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Abstract

Tree-structured neural networks exploit
valuable syntactic parse information as
they interpret the meanings of sentences.
However, they suffer from two key techni-
cal problems that make them slow and un-
wieldy for large-scale NLP tasks: they usu-
ally operate on parsed sentences and they
do not directly support batched computa-
tion. We address these issues by introduc-
ing the Stack-augmented Parser-Interpreter
Neural Network (SPINN), which combines
parsing and interpretation within a single
tree-sequence hybrid model by integrating
tree-structured sentence interpretation into
the linear sequential structure of a shift-
reduce parser. Ourmodel supports batched
computation for a speedup of up to 25×
over other tree-structured models, and its
integrated parser can operate on unparsed
data with little loss in accuracy. We evalu-
ate it on the Stanford NLI entailment task
and show that it significantly outperforms
other sentence-encoding models.

1 Introduction

A wide range of current models in NLP are built
around a neural network component that produces
vector representations of sentence meaning (e.g.,
Sutskever et al., 2014; Tai et al., 2015). This com-
ponent, the sentence encoder, is generally formu-
lated as a learned parametric function from a se-
quence of word vectors to a sentence vector, and
this function can take a range of different forms.
Common sentence encoders include sequence-
based recurrent neural networkmodels (RNNs, see
Figure 1a)with Long Short-TermMemory (LSTM,
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Figure 1: An illustration of two standard designs
for sentence encoders. The TreeRNN, unlike the
sequence-based RNN, requires a substantially dif-
ferent connection structure for each sentence, mak-
ing batched computation impractical.

Hochreiter and Schmidhuber, 1997), which ac-
cumulate information over the sentence sequen-
tially; convolutional neural networks (Kalchbren-
ner et al., 2014; Zhang et al., 2015), which accu-
mulate information using filters over short local se-
quences of words or characters; and tree-structured
recursive neural networks (TreeRNNs, Goller and
Küchler, 1996; Socher et al., 2011a, see Figure 1b),
which propagate information up a binary parse tree.
Of these, the TreeRNN appears to be the prin-

cipled choice, since meaning in natural language
sentences is known to be constructed recursively
according to a tree structure (Dowty, 2007, i.a.).
TreeRNNs have shown promise (Tai et al., 2015;
Li et al., 2015; Bowman et al., 2015b), but have

1466



buffer down
sat

stack
cat
the

composition

tracking
transition

reduce

down
sat

the cat composition

tracking
transition

shift

down

sat
the cat

tracking

(a) The SPINNmodel unrolled for two transitions during the processing of the sentence the cat sat down. ‘Tracking’, ‘transition’,
and ‘composition’ are neural network layers. Gray arrows indicate connections which are blocked by a gating function.
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(b) The fully unrolled SPINN for the cat sat down, with neural network layers omitted for clarity.

Figure 2: Two views of the Stack-augmented Parser-Interpreter Neural Network (SPINN).

largely been overlooked in favor of sequence-
based RNNs because of their incompatibility with
batched computation and their reliance on external
parsers. Batched computation—performing syn-
chronized computation across many examples at
once—yields order-of-magnitude improvements in
model run time, and is crucial in enabling neural
networks to be trained efficiently on large datasets.
Because TreeRNNs use a different model structure
for each sentence, as in Figure 1, efficient batching
is impossible in standard implementations. Partly
to address efficiency problems, standard TreeRNN
models commonly only operate on sentences that
have already been processed by a syntactic parser,
which slows and complicates the use of these mod-
els at test time for most applications.

