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Abstract

Structured prediction from bandit feed-
back describes a learning scenario where
instead of having access to a gold standard
structure, a learner only receives partial
feedback in form of the loss value of a pre-
dicted structure. We present new learning
objectives and algorithms for this inter-
active scenario, focusing on convergence
speed and ease of elicitability of feed-
back. We present supervised-to-bandit
simulation experiments for several NLP
tasks (machine translation, sequence la-
beling, text classification), showing that
bandit learning from relative preferences
eases feedback strength and yields im-
proved empirical convergence.

1 Introduction

Structured prediction from partial information can
be described by the following learning protocol:
On each of a sequence of rounds, the learning al-
gorithm makes a prediction, and receives partial
information in terms of feedback on the predicted
point. This single-point feedback is used to con-
struct a parameter update that is an unbiased esti-
mate of the respective update rule for the full in-
formation objective. In difference to the full infor-
mation scenario, the learner does not know what
the correct prediction looks like, nor what would
have happened if it had predicted differently. This
learning scenario has been investigated under the
names of learning from bandit feedback1 or rein-

∗The work for this paper was done while the authors
were at Heidelberg University.

1The name is inherited from a model where in each round
a gambler pulls an arm of a different slot machine (“one-
armed bandit”), with the goal of maximizing his reward rel-
ative to the maximal possible reward, without apriori knowl-
edge of the optimal slot machine. See Bubeck and Cesa-
Bianchi (2012) for an overview.

forcement learning2, and has (financially) impor-
tant real world applications such as online adver-
tising (Chapelle et al., 2014). In this application,
the probability that an ad will be clicked (and the
advertiser has to pay) is estimated by trading off
exploration (a new ad needs to be displayed in or-
der to learn its click-through rate) and exploitation
(displaying the ad with the current best estimate
is better in the short term) in displaying ads to
users. Similar to the online advertising scenario,
there are many potential applications to interac-
tive learning in NLP. For example, in interactive
statistical machine translation (SMT), user feed-
back in form of post-edits of predicted transla-
tions is used for model adaptation (Bertoldi et al.,
2014; Denkowski et al., 2014; Green et al., 2014).
Since post-editing feedback has a high cost and
requires professional expertise of users, weaker
forms of feedback are desirable. Sokolov et al.
(2015) showed in a simulation experiment that
partial information in form of translation quality
judgements on predicted translations is sufficient
for model adaptation in SMT. However, one draw-
back of their bandit expected loss minimization al-
gorithm is the slow convergence speed, meaning
that impractically many rounds of user feedback
would be necessary for learning in real-world in-
teractive SMT. Furthermore, their algorithms re-
quires feedback in form of numerical assessments
of translation quality. Such absolute feedback is
arguably harder to elicit from human users than
relative judgements.

The goal of this work is a preparatory study
of different objectives and algorithms for struc-
tured prediction from partial information with
real-world interactive scenarios in mind. Since the
algorithm of Sokolov et al. (2015) can be charac-
terized as stochastic optimization of a non-convex

2See Szepesvári (2009) for an overview of algorithms for
reinforcement learning and their relation to bandit learning.
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objective, a possible avenue to address the prob-
lem of convergence speed is a (strong) convexifi-
cation of the learning objective, which we formal-
ize as bandit cross-entropy minimization. To the
aim of easing elicitability of feedback, we present
a bandit pairwise preference learning algorithm
that requires only relative feedback in the form of
pairwise preference rankings.

The focus of this paper is on an experimental
evaluation of the empirical performance and con-
vergence speed of the different algorithms. We
follow the standard practice of early stopping by
measuring performance on a development set, and
present results of an extensive evaluation on sev-
eral tasks with different loss functions, including
BLEU for SMT, Hamming loss for optical char-
acter recognition, and F1 score for chunking. In
our experiments, we use a standard supervised-
to-bandit transformation where a reward signal is
simulated by evaluating a task loss against gold
standard structures without revealing them to the
learning algorithm (Agarwal et al., 2014). From
the perspective of real-world interactive applica-
tions, bandit pairwise preference learning is the
preferred algorithm since it only requires compar-
ative judgements for learning. This type of rela-
tive feedback been shown to be advantageous for
human decision making (Thurstone, 1927). How-
ever, in our simulation experiments we found that
relative feedback also results in improved empir-
ical convergence speed for bandit pairwise pref-
erence learning. The picture of fastest empirical
convergence of bandit pairwise preference learn-
ing is consistent across different tasks, both com-
pared to bandit expected loss minimization and
bandit cross-entropy minimization. Given the im-
proved convergence and the ease of elicitability
of relative feedback, the presented bandit pairwise
preference learner is an attractive choice for inter-
active NLP tasks.

