22 0.29
VERB3 0.05 0.06 0.49 0.44
VERBPast 0.09 0.14 0.38 0.35
VERB3Past 0.07 0.05 0.49 0.52
LVC 0.28 0.55 0.32 0.30
VERBNOUN 0.31 0.33 0.35 0.36
PREFIX 0.32 0.30 0.55 0.58
NOUNColl 0.21 0.27 0.46 0.44

Table 3: The entropy for each lexical relation over
the clustering output for each set of pre-trained
word embeddings.

similarly, at a substantially lower V-Measure than
w2v or GloVe, closer to 0.21. As a crude calibra-
tion for these results, over the related clustering
task of word sense induction, the best-performing
systems in SemEval-2010 Task 4 (Manandhar et
al., 2010) achieved a V-Measure of under 0.2.

The lower V-measure for w2vwiki and
GloVewiki (as compared to w2v and GloVe,
respectively) indicates that the volume of training
data plays a role in the clustering results. However,
both methods still perform well above SENNA and
HLBL, and w2v has a clear empirical advantage
over GloVe. We note that SVDwiki performs
almost as well as w2vwiki, consistent with the
results of Levy et al. (2015a).

We additionally calculated the entropy for each

lexical relation, based on the distribution of in-
stances belonging to a given relation across the
different clusters (and simple MLE). For each em-
bedding method, we present the entropy for the
cluster size where V-measure was maximised over
the development data. Since the samples are dis-
tributed nonuniformly, we normalise entropy re-
sults for each method by log(n) where n is the
number of samples in a particular relation. The re-
sults are in Table 3, with the lowest entropy (purest
clustering) for each relation indicated in bold.

Looking across the different lexical relation
types, the morphosyntactic paradigm relations
(NOUNSP and the three VERB relations) are by
far the easiest to capture. The lexical semantic rela-
tions, on the other hand, are the hardest to capture
for all embeddings.

Considering w2v embeddings, for VERB3 there
was a single cluster consisting of around 90%
of VERB3 word pairs. Most errors resulted from
POS ambiguity, leading to confusion with VERB-
NOUN in particular. Example VERB3 pairs incor-
rectly clustered are: (study, studies), (run, runs),
and (like, likes). This polysemy results in the dis-
tance represented in the DIFFVEC for such pairs
being above average for VERB3, and consequently
clustered with other cross-POS relations.

For VERBPast, a single relatively pure cluster
was generated, with minor contamination due
to pairs such as (hurt, saw), (utensil, saw), and
(wipe, saw). Here, the noun saw is ambiguous with
a high-frequency past-tense verb; hurt and wipe
also have ambigous POS.

A related phenomenon was observed for
NOUNColl, where the instances were assigned to
a large mixed cluster containing word pairs where
the second word referred to an animal, reflect-
ing the fact that most of the collective nouns in
our dataset relate to animals, e.g. (stand, horse),
(ambush, tigers), (antibiotics, bacteria). This is in-
teresting from a DIFFVEC point of view, since it
shows that the lexical semantics of one word in
the pair can overwhelm the semantic content of the
DIFFVEC (something that we return to investigate
in §5.4). LEXSEMMero was also split into multiple
clusters along topical lines, with separate clusters
for weapons, dwellings, vehicles, etc.

Given the encouraging results from our cluster-
ing experiment, we next evaluate DIFFVECs in a
supervised relation classification setting.
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5 Classification

A natural question is whether we can accurately
characterise lexical relations through supervised
learning over the DIFFVECs. For these experi-
ments we use the w2v, w2vwiki, and SVDwiki em-
beddings exclusively (based on their superior per-
formance in the clustering experiment), and a sub-
set of the relations which is both representative of
the breadth of the full relation set, and for which
we have sufficient data for supervised training
and evaluation, namely: NOUNColl, LEXSEMEvent,
LEXSEMHyper, LEXSEMMero, NOUNSP, PREFIX,
VERB3, VERB3Past, and VERBPast (see Table 2).

We consider two applications: (1) a CLOSED-
WORLD setting similar to the unsupervised evalua-
tion, in which the classifier only encounters word
pairs which correspond to one of the nine relations;
and (2) a more challenging OPEN-WORLD setting
where random word pairs — which may or may not
correspond to one of our relations — are included
in the evaluation. For both settings, we further in-
vestigate whether there is a lexical memorisation
effect for a broad range of relation types of the
sort identified by Weeds et al. (2014) and Levy et
al. (2015b) for hypernyms, by experimenting with
disjoint training and test vocabulary.

5.1 CLOSED-WORLD Classification

For the CLOSED-WORLD setting, we train and
test a multiclass classifier on datasets comprising
〈DIFFVEC, r〉 pairs, where r is one of our nine
relation types, and DIFFVEC is based on one of
w2v, w2vwiki and SVD. As a baseline, we cluster
the data as described in §4, running the clusterer
several times over the 9-relation data to select the
optimal V-Measure value based on the develop-
ment data, resulting in 50 clusters. We label each
cluster with the majority class based on the training
instances, and evaluate the resultant labelling for
the test instances.