This paper introduces a new model to address
both these issues: the Stack-augmented Parser-
Interpreter Neural Network, or SPINN, shown in
Figure 2. SPINN executes the computations of a
tree-structured model in a linearized sequence, and
can incorporate a neural network parser that pro-
duces the required parse structure on the fly. This
design improves upon the TreeRNN architecture
in three ways: At test time, it can simultaneously
parse and interpret unparsed sentences, removing
the dependence on an external parser at nearly no
additional computational cost. Secondly, it sup-
ports batched computation for both parsed and un-
parsed sentences, yielding dramatic speedups over

standard TreeRNNs. Finally, it supports a novel
tree-sequence hybrid architecture for handling lo-
cal linear context in sentence interpretation. This
model is a basically plausible model of human sen-
tence processing and yields substantial accuracy
gains over pure sequence- or tree-based models.
We evaluate SPINNon the StanfordNatural Lan-

guage Inference entailment task (SNLI, Bowman
et al., 2015a), and find that it significantly out-
performs other sentence-encoding-based models,
even with a relatively simple and underpowered
implementation of the built-in parser. We also find
that SPINN yields speed increases of up to 25×
over a standard TreeRNN implementation.

2 Related work
There is a fairly long history of work on building
neural network-based parsers that use the core op-
erations and data structures from transition-based
parsing, of which shift-reduce parsing is a variant
(Henderson, 2004; Emami and Jelinek, 2005; Titov
and Henderson, 2010; Chen and Manning, 2014;
Buys and Blunsom, 2015; Dyer et al., 2015; Kiper-
wasser and Goldberg, 2016). In addition, there has
been recent work proposing models designed pri-
marily for generative language modeling tasks that
use this architecture as well (Zhang et al., 2016;
Dyer et al., 2016). To our knowledge, SPINN is
the first model to use this architecture for the pur-
pose of sentence interpretation, rather than parsing
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or generation.
Socher et al. (2011a,b) present versions of the

TreeRNN model which are capable of operating
over unparsed inputs. However, these methods re-
quire an expensive search process at test time. Our
model presents a much faster alternative approach.

3 Our model: SPINN
3.1 Background: Shift-reduce parsing
SPINN is inspired by shift-reduce parsing (Aho
and Ullman, 1972), which builds a tree structure
over a sequence (e.g., a natural language sentence)
by a single left-to-right scan over its tokens. The
formalism is widely used in natural language pars-
ing (e.g., Shieber, 1983; Nivre, 2003).
A shift-reduce parser accepts a sequence of

input tokens x = (x0, . . . , xN−1) and consumes
transitions a = (a0, . . . , aT−1), where each at ∈
{shift, reduce} specifies one step of the parsing
process. In general a parsermay also generate these
transitions on the fly as it reads the tokens. It pro-
ceeds left-to-right through a transition sequence,
combining the input tokens x incrementally into
a tree structure. For any binary-branching tree
structure over N words, this requires T = 2N − 1
transitions through a total of T + 1 states.
The parser uses two auxiliary data structures:

a stack S of partially completed subtrees and a
buffer B of tokens yet to be parsed. The parser
is initialized with the stack empty and the buffer
containing the tokens x of the sentence in order.
Let 〈S, B〉 = 〈∅, x〉 denote this starting state. It next
proceeds through the transition sequence, where
each transition at selects one of the two following
operations. Below, the | symbol denotes the cons
(concatenation) operator. We arbitrarily choose to
always cons on the left in the notation below.
shift: 〈S, x | B〉 → 〈x | S, B〉. This operation

pops an element from the buffer and pushes it
on to the top of the stack.

reduce: 〈x | y | S, B〉 → 〈(x, y) | S, B〉. This
operation pops the top two elements from the
stack, merges them, and pushes the result back
on to the stack.

3.2 Composition and representation
SPINN is based on a shift-reduce parser, but it is
designed to produce a vector representation of a
sentence as its output, rather than a tree as in stan-
dard shift-reduce parsing. It modifies the shift-
reduce formalism by using fixed length vectors to

represent each entry in the stack and the buffer.
Correspondingly, its reduce operation combines
two vector representations from the stack into an-
other vector using a neural network function.