2 Related Work

Reinforcement learning (RL) has the goal of max-
imizing the expected reward for choosing an ac-
tion at a given state in a Markov Decision Pro-
cess (MDP) model, where rewards are received
at each state or once at the final state. The al-
gorithms in this paper can be seen as one-state
MDPs where choosing an action corresponds to
predicting a structured output. Most closely re-
lated are RL approaches that use gradient-based

optimization of a parametric policy for action se-
lection (Bertsekas and Tsitsiklis, 1996; Sutton et
al., 2000). Policy gradient approaches have been
applied to NLP tasks by Branavan et al. (2009),
Chang et al. (2015) or Ranzato et al. (2016).

Bandit learning operates in a similar scenario of
maximizing the expected reward for selecting an
arm of a multi-armed slot machine. Similar to our
case, the models consist of a single state, however,
arms are usually selected from a small set of op-
tions while structures are predicted over exponen-
tial output spaces. While bandit learning is mostly
formalized as online regret minimization with re-
spect to the best fixed arm in hindsight, we inves-
tigate asymptotic convergence of our algorithms.
In the spectrum of stochastic (Auer et al., 2002a)
versus adversarial bandits (Auer et al., 2002b), our
approach takes a middle path by making stochastic
assumptions on inputs, but not on rewards. Most
closely related are algorithms that optimize para-
metric models, e.g., contextual bandits (Langford
and Zhang, 2007; Li et al., 2010) or combinatorial
bandits (Dani et al., 2007; Cesa-Bianchi and Lu-
gosi, 2012). To the best of our knowledge, these
types of algorithms have not yet been applied in
the area of NLP.

Pairwise preference learning has been studied
in the full information supervised setting (see Her-
brich et al. (2000), Joachims (2002), Freund et
al. (2003), Cortes et al. (2007), Fürnkranz and
Hüllermeier (2010), inter alia) where given pref-
erence pairs are assumed. Stochastic optimization
from two-point (or multi-point) feedback has been
investigated in the framework of gradient-free op-
timization (see Yue and Joachims (2009), Agarwal
et al. (2010), Ghadimi and Lan (2012), Jamieson
et al. (2012), Duchi et al. (2015), inter alia), while
our algorithms can be characterized as stochastic
gradient descent algorithms.

3 Probabilistic Structured Prediction

3.1 Full Information vs. Bandit Feedback

The objectives and algorithms presented in this pa-
per are based on the well-known expected loss cri-
terion for probabilistic structured prediction (see
Och (2003), Smith and Eisner (2006), Gimpel and
Smith (2010), Yuille and He (2012), He and Deng
(2012), inter alia). The objective is defined as a
minimization of the expectation of a given task
loss function with respect to the conditional dis-
tribution over structured outputs. This criterion
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has the form of a continuous, differentiable, and in
general, non-convex objective function. More for-
mally, let X be a structured input space, let Y(x)
be the set of possible output structures for input x,
and let ∆y : Y → [0, 1] quantify the loss ∆y(y′)
suffered for predicting y′ instead of the gold stan-
dard structure y; as a rule, ∆y(y′) = 0 iff y = y′.
In the full information setting, for a data distri-
bution p(x, y), the learning criterion is defined as
minimization of the expected loss with respect to
w ∈ Rd where

Ep(x,y)pw(y′|x)

[
∆y(y′)

]
(1)

=
∑
x,y

p(x, y)
∑

y′∈Y(x)

∆y(y′)pw(y′|x).