We use an SVM with a linear kernel, and report
results from 10-fold cross-validation in Table 4.

The SVM achieves a higher F-score than the
baseline on almost every relation, particularly on
LEXSEMHyper, and the lower-frequency NOUNSP,
NOUNColl, and PREFIX. Most of the relations —
even the most difficult ones from our clustering
experiment — are classified with very high F-
score. That is, with a simple linear transforma-
tion of the embedding dimensions, we are able to
achieve near-perfect results. The PREFIX relation
achieved markedly lower recall, resulting in a lower

Relation Baseline w2v w2vwiki SVDwiki
LEXSEMHyper 0.60 0.93 0.91 0.91
LEXSEMMero 0.90 0.97 0.96 0.96
LEXSEMEvent 0.87 0.98 0.97 0.97
NOUNSP 0.00 0.83 0.78 0.74
VERB3 0.99 0.98 0.96 0.97
VERBPast 0.78 0.98 0.98 0.95
VERB3Past 0.99 0.98 0.98 0.96
PREFIX 0.00 0.82 0.34 0.60
NOUNColl 0.19 0.95 0.91 0.92
Micro-average 0.84 0.97 0.95 0.95

Table 4: F-scores (F) for CLOSED-WORLD classi-
fication, for a baseline method based on clustering
+ majority-class labelling, a multiclass linear SVM
trained on w2v, w2vwiki and SVDwiki DIFFVEC

inputs.

F-score, due to large differences in the predomi-
nant usages associated with the respective words
(e.g., (union, reunion), where the vector for union
is heavily biased by contexts associated with trade
unions, but reunion is heavily biased by contexts re-
lating to social get-togethers; and (entry, reentry),
where entry is associated with competitions and en-
trance to schools, while reentry is associated with
space travel). Somewhat surprisingly, given the
small dimensionality of the input (vectors of size
300 for all three methods), we found that the lin-
ear SVM slightly outperformed a non-linear SVM
using an RBF kernel. We observe no real differ-
ence between w2vwiki and SVDwiki, supporting the
hypothesis of Levy et al. (2015a) that under ap-
propriate parameter settings, count-based methods
achieve high results. The impact of the training data
volume for pre-training of the embeddings is also
less pronounced than in the case of our clustering
experiment.

5.2 OPEN-WORLD Classification

We now turn to a more challenging evaluation set-
ting: a test set including word pairs drawn at ran-
dom. This setting aims to illustrate whether a DIFF-
VEC-based classifier is capable of differentiating
related word pairs from noise, and can be applied
to open data to learn new related word pairs.10

For these experiments, we train a binary classi-
fier for each relation type, using 2

3 of our relation
data for training and 1

3 for testing. The test data is
augmented with an equal quantity of random pairs,
generated as follows:
(1) sample a seed lexicon by drawing words pro-

portional to their frequency in Wikipedia;11

10Hereafter we provide results for w2v only, as we found
that SVD achieved similar results.

11Filtered to consist of words for which we have embed-
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Relation Orig +neg
P R F P R F

LEXSEMHyper 0.95 0.92 0.93 0.99 0.84 0.91
LEXSEMMero 0.13 0.96 0.24 0.95 0.84 0.89
LEXSEMEvent 0.44 0.98 0.61 0.93 0.90 0.91
NOUNSP 0.95 0.68 0.8 1.00 0.68 0.81
VERB3 0.75 1.00 0.86 0.93 0.93 0.93
VERBPast 0.94 0.86 0.90 0.97 0.84 0.90
VERB3Past 0.76 0.95 0.84 0.87 0.93 0.90
PREFIX 1.00 0.29 0.44 1.00 0.13 0.23
NOUNColl 0.43 0.74 0.55 0.97 0.41 0.57

Table 5: Precision (P) and recall (R) for OPEN-
WORLD classification, using the binary classifier
without (“Orig”) and with (“+neg”) negative sam-
ples .

(2) take the Cartesian product over pairs of words
from the seed lexicon;

(3) sample word pairs uniformly from this set.
This procedure generates word pairs that are repre-
sentative of the frequency profile of our corpus.

We train 9 binary RBF-kernel SVM classifiers
on the training partition, and evaluate on our ran-
domly augmented test set. Fully annotating our
random word pairs is prohibitively expensive, so
instead, we manually annotated only the word pairs
which were positively classified by one of our mod-
els. The results of our experiments are presented
in the left half of Table 5, in which we report
on results over the combination of the original
test data from §5.1 and the random word pairs,
noting that recall (R) for OPEN-WORLD takes
the form of relative recall (Pantel et al., 2004)
over the positively-classified word pairs. The re-
sults are much lower than for the closed-word set-
ting (Table 4), most notably in terms of precision
(P). For instance, the random pairs (have,works),
(turn, took), and (works, started) were incorrectly
classified as VERB3, VERBPast and VERB3Past, re-
spectively. That is, the model captures syntax, but
lacks the ability to capture lexical paradigms, and
tends to overgenerate.