The composition function When a reduce op-
eration is performed, the vector representations of
two tree nodes are popped off of the stack and fed
into a composition function, which is a neural net-
work function that produces a representation for a
new tree node that is the parent of the two popped
nodes. This new node is pushed on to the stack.
The TreeLSTM composition function (Tai et al.,

2015) generalizes the LSTM neural network layer
to tree- rather than sequence-based inputs, and it
shares with the LSTM the idea of representing in-
termediate states as a pair of an active state repre-
sentation ~h and a memory representation ~c. Our
version is formulated as:



~i
~f l
~fr
~o
~g


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~c = ~f l � ~c 2
s +

~fr � ~c 1
s +

~i � ~g(2)
~h = ~o � ~c(3)

whereσ is the sigmoid activation function, � is the
elementwise product, the pairs 〈~h1s, ~c 1

s 〉 and 〈~h2s, ~c 2
s 〉

are the two input tree nodes popped off the stack,
and ~e is an optional vector-valued input argument
which is either empty or comes from an external
source like the tracking LSTM (see Section 3.3).
The result of this function, the pair 〈~h, ~c〉, is placed
back on the stack. Each vector-valued variable
listed is of dimension D except ~e, of the indepen-
dent dimension Dtracking.

The stack and buffer The stack and the buffer
are arrays of N elements each (for sentences of up
to N words), with the two D-dimensional vectors
~h and ~c in each element.

Word representations We use word represen-
tations based on the 300D vectors provided with
GloVe (Pennington et al., 2014). We do not update
these representations during training. Instead, we
use a learned linear transformation to map each in-
put word vector ~xGloVe into a vector pair 〈~h, ~c〉 that
is stored in the buffer:

(4)
[
~h
~c

]
= Wwd~xGloVe + ~bwd

1468



3.3 The tracking LSTM
In addition to the stack, buffer, and composition
function, our full model includes an additional
component: the tracking LSTM. This is a simple
sequence-based LSTM RNN that operates in tan-
dem with the model, taking inputs from the buffer
and stack at each step. It is meant to maintain a
low-resolution summary of the portion of the sen-
tence that has been processed so far, which is used
for two purposes: it supplies feature representa-
tions to the transition classifier, which allows the
model to stand alone as a parser, and it additionally
supplies a secondary input ~e to the composition
function—see (1)—allowing context information
to enter the construction of sentence meaning and
forming what is effectively a tree-sequence hybrid
model.
The tracking LSTM’s inputs (yellow in Figure 2)

are the top element of the buffer ~h1
b
(which would

be moved in a shift operation) and the top two
elements of the stack ~h1s and ~h2s (which would be
composed in a reduce operation).

Why a tree-sequence hybrid? Lexical ambigu-
ity is ubiquitous in natural language. Most words
have multiple senses or meanings, and it is gener-
ally necessary to use the context in which a word
occurs to determine which of its senses or mean-
ings is meant in a given sentence. Even though
TreeRNNs are more effective at composing mean-
ings in principle, this ambiguity can give simpler
sequence-based sentence-encoding models an ad-
vantage: when a sequence-based model first pro-
cesses a word, it has direct access to a state vec-
tor that summarizes the left context of that word,
which acts as a cue for disambiguation. In con-
trast, when a standard tree-structured model first
processes a word, it only has access to the con-
stituent that the word is merging with, which is
often just a single additional word. Feeding a con-
text representation from the tracking LSTM into
the composition function is a simple and efficient
way tomitigate this disadvantage of tree-structured
models. Using left linear context to disambiguate
is also a plausible model of human interpretation.
It would be straightforward to augment SPINN

to support the use of some amount of right-side
context as well, but this would add complexity to
the model that we think is largely unnecessary:
humans are very effective at understanding the be-
ginnings of sentences before having seen or heard
the ends, suggesting that it is possible to get by

without the unavailable right-side context.