Assume further that output structures given inputs
are distributed according to an underlying Gibbs
distribution (a.k.a. conditional exponential or log-
linear model)

pw(y|x) = exp(w>φ(x, y))/Zw(x),

where φ : X × Y → Rd is a joint feature rep-
resentation of inputs and outputs, w ∈ Rd is an
associated weight vector, and Zw(x) is a normal-
ization constant. For this model, the gradient of
objective (1) is as follows:

∇Ep(x,y)pw(y′|x)

[
∆y(y′)

]
= Ep(x,y)pw(y′|x)

[
∆y(y′)

(
φ(x, y′)

−Epw(y′|x)[φ(x, y′)]
) ]
. (2)

Unlike in the full information scenario, bandit
feedback in structured prediction means that the
gold standard output structure y, with respect to
which the objective function is evaluated, is not re-
vealed to the learner. Thus we can neither evaluate
the task loss ∆ nor calculate the gradient (2) of the
objective function (1). A solution to this problem
is to pass the evaluation of the loss function to the
user, i.e, we access the loss directly through user
feedback without assuming existence of a fixed
reference y. We indicate this by dropping the sub-
script referring to the gold standard structure in the
definition of ∆. In all algorithms presented below
we need to make the following assumptions:

1. We assume a sequence of input structures
xt, t = 1, . . . , T that are generated by a fixed,
unknown distribution p(x).

Algorithm 1 Bandit Expected Loss Minimization
1: Input: sequence of learning rates γt
2: Initialize w0

3: for t = 0, . . . , T do
4: Observe xt
5: Calculate Epwt (y|xt)[φ(xt, y)]
6: Sample ỹt ∼ pwt(y|xt)
7: Obtain feedback ∆(ỹt)
8: wt+1 = wt − γt ∆(ỹt)
9: ×(φ(xt, ỹt)− Epwt

[φ(xt, y)]
)

Algorithm 2 Bandit Pairwise Preference Learning
1: Input: sequence of learning rates γt
2: Initialize w0

3: for t = 0, . . . , T do
4: Observe xt
5: Calculate Epwt (〈yi,yj〉|xt)[φ(xt, 〈yi, yj〉)]
6: Sample 〈ỹi, ỹj〉t ∼ pwt(〈yi, yj〉 |xt)
7: Obtain feedback ∆(〈ỹi, ỹj〉t)
8: wt+1 = wt − γt ∆(〈ỹi, ỹj〉t)
9: ×(φ(xt, 〈ỹi, ỹj〉t)−Epwt

[φ(xt, 〈yi, yj〉)]
)

2. We use a Gibbs model as sampling distri-
bution to perform simultaneous exploitation
(use the current best estimate) / exploration
(get new information) on output structures.

3. We use feedback to the sampled output struc-
tures to construct a parameter update rule that
is an unbiased estimate of the true gradient of
the respective objective.

3.2 Learning Objectives and Algorithms

Bandit Expected Loss Minimization. Algo-
rithm 1 has been presented in Sokolov et al. (2015)
and minimizes the objective below by stochastic
gradient descent optimization. It is non-convex for
the specific instantiations in this paper:

Ep(x)pw(y|x) [∆(y)] (3)

=
∑
x

p(x)
∑

y∈Y(x)

∆(y)pw(y|x).

Intuitively, the algorithm compares the sampled
feature vector to the average feature vector, and
performs a step into the opposite direction of this
difference, the more so the higher the loss of the
sampled structure is. In the extreme case, if the
sampled structure is correct (∆(ỹt) = 0), no up-
date is performed.
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Algorithm 3 Bandit Cross-Entropy Minimization
1: Input: sequence of learning rates γt
2: Initialize w0

3: for t = 0, . . . , T do
4: Observe xt
5: Sample ỹt ∼ pwt(y|xt)
6: Obtain feedback g(ỹt)
7: wt+1 = wt − γt g(ỹt)

pwt (ỹt|xt)

8: ×(− φ(xt, ỹt) + Epwt
[φ(xt, ỹt)]

)
Bandit Pairwise Preference Learning. De-
composing complex problems into a series of pair-
wise comparisons has been shown to be advan-
tageous for human decision making (Thurstone,
1927) and for machine learning (Fürnkranz and
Hüllermeier, 2010). For our case, this idea can
be formalized as an expected loss objective with
respect to a conditional distribution of pairs of
structured outputs. Let P(x) = {〈yi, yj〉 |yi, yj ∈
Y(x)} denote the set of output pairs for an input
x, and let ∆(〈yi, yj〉) : P(x) → [0, 1] denote a
task loss function that specifies a dispreference of
yi compared to yj . Instantiating objective (3) to
the case of pairs of output structures defines the
following objective:

