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Abstract

Event extraction is a particularly chal-
lenging information extraction task,
which intends to identify and classify
event triggers and arguments from raw
text. In recent works, when determining
event types (trigger classification), most
of the works are either pattern-only
or feature-only. However, although
patterns cannot cover all representations
of an event, it is still a very important
feature. In addition, when identifying
and classifying arguments, previous
works consider each candidate argument
separately while ignoring the relationship
between arguments. This paper proposes
a Regularization-Based Pattern Balancing
Method (RBPB). Inspired by the progress
in representation learning, we use trigger
embedding, sentence-level embedding and
pattern features together as our features
for trigger classification so that the effect
of patterns and other useful features can
be balanced. In addition, RBPB uses a
regularization method to take advantage
of the relationship between arguments.
Experiments show that we achieve results
better than current state-of-art equivalents.

1 Introduction

Event extraction has become a popular research
topic in the area of information extraction. ACE
2005 defines event extraction task1 as three
sub-tasks: identifying the trigger of an event,
identifying the arguments of the event, and
distinguishing their corresponding roles. As an
example in Figure 1, there is an “Attack” event

1http://www.itl.nist.gov/iad/mig/tests/ace/2005/

triggered by “tear through” with three arguments.
Each argument has one role.

In the trigger classification stage, some
previous approaches (Grishman et al., 2005; Ji
and Grishman, 2008; Liao and Grishman, 2010;
Huang and Riloff, 2012) use patterns to decide the
types of event triggers. However, pattern-based
approaches suffer from low recall since real
world events usually have a large variety of
representations. Some other approaches (Hong
et al., 2011; Li et al., 2013; Lu and Roth, 2012)
identify and classify event triggers using a large
set of features without using patterns. Although
these features can be very helpful, patterns are
still indispensable in many cases because they can
identify a trigger with the correct event type with
more than 96% accuracy according to our data
analysis on ACE 2005 data sets.

In argument identification and classification,
most approaches identify each candidate argument
separately without considering the relation
between arguments. We define two kinds of
argument relations here: (1) Positive correlation:
if one candidate argument belongs to one event,
then the other is more likely to belong to the
same event. For example, in Figure 1, the entity
“a waiting shed” shares a common dependency
head “tore” with “a powerful bomb”, so when
the latter entity is identified as an argument, the
former is more likely to be identified. (2) Negative
correlation: if one candidate argument belongs to
one event, then the other is less likely to belong
to the same event. For example, in Figure 1,
“bus” is irrelevant to other arguments, so if other
entities are identified as arguments “bus” is less
likely to be identified. Note that although all the
above relation examples have something to do
with dependency analysis, the positive/negative
relationship depends not only on dependency
parsing, but many other aspects as well.
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A powerful bomb tore through a waiting shed at the Davao airport while another explosion hit a bus  

        Trigger

Event type:Attack

         Arg1

Role: Instrument

       Arg2

Role: Target

      Arg3

Role: Place

Figure 1: Event example: This is an event trigger by “tear through” with three arguments

In this paper, we propose using both patterns
and elaborately designed features simultaneously
to identify and classify event triggers. In
addition, we propose using a regularization
method to model the relationship between
candidate arguments to improve the performance
of argument identification. Our method is called
Regularization-Based Pattern Balancing Method
method.

The contributions of this paper are as follows:

• Inspired by the progress of representation
learning, we use trigger embedding,
sentence-level embedding, and pattern
features together as the our features for
balancing.

• We proposed a regularization-based method
in order to make use of the relationship be-
tween candidate arguments. Our experiments
on the ACE 2005 data set show that the reg-
ularization method does improve the perfor-
mance of argument identification.

2 Related Work

There is a large body of previous work devoted to
event extraction. Many traditional works focus on
using pattern based methods for identifying event
type (Kim and Moldovan, 1993; Riloff and others,
1993; Soderland et al., 1995; Huffman, 1996;
Freitag, 1998b; Ciravegna and others, 2001; Califf
and Mooney, 2003; Riloff, 1996; Riloff et al.,
1999; Yangarber et al., 2000; Sudo et al., 2003;
Stevenson and Greenwood, 2005; Grishman et al.,
2005; Ji and Grishman, 2008; Liao and Grishman,
2010; Huang and Riloff, 2012). (Shinyama and
Sekine, 2006; Sekine, 2006) are unsupervised
methods of extracting patterns from open domain
texts. Pattern is not always enough, although
some methods (Huang and Riloff, 2012; Liu and
Strzalkowski, 2012) use bootstrapping to get more
patterns.