3.4 Parsing: Predicting transitions
For SPINN to operate on unparsed inputs, it needs
to produce its own transition sequence a rather
than relying on an external parser to supply it as
part of the input. To do this, the model predicts
at at each step using a simple two-way softmax
classifier whose input is the state of the tracking
LSTM:

(5) ~pa = softmax(Wtrans~htracking + ~btrans)

The above model is nearly the simplest viable im-
plementation of a transition decision function. In
contrast, the decision functions in state-of-the-art
transition-based parsers tend to use significantly
richer feature sets as inputs, including features con-
taining information about several upcoming words
on the buffer. The value ~htracking is a function of
only the very top of the buffer and the top two stack
elements at each timestep.
At test time, the model uses whichever transi-

tion (i.e., shift or reduce) is assigned a higher
(unnormalized) probability. The prediction func-
tion is trained to mimic the decisions of an external
parser. These decisions are used as inputs to the
model during training. For SNLI, we use the bi-
nary Stanford PCFGParser parses that are included
with the corpus. We did not find scheduled sam-
pling (Bengio et al., 2015)—having the model use
its own transition decisions sometimes at training
time—to help.

3.5 Implementation issues
Representing the stack efficiently A naïve im-
plementation of SPINN needs to handle a size
O(N ) stack at each timestep, any element of which
may be involved in later computations. A naïve
backpropagation implementation would then re-
quire storing each of the O(N ) stacks for a back-
ward pass, leading to a per-example space require-
ment of O(NT D) floats. This requirement is pro-
hibitively large for significant batch sizes or sen-
tence lengths N . Such a naïve implementation
would also require copying a largely unchanged
stack at each timestep, since each shift or reduce
operation writes only one new representation to the
top of the stack.
We propose a space-efficient stack representa-

tion inspired by the zipper technique (Huet, 1997)
that we call thin stack. For each input sentence, we
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Algorithm 1 The thin stack algorithm
1: function Step(bufferTop, a, t, S, Q)
2: if a = shift then
3: S[t] := bufferTop
4: else if a = reduce then
5: right := S[Q.pop()]
6: left := S[Q.pop()]
7: S[t] := Compose(left, right)
8: Q.push(t)

represent the stack with a single T × D matrix S.
Each row S[t] (for 0 < t ≤ T) represents the top of
the actual stack at timestep t. At each timestep we
can shift a new element onto the stack, or reduce
the top two elements of the stack into a single ele-
ment. To shift an element from the buffer to the top
of the stack at timestep t, we simply write it into
the location S[t]. In order to perform the reduce
operation, we need to retrieve the top two elements
of the actual stack. We maintain a queue Q of
pointers into S which contains the row indices of
S which are still present in the actual stack. The
top two elements of the stack can be found by us-
ing the final two pointers in the queue Q. These
retrieved elements are used to perform the reduce
operation, which modifies Q to mark that some
rows of S have now been replaced in the actual
stack. Algorithm 1 describes the full mechanics of
a stack feedforward in this compressed representa-
tion. It operates on the single T × D matrix S and
a backpointer queue Q. Table 1 shows an example
run.

This stack representation requires substantially
less space. It stores each element involved in the
feedforward computation exactly once, meaning
that this representation can still support efficient
backpropagation. Furthermore, all of the updates
to S and Q can be performed batched and in-place
on a GPU, yielding substantial speed gains over
both a more naïve SPINN implementation and a
standard TreeRNN implementation. We describe
speed results in Section 3.7.

Preparing the data At training time, SPINN re-
quires both a transition sequence a and a token
sequence x as its inputs for each sentence. The
token sequence is simply the words in the sentence
in order. a can be obtained from any constituency
parse for the sentence by first converting that parse
into an unlabeled binary parse, then linearizing it
(with the usual in-order traversal), then taking each

t S[t] Qt at

0 shift
1 Spot 1 shift
2 sat 1 2 shift
3 down 1 2 3 reduce
4 (sat down) 1 4 reduce
5 (Spot (sat down)) 5

Table 1: The thin-stack algorithm operating on
the input sequence x = (Spot, sat, down) and the
transition sequence shown in the rightmost column.
S[t] shows the top of the stack at each step t. The
last two elements of Q (underlined) specify which
rows t would be involved in a reduce operation at
the next step.

word token as a shift transition and each ‘)’ as a
reduce transition, as here:

Unlabeled binary parse: ( ( the cat ) ( sat down ) )
x: the, cat, sat, down
a: shift, shift, reduce, shift, shift, reduce, reduce

Handling variable sentence lengths For any
sentence model to be trained with batched com-
putation, it is necessary to pad or crop sentences to
a fixed length. We fix this length at N = 25 words,
longer than about 98% of sentences in SNLI. Tran-
sition sequences a are cropped at the left or padded
at the left with shifts. Token sequences x are then
cropped or padded with empty tokens at the left
to match the number of shifts added or removed
from a, and can then be padded with empty tokens
at the right to meet the desired length N .