Ep(x)pw(〈yi,yj〉|x) [∆(〈yi, yj〉)] . (4)

Stochastic gradient descent optimization of this
objective leads to Algorithm 2. The objective
is again non-convex in the use cases in this pa-
per. Minimization of this objective will assure that
high probabilities are assigned to pairs with low
loss due to misranking yj over yi. Stronger as-
sumptions on the learned probability ranking can
be made if assumptions of transitivity and asym-
metry of the ordering of feedback structures are
made. For efficient sampling and calculation of
expectations, we assume a Gibbs model that fac-
torizes as follows:

pw(〈yi, yj〉 |x) =
ew
>(φ(x,yi)−φ(x,yj))∑

〈yi,yj〉∈P(x)

ew
>(φ(x,yi)−φ(x,yj))

= pw(yi|x)p−w(yj |x).

If a sample from the p−w distribution is preferred
over a sample from the pw distribution, this is a
strong signal for model correction.

Bandit Cross-Entropy Minimization. The
standard theory of stochastic optimization pre-
dicts considerable improvements in convergence

speed depending on the functional form of the
objective. This motivates the formalization of
convex upper bounds on expected normalized loss
as presented in Green et al. (2014). Their objec-
tive is based on a gain function g : Y → [0, 1]
(in this work, g(y) = 1 − ∆(y)) that is normal-
ized over n-best lists where ḡ(y) = g(y)

Zg(x) and
Zg(x) =

∑
y∈n-best(x) g(y). It can be seen as the

cross-entropy of model pw(y|x) with respect the
“true” distribution ḡ(y):

Ep(x)ḡ(y) [− log pw(y|x)] (5)

= −
∑
x

p(x)
∑

y∈Y(x)

ḡ(y) log pw(y|x).

For a proper probability distribution ḡ(y), an ap-
plication of Jensen’s inequality to the convex neg-
ative logarithm function shows that objective (5) is
a convex upper bound on objective (3). However,
normalizing the gain function is prohibitive in a
bandit setting since it would require to elicit user
feedback for each structure in the output space or
n-best list. We thus work with an unnormalized
gain function which sacrifices the upper bound but
preserves convexity. This can be seen by rewriting
the objective as the sum of a linear and a convex
function in w:

Ep(x)g(y) [− log pw(y|x)] (6)

= −
∑
x

p(x)
∑

y∈Y(x)

g(y)w>φ(x, y)

+
∑
x

p(x)(log
∑

y∈Y(x)

exp(w>φ(x, y)))α(x),

where α(x) =
∑

y∈Y(x) g(y) is a constant factor
not depending on w. The gradient of objective (6)
is as follows:

∇(−
∑
x

p(x)
∑

y∈Y(x)

g(y) log pw(y|x))

= Ep(x)ps(y|x)

[ g(y)
ps(y|x)

(− φ(x, y)

+ Epw(y|x)[φ(x, y)]
)]
.

Minimization of this objective will assign high
probabilities to structures with high gain, as de-
sired. Algorithm 3 minimizes this objective by
sampling from a distribution ps(y|x), receiving
feedback, and updating according to the ratio of
gain versus current probability of the sampled
structure. A positive ratio expresses a preference
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of the sampled structure under the gain function
compared to the current probability estimate. We
compare the sampled feature vector to the average
feature vector, and we update towards the sampled
feature vector relative to this ratio. We instanti-
ate ps(y|x) to the current update of pwt(y|x) in
order to present progressively more useful struc-
tures to the user. In contrast to Algorithms 1 and 2,
each update is thus affected by a probability that
changes over time and is unreliable when train-
ing is started. This further increases the variance
already present in stochastic optimization. We
deal with this problem by clipping too small sam-
pling probabilities (Ionides, 2008) or by reduc-
ing variance using momentum techniques (Polyak,
1964).

3.3 Remarks on Theoretical Analysis

Convergence of our algorithms can be analyzed
using results of standard stochastic approximation
theory. For example, Sokolov et al. (2015) analyze
the convergence of Algorithm 1 in the pseudogra-
dient framework of Polyak and Tsypkin (1973),
relying on the fact that a positive inner product of
the update vector with the gradient in expectation
suffices for convergence. Sokolov et al. (2016) an-
alyze convergence in the framework of stochas-
tic first-order optimization of Ghadimi and Lan
(2012), relying on the fact that the update vectors
of the algorithms are stochastic gradients of the
respective objectives, that is, the update vectors
are unbiased gradient measurements that equal the
gradient of the full information objective in expec-
tation. Note that the latter analysis covers the use
of constant learning rates.