5.3 OPEN-WORLD Training with Negative
Sampling

To address the problem of incorrectly classifying
random word pairs as valid relations, we retrain the
classifier on a dataset comprising both valid and
automatically-generated negative distractor sam-
ples. The basic intuition behind this approach is
to construct samples which will force the model
to learn decision boundaries that more tightly cap-
ture the true scope of a given relation. To this end,
we automatically generated two types of negative

dings.

distractors:
opposite pairs: generated by switching the or-

der of word pairs, Opposw1 ,w2 = word1 −
word2. This ensures the classifier adequately
captures the asymmetry in the relations.

shuffled pairs: generated by replacing w2 with
a random word w′2 from the same relation,
Shuffw1 ,w2 = word′2 − word1. This is tar-
geted at relations that take specific word
classes in particular positions, e.g., (VB,VBD)
word pairs, so that the model learns to encode
the relation rather than simply learning the
properties of the word classes.

Both types of distractors are added to the train-
ing set, such that there are equal numbers of valid
relations, opposite pairs and shuffled pairs.

After training our classifier, we evaluate its pre-
dictions in the same way as in §5.2, using the same
test set combining related and random word pairs.12

The results are shown in the right half of Table 5 (as
“+neg”). Observe that the precision is much higher
and recall somewhat lower compared to the classi-
fier trained with only positive samples. This follows
from the adversarial training scenario: using nega-
tive distractors results in a more conservative classi-
fier, that correctly classifies the vast majority of the
random word pairs as not corresponding to a given
relation, resulting in higher precision at the expense
of a small drop in recall. Overall this leads to higher
F-scores, as shown in Figure 3, other than for hy-
pernyms (LEXSEMHyper) and prefixes (PREFIX).
For example, the standard classifier for NOUNColl
learned to match word pairs including an animal
name (e.g., (plague, rats)), while training with neg-
ative samples resulted in much more conservative
predictions and consequently much lower recall.
The classifier was able to capture (herd, horses) but
not (run, salmon), (party, jays) or (singular, boar)
as instances of NOUNColl, possibly because of poly-
semy. The most striking difference in performance
was for LEXSEMMero, where the standard classi-
fier generated many false positive noun pairs (e.g.
(series, radio)), but the false positive rate was con-
siderably reduced with negative sampling.

5.4 Lexical Memorisation

Weeds et al. (2014) and Levy et al. (2015b) re-
cently showed that supervised methods using DIFF-
VECs achieve artificially high results as a result of
“lexical memorisation” over frequent words asso-

12But noting that relative recall for the random word pairs
is based on the pool of positive predictions from both models.
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Figure 3: F-score for OPEN-WORLD classification,
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tive samples.
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Figure 4: Evaluation of the OPEN-WORLD model
when trained on split vocabulary, for varying num-
bers of random word pairs in the test dataset (ex-
pressed as a multiplier relative to the number of
CLOSED-WORLD test instances).

ciated with the hypernym relation. For example,
(animal, cat), (animal, dog), and (animal, pig) all
share the superclass animal, and the model thus
learns to classify as positive any word pair with
animal as the first word.

To address this effect, we follow Levy et al.
(2015b) in splitting our vocabulary into training and
test partitions, to ensure there is no overlap between
training and test vocabulary. We then train classi-
fiers with and without negative sampling (§5.3),
incrementally adding the random word pairs from
§5.2 to the test data (from no random word pairs
to five times the original size of the test data) to in-
vestigate the interaction of negative sampling with
greater diversity in the test set when there is a split
vocabulary. The results are shown in Figure 4.

Observe that the precision for the standard clas-

sifier decreases rapidly as more random word pairs
are added to the test data. In comparison, the pre-
cision when negative sampling is used shows only
a small drop-off, indicating that negative sampling
is effective at maintaining precision in an OPEN-
WORLD setting even when the training and test
vocabulary are disjoint. This benefit comes at the
expense of recall, which is much lower when neg-
ative sampling is used (note that recall stays rela-
tively constant as random word pairs are added, as
the vast majority of them do not correspond to any
relation). At the maximum level of random word
pairs in the test data, the F-score for the negative
sampling classifier is higher than for the standard
classifier.

6 Conclusions

This paper is the first to test the generalisability
of the vector difference approach across a broad
range of lexical relations (in raw number and also
variety). Using clustering we showed that many
types of morphosyntactic and morphosemantic dif-
ferences are captured by DIFFVECs, but that lexical
semantic relations are captured less well, a find-
ing which is consistent with previous work (Köper
et al., 2015). In contrast, classification over the
DIFFVECs works extremely well in a closed-world
setting, showing that dimensions of DIFFVECs en-
code lexical relations. Classification performs less
well over open data, although with the introduction
of automatically-generated negative samples, the
results improve substantially. Negative sampling
also improves classification when the training and
test vocabulary are split to minimise lexical mem-
orisation. Overall, we conclude that the DIFFVEC

approach has impressive utility over a broad range
of lexical relations, especially under supervised
classification.
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