3.6 TreeRNN-equivalence

Without the addition of the tracking LSTM, SPINN
(in particular the SPINN-PI-NT variant, for parsed
input, no tracking) is precisely equivalent to a con-
ventional tree-structured neural network model in
the function that it computes, and therefore it also
has the same learning dynamics. In both, the rep-
resentation of each sentence consists of the repre-
sentations of the words combined recursively using
a TreeRNN composition function (in our case, the
TreeLSTM function). SPINN, however, is dramat-
ically faster, and supports both integrated parsing
and a novel approach to context through the track-
ing LSTM.
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3.7 Inference speed
In this section, we compare the test-time speed of
our SPINN-PI-NT with an equivalent TreeRNN
implemented in the conventional fashion and with
a standard RNN sequence model. While the
full models evaluated below are implemented and
trained using Theano (Theano Development Team,
2016), which is reasonably efficient but not perfect
for our model, we wish to compare well-optimized
implementations of all three models. To do this,
we reimplement the feedforward1 of SPINN-PI-NT
and an LSTM RNN baseline in C++/CUDA, and
compare that implementation with a CPU-based
C++/Eigen TreeRNN implementation from Irsoy
and Cardie (2014), which we modified to perform
exactly the same computations as SPINN-PI-NT.2
TreeRNNs like this can only operate on a single
example at a time and are thus poorly suited for
GPU computation.
Each model is restricted to run on sentences of

30 tokens or fewer. We fix the model dimension D
and the word embedding dimension at 300. We run
the CPU performance test on a 2.20 GHz 16-core
Intel Xeon E5-2660 processor with hyperthreading
enabled. We test our thin-stack implementation
and the RNN model on an NVIDIA Titan X GPU.
Figure 3 compares the sentence encoding speed

of the three models on random input data. We ob-
serve a substantial difference in runtime between
the CPU and thin-stack implementations that in-
creases with batch size. With a large but practical

1We chose to reimplement and evaluate only the feedfor-
ward/inference pass, as inference speed is the relevant perfor-
mance metric for most practical applications.

2The original code for Irsoy & Cardie’s model is avail-
able at https://github.com/oir/deep-recursive. Our
optimized C++/CUDA models and the Theano source code
for the full SPINN are available at https://github.com/
stanfordnlp/spinn.

batch size of 512, the largest on which we tested
the TreeRNN, our model is about 25× faster than
the standard CPU implementation, and about 4×
slower than the RNN baseline.
Though this experiment only covers SPINN-

PI-NT, the results should be similar for the full
SPINN model: most of the computation involved
in running SPINN is involved in populating the
buffer, applying the composition function, and
manipulating the buffer and the stack, with the
low-dimensional tracking and parsing components
adding only a small additional load.

4 NLI Experiments
We evaluate SPINN on the task of natural lan-
guage inference (NLI, a.k.a. recognizing textual
entailment, or RTE; Dagan et al., 2006). NLI is a
sentence pair classification task, in which a model
reads two sentences (a premise and a hypothesis),
and outputs a judgment of entailment, contradic-
tion, or neutral, reflecting the relationship between
the meanings of the two sentences. Below is an ex-
ample sentence pair and judgment from the SNLI
corpus which we use in our experiments:
Premise: Girl in a red coat, blue head wrap and jeans is
making a snow angel.