Convergence speed is analyzed in standard
stochastic approximation theory in terms of the
number of iterations needed to reach an accuracy
of ε for a gradient-based criterion

E[‖∇J(wt)‖2] ≤ ε, (7)

where J(wt) denotes the objective to be mini-
mized. Following Ghadimi and Lan (2012), the
iteration complexity of the non-convex objectives
underlying our Algorithms 1 and 2 can be given
as O(1/ε2) (see Sokolov et al. (2016)). Algo-
rithm 3 can be seen as stochastic optimization
of a strongly convex objective that is attained
by adding an `2 regularizer λ

2‖w‖2 with constant
λ > 0 to objective (6). In the standard stochas-
tic approximation theory, the iteration complexity

of stochastic gradient algorithms using decreasing
learning rates can be given as O(1/ε) for an ob-
jective value-based criterion

E[J(wt)]− J(w∗) ≤ ε,

where w∗ = arg minw J(w) (Polyak, 1987). For
constant learning rates, even faster convergence
can be shown provided certain additional condi-
tions are met (Solodov, 1998).

While the asymptotic iteration complexity
bounds predict faster convergence for Algorithm 3
compared to Algorithms 1 and 2, and equal con-
vergence speed for the latter two, Sokolov et al.
(2016) show that the hidden constant of variance
of the stochastic gradient can offset this advan-
tage empirically. They find smallest variance of
stochastic updates and fastest empirical conver-
gence under the gradient-based criterion (7) for
Algorithm 2. In the next section we will present
experimental results that show similar relations of
fastest convergence of Algorithm 2 under a con-
vergence criterion based on task loss evaluation on
heldout data.

4 Experiments

Experimental design. Our experiments follow
an online learning protocol where on each of a se-
quence of rounds, an output structure is randomly
sampled, and feedback to it is used to update the
model (Shalev-Shwartz, 2012). We simulate ban-
dit feedback by evaluating ∆ against gold stan-
dard structures which are never revealed to the
learner (Agarwal et al., 2014). Training is started
from w0 = 0 or from an out-of-domain model
(for SMT).

Following the standard practice of early stop-
ping by performance evaluation on a development
set, we compute convergence speed as the num-
ber of iterations needed to find the point of op-
timal performance before overfitting on the de-
velopment set occurs. The convergence criterion
is thus based on the respective task loss func-
tion ∆(ŷwt(x)) under MAP prediction ŷw(x) =
arg maxy∈Y(x) pw(y|x), microaveraged on the de-
velopment data. This lets us compare conver-
gence across different objectives, and is justified
by the standard practice of performing online-to-
batch conversion by early stopping on a develop-
ment set (Littlestone, 1989), or by tolerant train-
ing to avoid overfitting (Solodov, 1998). As a
further measure for comparability of convergence
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task Algorithm 1 Algorithm 2 Algorithm 3
Text classification γt = 1.0 γt = 10−0.75 γt = 10−1

C
R

F OCR T0 = 0.4, γt = 10−3.5 T0 = 0.1, γt = 10−4 λ = 10−5, k = 10−2, γt = 10−6

Chunking γt = 10−4 γt = 10−4 λ = 10−6, k = 10−2, γt = 10−6

SM
T News (n-best, dense) γt = 10−5 γt = 10−4.75 λ = 10−4, µ = 0.99, γt = 10−6/

√
t

News (h-graph, sparse) γt = 10−5 γt = 10−4 λ = 10−6, k = 5 · 10−3, γt = 10−6

Table 1: Metaparameter settings determined on dev sets for constant learning rate γt, temperature co-
efficient T0 for annealing under the schedule T = T0/

3√epoch + 1 (Rose, 1998; Arun et al., 2010),
momentum coefficient min{1 − 1/(t/2 + 2), µ} (Polyak, 1964; Sutskever et al., 2013), clipping con-
stant k used to replace pwt(ỹt|xt) with max{pwt(ỹt|xt), k} in line 7 of Algorithm 3 (Ionides, 2008), `2
regularization constant λ. Unspecified parameters are set to zero.

speeds across algorithms, we employ small con-
stant learning rates in all experiments. The use
of constant learning rates for Algorithms 1 and 2
is justified by the analysis of Ghadimi and Lan
(2012). For Algorithm 3, the use of constant learn-
ing rates effectively compares convergence speed
towards an area in close vicinity of a local mini-
mum in the search phase of the algorithm (Bottou,
2004).