There are also feature-based classification
methods (Freitag, 1998a; Chieu and Ng, 2002;
Finn and Kushmerick, 2004; Li et al., 2005; Yu
et al., 2005). Apart from the above methods,
weakly supervised training (pattern-based and
rule-based) of event extraction systems have
also been explored (Riloff, 1996; Riloff et al.,
1999; Yangarber et al., 2000; Sudo et al., 2003;
Stevenson and Greenwood, 2005; Patwardhan
and Riloff, 2007; Chambers and Jurafsky, 2011).
In some of these systems, human work is needed
to delete some nonsense patterns or rules. Other
methods (Gu and Cercone, 2006; Patwardhan
and Riloff, 2009) consider broader context when
deciding on role fillers. Other systems take
the whole discourse feature into consideration,
such as (Maslennikov and Chua, 2007; Liao
and Grishman, 2010; Hong et al., 2011; Huang
and Riloff, 2011). Ji and Grishman (2008) even
consider topic-related documents, proposing a
cross-document method. (Liao and Grishman,
2010; Hong et al., 2011) use a series of global
features (for example, the occurrence of one
event type lead to the occurrence of another) to
improve role assignment and event classification
performance. Joint models (Li et al., 2013; Lu
and Roth, 2012) are also considered an effective
solution. (Li et al., 2013) make full use of the
lexical and contextual features to get better results.
The semi-CRF based method (Lu and Roth, 2012)
trains separate models for each event type, which
requires a lot of training data.

The dynamic multi-pooling convolutional neu-
ral network (DMCNN) (Chen et al., 2015) is cur-
rently the only widely used deep neural network
based approach. DMCNN is mainly used to model
contextual features. However, DMCNN still does
not consider argument-argument interactions.

In summary, most of the above works are
either pattern-only or features-only. Moreover,
all of these methods consider arguments sepa-
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rately while ignoring the relationship between
arguments, which is also important for argument
identification. Even the joint method (Li et
al., 2013) does not model argument relations
directly. We use trigger embedding, sentence-
level embedding, and pattern features together as
our features for trigger classification and design
a regularization-based method to solve the two
problems.

3 ACE Event Extraction Task

Automatic Content Extraction (ACE) is an event
extraction task. It annotates 8 types and 33 sub-
types of events. ACE defines the following termi-
nologies:

• Entity: an object or a set of objects in one of
the semantic categories of interest

• Entity mention: a reference to an entity, usu-
ally a noun phrase (NP)

• Event trigger: the main word which most
clearly expresses an event occurrence

• Event arguments: the entity mentions that are
involved in an event

• Argument roles: the relation of arguments to
the event where they participate, with 35 total
possible roles

• Event mention: a phrase or sentence within
which an event is described, including trigger
and arguments

Given an English document, an event extraction
system should identify event triggers with their
subtypes and arguments from each sentence.
An example is shown in Figure 1. There is an
“Attack” event triggered by “tear through” with
three arguments. Each argument has a role type
such as “Instrument”, “Target”, etc.

For evaluation, we follow previous works (Ji
and Grishman, 2008; Liao and Grishman, 2010;
Li et al., 2013) to use the following criteria to
determine the correctness of the predicted event
mentions.

• A trigger is considered to be correct if and
only if its event type and offsets (position in
the sentence) can match the reference trigger;

• An argument is correctly identified if and on-
ly if its event type and offsets can match any
reference arguments;

• An argument is correctly identified and clas-
sified if and only if its event type, offsets, and
role match any of the reference arguments.

4 Baseline: JET Extractor for Events

Many previous works take JET as their baseline
system, including (Ji and Grishman, 2008), (Liao
and Grishman, 2010), (Li et al., 2013). JET
extracts events independently for each sentence.
This system uses pattern matching to predict
trigger and event types, then uses statistical
modeling to identify and classify arguments.
For each event mention in the training corpus
of ACE, the patterns are constructed based on
the sequences of constituent heads separating
the trigger and arguments. After that, three
Maximum Entropy classifiers are trained using
lexical features.

• Argument Classifier: to distinguish argu-
ments from non-arguments

• Role Classifier: to label arguments with an
argument role

• Reportable-Event Classifier: to determine
whether there is a reportable event mentioned
(worth being taken as an event mention)
according to the trigger, event type, and a set
of arguments

Figure 2(a) shows the whole test procedure. In
the test procedure, each sentence is scanned for
nouns, verbs and adjectives as trigger candidates.
When a trigger candidate is found, the system
tries to match the context of the trigger against the
set of patterns associated with that trigger. If this
pattern matching process is successful, the best
pattern will assign some of the entity mentions
in the sentence as arguments of a potential event
mention. Then JET uses the argument classifier to
judge if the remaining entity mentions should also
be identified. If yes, JET uses the role classifier
to assign it a role. Finally, the reportable-event
classifier is applied to decide whether this event
mention should be reported.