Hypothesis: A girl outside plays in the snow.
Label: entailment
SNLI is a corpus of 570k human-labeled pairs of

scene descriptions like this one. We use the stan-
dard train–test split and ignore unlabeled exam-
ples, which leaves about 549k examples for train-
ing, 9,842 for development, and 9,824 for testing.
SNLI labels are roughly balanced, with the most
frequent label, entailment, making up 34.2% of the
test set.
Although NLI is framed as a simple three-way

classification task, it is nonetheless an effective
way of evaluating the ability of a model to ex-
tract broadly informative representations of sen-
tence meaning. In order for a model to perform
reliably well on NLI, it must be able to represent
and reason with the core phenomena of natural lan-
guage semantics, including quantification, corefer-
ence, scope, and several types of ambiguity.

4.1 Applying SPINN to SNLI
Creating a sentence-pair classifier To classify
an SNLI sentence pair, we run two copies of SPINN
with shared parameters: one on the premise sen-
tence and another on the hypothesis sentence. We
then use their outputs (the ~h states at the top of each
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Param. Range Strategy RNN SP.-PI-NT SP.-PI SP.

Initial LR 2 × 10−4–2 × 10−2 log 5 × 10−3 3 × 10−4 7 × 10−3 2 × 10−3
L2 regularization λ 8 × 10−7–3 × 10−5 log 4 × 10−6 3 × 10−6 2 × 10−5 3 × 10−5
Transition cost α 0.5–4.0 lin — — — 3.9
Embedding transformation dropout 80–95% lin — 83% 92% 86%
Classifier MLP dropout 80–95% lin 94% 94% 93% 94%
Tracking LSTM size Dtracking 24–128 log — — 61 79
Classifier MLP layers 1–3 lin 2 2 2 1

Table 2: Hyperparameter ranges and values. Range shows the hyperparameter ranges explored during
random search. Strategy indicateswhether sampling from the rangewas uniform, or log-uniform. Dropout
parameters are expressed as keep rates rather than drop rates.

stack at time t = T) to construct a feature vector
~xclassifier for the pair. This feature vector consists
of the concatenation of these two sentence vec-
tors, their difference, and their elementwise prod-
uct (following Mou et al., 2016):

(6) ~xclassifier =



~hpremise
~hhypothesis

~hpremise − ~hhypothesis
~hpremise � ~hhypothesis



This feature vector is then passed to a series of
1024D ReLU neural network layers (i.e., an MLP;
the number of layers is tuned as a hyperparameter),
then passed into a linear transformation, and then
finally passed to a softmax layer, which yields a
distribution over the three labels.

The objective function Our objective combines
a cross-entropy objective Ls for the SNLI classifi-
cation task, cross-entropy objectivesLt

p andLt
h for

the parsing decision for each of the two sentences
at each step t, and an L2 regularization term on the
trained parameters. The terms are weighted using
the tuned hyperparameters α and λ:

(7) Lm =Ls + α

T−1∑
t=0

(Lt
p + Lt

h) + λ‖θ‖22

Initialization, optimization, and tuning We
initialize the model parameters using the nonpara-
metric strategy of He et al. (2015), with the excep-
tion of the softmax classifier parameters, which
we initialize using random uniform samples from
[−0.005, 0.005].

We use minibatch SGD with the RMSProp op-
timizer (Tieleman and Hinton, 2012) and a tuned
starting learning rate that decays by a factor of 0.75
every 10k steps. We apply both dropout (Srivas-
tava et al., 2014) and batch normalization (Ioffe

and Szegedy, 2015) to the output of the word em-
bedding projection layer and to the feature vectors
that serve as the inputs and outputs to the MLP that
precedes the final entailment classifier.

We train each model for 250k steps in each run,
using a batch size of 32. We track each model’s
performance on the development set during train-
ing and save parameters when this performance
reaches a new peak. We use early stopping, eval-
uating on the test set using the parameters that
perform best on the development set.

We use random search to tune the hyperparame-
ters of each model, setting the ranges for search for
each hyperparameter heuristically (and validating
the reasonableness of the ranges on the develop-
ment set), and then launching eight copies of each
experiment each with newly sampled hyperparam-
eters from those ranges. Table 2 shows the hyper-
parameters used in the best run of each model.