The development data are also used for meta-
parameter search. Optimal configurations are
listed in Table 1. Final testing was done by com-
puting ∆ on a further unseen test set using the
model found by online-to-batch conversion. For
bandit-type algorithms, final results are averaged
over 3 runs with different random seeds. For sta-
tistical significance testing of results against base-
lines we use Approximate Randomization testing
(Noreen, 1989).

Multiclass classification. Multiclass text clas-
sification on the Reuters RCV1 dataset (Lewis
et al., 2004) is a standard benchmark for (sim-
plified) structured prediction that has been used
in a bandit setup by Kakade et al. (2008). The
simplified problem uses a binary ∆ function in-
dicating incorrect assignment of one out of 4
classes. Following Kakade et al. (2008), we used
documents with exactly one label from the set
of labels {CCAT, ECAT, GCAT, MCAT} and con-
verted them to tfidf word vectors of dimension
244,805 in training. The data were split into
the sets train (509,381 documents from original
test pt[0-2].dat files), dev (19,486 docs:
every 8th entry from test pt3.dat and test
(19,806 docs from train.dat).

As shown in Table 2 (row 1), all loss results are
small and comparable since the task is relatively

easy. For comparison, the partial information
classification algorithm Banditron (Kakade et al.,
2008) (after adjusting the exploration/exploitation
constant on the dev set) scored 0.047 on the test
set. However, our main interest is in convergence
speed. Table 3 (row 1) shows that pairwise rank-
ing (Algorithm 2) yields fastest convergence by a
factor of 2-4 compared to the other bandit algo-
rithms. Table 1 confirms that this improvement
is not attributable to larger learning rates (Algo-
rithm 2 employs a similar or smaller learning rate
than Algorithms 1 and 3, respectively.)

Sequence labeling for OCR and chunking.
Handwritten optical character recognition (OCR)
is a standard benchmark task for structured pre-
diction (Taskar et al., 2003), where the Ham-
ming distance between the predicted word and
the gold standard labeling (normalized by word
length) is assumed as the ∆ function. We used
their dataset of 6,876 handwritten words, from 150
human subjects, under a split where 5,546 exam-
ples (folds 2-9) were used as train set, 704 exam-
ples (fold 1) as dev, and 626 (fold 0) as test set.
We assumed the classical linear-chain Conditional
Random Field (CRF) (Lafferty et al., 2001) model
with input images xi at every ith node, tabular
state-transition probabilities between 28 possible
labels of the (i − 1)th and ith node (Latin letters
plus two auxiliary start and stop states).3

To test the CRF-based model also with sparse
features, we followed Sha and Pereira (2003) in
applying CRFs to the noun phrase chunking task

3The feature set is composed of a 16 × 8 binary pixel
representation for each character, yielding 28×16×8+282 =
4, 368 features for the training set. We based our code on the
pystruct kit (Müller and Behnke, 2014).
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task gain/loss full information partial information
Alg. 1 Alg. 2 Alg. 3

Text classification 0/1 ↓ percep., λ = 10−6 0.040 0.0306±0.0004 0.083±0.002 0.035±0.001

C
R

F OCR (dense) Hamming ↓ likelihood 0.099 0.261±0.003 0.332±0.011 0.257±0.004

Chunking (sparse) F1-score ↑ likelihood 0.935 0.923±0.002 0.914±0.002 0.891±0.005

out-of-domain in-domain Alg. 1 Alg. 2 Alg. 3

SM
T News (n-best list, dense)

BLEU ↑ 0.2588 0.2841 0.2689±0.0003 0.2745±0.0004 0.2763±0.0005

News (hypergraph, sparse) 0.2651 0.2831 0.2667±0.00008 0.2733±0.0005 0.2713±0.001

Table 2: Test set evaluation for full information lower and upper bounds and partial information bandit
learners (expected loss, pairwise loss, cross-entropy). ↑ and ↓ indicate the direction of improvement for
the respective evaluation metric.

on the CoNLL-2000 dataset4. We split the origi-
nal training set into a dev set (top 1,000 sent.) and
used the rest as train set (7,936 sent.); the test set
was kept intact (2,012 sent.). For an input sentence
x, each CRF node xi carries an observable word
and its part-of-speech tag, and has to be assigned
a chunk tag ci out of 3 labels: Beginning, Inside,
or Outside (of a noun phrase). Chunk labels are
not nested. As in Sha and Pereira (2003), we use
second order Markov dependencies (bigram chunk
tags), such that for sentence position i, the state is
yi = ci−1ci, increasing the label set size from 3
to 9. Out of the full list of Sha and Pereira (2003)’s
features we implemented all except two feature
templates, yi = y and c(yi) = c, to simplify im-
plementation. Impossible bigrams (OI) and label
transitions of the pattern ?O → I? were prohib-
ited by setting the respective potentials to−∞. As
the active feature count in the train set was just un-
der 2M, we hashed all features and weights into a
sparse array of 2M entries. Despite the reduced
train size and feature set, and hashing, our full in-
formation baseline trained with log-likelihood at-
tained the test F1-score of 0.935, which is compa-
rable to the original result of 0.9438.

Table 2 (rows 2-3) and Table 3 (rows 2-3) show
evaluation and convergence results for the OCR
and chunking tasks. For the chunking task, the F1-
score results obtained for bandit learning are close
to the full-information baseline. For the OCR task,
bandit learning does decrease Hamming loss, but
it does not quite achieve full-information perfor-
mance. However, pairwise ranking (Algorithm 2)
again converges faster than the alternative bandit
algorithms by a factor of 2-4, despite similar learn-
ing rates for Algorithms 1 and 2 and a compensa-

4http://www.cnts.ua.ac.be/conll2000/
chunking/

task Alg. 1 Alg. 2 Alg. 3
Text classification 2.0M 0.5M 1.1M

C
R

F OCR 14.4M 9.3M 37.9M
Chunking 7.5M 4.7M 5.9M

SM
T News (n-best, dense) 3.8M 1.2M 1.2M

News (h-graph, sparse) 370k 115k 281k

Table 3: Number of iterations required to meet
stopping criterion on development data.

tion of smaller learning rates in Algorithm 3 by
variance reduction and regularization.

Discriminative ranking for SMT. Following
Sokolov et al. (2015), we apply bandit learning
to simulate personalized MT where a given SMT
system is adapted to user style and domain based
on feedback to predicted translations. We per-
form French-to-English domain adaptation from
Europarl to NewsCommentary domains using the
data of Koehn and Schroeder (2007). One differ-
ence of our experiment compared to Sokolov et
al. (2015) is our use of the SCFG decoder cdec
(Dyer et al., 2010) (instead of the phrase-based
Moses decoder). Furthermore, in addition to ban-
dit learning for re-ranking on unique 5,000-best
lists, we perform ranking on hypergraphs with re-
decoding after each update. Sampling and com-
putation of expectations on the hypergraph uses
the Inside-Outside algorithm over the expectation
semiring (Li and Eisner, 2009). The re-ranking
model used 15 dense features (6 lexicalized re-
ordering features, two (out-of- and in-domain) lan-
guage models, 5 translation model features, dis-
tortion and word penalty). The hypergraph ex-
periments used additionally lexicalized sparse fea-
tures: rule-id features, rule source and target bi-
gram features, and rule shape features.
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Figure 1: Learning curves for task loss BLEU on development data for SMT hypergraph re-decoding
models, together with averages over three runs of the respective algorithms.

For all SMT experiments we tokenized, lower-
cased and aligned words using cdec tools, trained
4-gram in-domain and out-of-domain language
models (on the English sides of Europarl and
in-domain NewsCommentary) For dense feature
models, the out-of-domain baseline SMT model
was trained on 1.6M parallel Europarl data and
tuned with cdec’s lattice MERT (Och, 2003)
on out-of-domain Europarl dev2006 dev set
(2,000 sent.). The full-information in-domain
SMT model tuned by MERT on news in-domain
sets (nc-dev2007, 1,057 sent.) gives the range
of possible improvements by the difference of
its BLEU score to the one of the out-of-domain
model (2.5 BLEU points). For sparse feature
models, in-domain and out-of-domain baselines
were trained on the same data using MIRA (Chi-
ang, 2012). The in-domain MIRA model contains
133,531 active features, the out-of-domain MIRA
model 214,642. MERT and MIRA runs for both
settings were repeated 7 times and median results
are reported.