4.2 Models evaluated

We evaluate four models. The four all use the
sentence-pair classifier architecture described in
Section 4.1, and differ only in the function com-
puting the sentence encodings. First, a single-
layer LSTM RNN (similar to that of Bowman
et al., 2015a) serves as a baseline encoder. Next,
the minimal SPINN-PI-NT model (equivalent to a
TreeLSTM) introduces the SPINN model design.
SPINN-PI adds the tracking LSTM to that design.
Finally, the full SPINN adds the integrated parser.

We compare our models against several base-
lines, including the strongest published non-neural
network-based result from Bowman et al. (2015a)
and previous neural network models built around
several types of sentence encoders.
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Model Params. Trans. acc. (%) Train acc. (%) Test acc. (%)

Previous non-NN results
Lexicalized classifier (Bowman et al., 2015a) — — 99.7 78.2

Previous sentence encoder-based NN results
100D LSTM encoders (Bowman et al., 2015a) 221k — 84.8 77.6
1024D pretrained GRU encoders (Vendrov et al., 2016) 15m — 98.8 81.4
300D Tree-based CNN encoders (Mou et al., 2016) 3.5m — 83.4 82.1

Our results
300D LSTM RNN encoders 3.0m — 83.9 80.6
300D SPINN-PI-NT (parsed input, no tracking) encoders 3.4m — 84.4 80.9
300D SPINN-PI (parsed input) encoders 3.7m — 89.2 83.2
300D SPINN (unparsed input) encoders 2.7m 92.4 87.2 82.6

Table 3: Results on SNLI 3-way inference classification. Params. is the approximate number of trained
parameters (excluding word embeddings for all models). Trans. acc. is the model’s accuracy in predicting
parsing transitions at test time. Train and test are SNLI classification accuracy.

4.3 Results
Table 3 shows our results on SNLI. For the full
SPINN, we also report a measure of agreement be-
tween this model’s parses and the parses included
with SNLI, calculated as classification accuracy
over transitions averaged across timesteps.
We find that the bare SPINN-PI-NT model per-

forms little better than the RNN baseline, but that
SPINN-PIwith the added tracking LSTMperforms
well. The success of SPINN-PI, which is the hy-
brid tree-sequence model, suggests that the tree-
and sequence-based encoding methods are at least
partially complementary, with the sequence model
presumably providing useful local word disam-
biguation. The full SPINN model with its rela-
tively weak internal parser performs slightly less
well, but nonetheless robustly exceeds the perfor-
mance of the RNN baseline.
Both SPINN-PI and the full SPINN significantly

outperform all previous sentence-encoding mod-
els. Most notably, these models outperform the
tree-based CNN of Mou et al. (2016), which also
uses tree-structured composition for local feature
extraction, but uses simpler pooling techniques
to build sentence features in the interest of effi-
ciency. Our results show that a model that uses
tree-structured composition fully (SPINN) outper-
forms one which uses it only partially (tree-based
CNN), which in turn outperforms one which does
not use it at all (RNN).
The full SPINN performed moderately well at

reproducing the Stanford Parser’s parses of the
SNLI data at a transition-by-transition level, with
92.4% accuracy at test time.3 However, its transi-

3Note that this is scoring the model against automatic

tion prediction errors are fairly evenly distributed
across sentences, and most sentences were as-
signed partially invalid transition sequences that
either left a few words out of the final representa-
tion or incorporated a few padding tokens into the
final representation.

4.4 Discussion
The use of tree structure improves the performance
of sentence-encodingmodels for SNLI.We suspect
that this improvement is largely due to the more ef-
ficient learning of accurate generalizations overall,
and not to any particular few phenomena. How-
ever, some patterns are identifiable in the results.
While all four models under study have trouble

with negation, the tree-structured SPINN models
do quite substantially better on these pairs. This
is likely due to the fact that parse trees make the
scope of any instance of negation (the portion of
the sentence’s content that is negated) relatively
easy to identify and separate from the rest of the
sentence. For test set sentence pairs like the one
below where negation (not or n’t) does not appear
in the premise but does appear in the hypothesis,
the RNN shows 67% accuracy, while all three tree-
structured models exceed 73%. Only the RNN got
the below example wrong:
Premise: The rhythmic gymnast completes her floor exer-
cise at the competition.