Learning under bandit feedback starts at the
learned weights of the out-of-domain median
models. It uses the parallel in-domain data
(news-commentary, 40,444 sent.) to simu-
late bandit feedback, by evaluating the sampled
translation against the reference using as loss func-
tion ∆ a smoothed per-sentence 1 − BLEU (zero
n-gram counts being replaced with 0.01). For
pairwise preference learning we use binary feed-

back resulting from the comparison of the BLEU
scores of the sampled translations. To speed up
training for hypergraph re-decoding, the train-
ing instances were reduced to those with at most
60 words (38,350 sent.). Training is distributed
across 38 shards using multitask-based feature se-
lection for sparse models (Simianer et al., 2012),
where after each epoch of distributed training,
the top 10k features across all shards are se-
lected, all other features are set to zero. The
meta-parameters were adjusted on the in-domain
dev sets (nc-devtest2007, 1,064 parallel sen-
tences). The final results are obtained on separate
in-domain test sets (nc-test2007, 2,007 sen-
tences) by averaging three independent runs for
the optimal dev set meta-parameters.

The results for n-best re-ranking in Table 2
(4th row) show statistically significant improve-
ments of 1-2 BLEU points over the out-of-domain
SMT model (that includes an in-domain language
model) for all bandit learning methods, confirm-
ing the results of Sokolov et al. (2015) for a differ-
ent decoder. Similarly, the results for hypergraph
re-coding with sparse feature models (row 5 in
Table 2) show significant improvements over the
out-of-domain baseline for all bandit learners. Ta-
ble 3 (row 4) shows the convergence speed for n-
best re-ranking, which is similar for Algorithms 2
and 3, and improved over Algorithm 1 by a factor
of 3. For hypergraph re-decoding, Table 3 (row 5)
shows fastest convergence for Algorithm 2 com-
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pared to Algorithms 1 and 3 by a factor of 2-4.5

Again, we note that for both n-best re-ranking and
hypergraph re-decoding, learning rates are similar
for Algorithms 1 and 2, and smaller learning rates
in Algorithm 3 are compensated by variance re-
duction or regularization.

Figure 1 shows the learning curves of BLEU for
SMT hypergraph re-decoding on the development
set that were used to find the stopping points. For
each algorithm, we show learning curves for three
runs with different random seeds, together with an
average learning curve. We see that Algorithm 2,
optimizing the pairwise preference ranking objec-
tive, reaches the stopping point of peak perfor-
mance on development data fastest, followed by
Algorithms 1 and 3. Furthermore, the larger vari-
ance of the runs of Algorithm 3 is visible, despite
the smallest learning rate used.

5 Conclusion

We presented objectives and algorithms for struc-
tured prediction from bandit feedback, with a fo-
cus on improving convergence speed and ease of
elicitability of feedback. We investigated the per-
formance of all algorithms by test set performance
on different tasks, however, the main interest of
this paper was a comparison of convergence speed
across different objectives by early stopping on a
convergence criterion based on heldout data per-
formance. Our experimental results on different
NLP tasks showed a consistent advantage of con-
vergence speed under this criterion for bandit pair-
wise preference learning. In light of the standard
stochastic approximation analysis, which predicts
a convergence advantage for strongly convex ob-
jectives over convex or non-convex objectives, this
result is surprising. However, the result can be ex-
plained by considering important empirical factors
such as the variance of stochastic updates. Our
experimental results support the numerical results
of smallest stochastic variance and fastest conver-
gence in gradient norm (Sokolov et al., 2016) by
consistent fastest empirical convergence for ban-
dit pairwise preference learning under the criterion
of early stopping on heldout data performance.
Given the advantages of faster convergence and
the fact that only relative feedback in terms of
comparative evaluations is required, bandit pair-

5The faster convergence speed hypergraph re-decoding
compared to n-best re-ranking is due to the distributed feature
selection and thus orthogonal to the comparison of objective
functions that is of interest here.

wise preference learning is a promising framework
for future real-world interactive learning.
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