Hypothesis: The gymnast cannot finish her exercise.
Label: contradiction
Note that the presence of negation in the hypothesis
is correlated with a label of contradiction in SNLI,
but not as strongly as one might intuit—only 45%
of these examples in the test set are labeled as

parses, not a human-judged gold standard.
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contradictions.
In addition, it seems that tree-structured mod-

els, and especially the tree-sequence hybrid mod-
els, are more effective than RNNs at extracting in-
formative representations of long sentences. The
RNN model falls off in test accuracy more quickly
with increasing sentence length than SPINN-PI-
NT, which in turn falls of substantially faster than
the two hybrid models, repeating a pattern seen
more dramatically on artificial data in Bowman
et al. (2015b). On pairs with premises of 20 or
more words, the RNN’s 76.7% accuracy, while
SPINN-PI reaches 80.2%. All three SPINN mod-
els labeled the following example correctly, while
the RNN did not:
Premise: A man wearing glasses and a ragged costume
is playing a Jaguar electric guitar and singing with the
accompaniment of a drummer.

Hypothesis: A man with glasses and a disheveled outfit is
playing a guitar and singing along with a drummer.

Label: entailment
We suspect that the hybrid nature of the full

SPINN model is also responsible for its surpris-
ing ability to perform better than an RNN baseline
even when its internal parser is relatively ineffec-
tive at producing correct full-sentence parses. It
may act somewhat like the tree-based CNN, only
with access to larger trees: using tree structure to
build up local phrase meanings, and then using the
tracking LSTM, at least in part, to combine those
meanings.
Finally, as is likely inevitable for models evalu-

ated on SNLI, all four models under study did sev-
eral percent worse on test examples whose ground
truth label is neutral than on examples of the
other two classes. Entailment–neutral and neu-
tral–contradiction confusions appear to be much
harder to avoid than entailment–contradiction con-
fusions, where relatively superficial cues might be
more readily useful.

5 Conclusions and future work

We introduce amodel architecture (SPINN-PI-NT)
that is equivalent to a TreeLSTM, but an order of
magnitude faster at test time. We expand that archi-
tecture into a tree-sequence hybrid model (SPINN-
PI), and show that this yields significant gains on
the SNLI entailment task. Finally, we show that
it is possible to exploit the strengths of this model
without the need for an external parser by inte-
grating a fast parser into the model (as in the full
SPINN), and that the lack of external parse infor-

mation yields little loss in accuracy.
Because this paper aims to introduce a general

purpose model for sentence encoding, we do not
pursue the use of soft attention (Bahdanau et al.,
2015; Rocktäschel et al., 2016), despite its demon-
strated effectiveness on the SNLI task.4 However,
we expect that it should be possible to produc-
tively combine our model with soft attention to
reach state-of-the-art performance.
Our tracking LSTM uses only simple, quick-to-

compute features drawn from the head of the buffer
and the head of the stack. It is plausible that giv-
ing the tracking LSTM access to more information
from the buffer and stack at each step would allow
it to better represent the context at each tree node,
yielding both better parsing and better sentence
encoding. One promising way to pursue this goal
would be to encode the full contents of the stack
and buffer at each time step following the method
used by Dyer et al. (2015).
For a more ambitious goal, we expect that

it should be possible to implement a variant of
SPINN on top of a modified stack data structure
with differentiable push and pop operations (as
in Grefenstette et al., 2015; Joulin and Mikolov,
2015). This would make it possible for the model
to learn to parse using guidance from the se-
mantic representation objective, which currently is
blocked from influencing the key parsing param-
eters by our use of hard shift/reduce decisions.
This change would allow the model to learn to pro-
duce parses that are, in aggregate, better suited to
supporting semantic interpretation than those sup-
plied in the training data.
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