5 Regularization-Based Pattern
Balancing Method

Different with JET, as illustrated in Figure 2(b),
our work introduces two major improvements: (1)
balance the effect of patterns and other features (2)
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... In Baghdad, a cameraman died when ...

n, v, adj: trigger candidate

trigger = died find best pattern①

get arguments & roles

yes

MaxEnt for argument② MaxEnt for role③

MaxEnt for reportable event④

(a) The flow chart of JET

... In Baghdad, a cameraman died when ...

n, v, adj: trigger candidate

trigger = died

SVM for Event type①

MaxEnt for argument② MaxEnt for role③

Regularization

MaxEnt for reportable event④

(b) The flow chart of our approach

Figure 2: The left is the flow chart for JET. The right is the flow chart for our approach. The thick line
block is our contribution

use a regularization-based method to make full use
of the relation between candidate arguments.

The thick-edge blocks in Figure 2(b) represent
our improvements. Since JET only uses pattern-
s when predicting the event type, we use a SVM
classifier to decide each candidate trigger’s even-
t type (classify the trigger). This classifier uses
trigger embedding, sentence-level embedding and
pattern features together for balancing. After the
outputs of argument and role classifier are calcu-
lated, we make use of the argument relationship to
regularize for a better result.

5.1 Balancing the Pattern effects

Deciding the event type is the same as classifying
an event trigger. JET only uses patterns in this
step: for a candidate trigger, we find that the
best matched pattern and the corresponding
event type are assigned to this trigger. We
propose using feature-based methods while not
ignoring the effect of patterns. Inspired by
progress in representation learning, we use trigger
embedding, sentence-level embedding and pattern
embedding together as our features.

A pattern example is as follows:

(weapon) tore [through] (building) at
(place)⇒ Attack{Roles...}

where each pair of round brackets represents an
entity and the word inside is one of the 18 entity

types defined by UIUC NER Tool2. The word in
the square brackets can choose to exist or not. Af-
ter the right arrow there is an event schema, which
can tell us what kind of event this is and which
roles each entity should take.

Each pattern has a corresponding event type. A
candidate trigger may match more than one pattern
so that it has an event type distribution. Assume
that there are NT event types in total, we denote
the pattern feature vector (namely, the event type’s
probability distribution calculated by the trigger’s
pattern set) as PE ∈ RNT , which is calculated by
Eq 1.

PE(i) =
#(matched patterns of event type i)

#(all matched patterns)
(1)

Trigger embeddings are obtained using WORD2VEC3

with the default “text8” training text data with
length 200.

Since all of the NPs are potential roles in the
event, they must contain the main information of
the event. We extract all the NPs in the sentence
and take the average word embedding of these
NPs’ head word as the sentence-level embedding.
For example, in Figure 1, these NPs’ head words
are bomb, shed, and airport.

Pattern feature vectors, as distributions of event
types over patterns, are also composed using

2http://cogcomp.cs.illinois.edu/page/software view/NETagger
3http://code.google.com/p/word2vec/
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continuous real values, which allows them to be
viewed as a kind of pattern embedding and treated
similarly to trigger and sentence embedding.

5.2 Capturing the Relationship Between
Arguments

We find that there are two typical relations
between candidate arguments: (1) positive
correlation: if one candidate argument belongs to
one event, then the other is more likely to belong
to the same event; (2) negative correlation: if one
candidate argument belongs to one event, then the
other is less likely to belong to the same event.

We calculate a score for all the candidate
arguments in a sentence to judge the quality of
the argument identification and classification. For
capturing the two kinds of relations, we intend
to make that (1) the more positive relations the
chosen arguments have, the higher the score is; (2)
the more negative relations the chosen arguments
have, the lower the score is.

For a trigger, if there are n candidate arguments,
we set a n × n matrix C to represent the relation-
ship between arguments. If Ci,j = 1, then argu-
ment i and argument j should belong to the same
event. If Ci,j = −1, then argument i and argu-
ment j cannot belong to the same event. We will
illustrate how to get matrix C in the next section.

We use a n-dim vector X to represent the iden-
tification result of arguments. Each entry of X is 0
or 1. 0 represents “noArg”, 1 represents “arg”. X
can be assigned by maximizing E(X) as defined
by Eq 2.

X = argmax
X

E(X)

E(X) = λ1X
T CX + λ2P

arg
sum

+ (1− λ1 − λ2)P role
sum

(2)

Here, XT CX means adding up all the relationship
values if the two arguments are identified. Hence,
the more the identified arguments are related, the
larger the value XT CX is. P arg

sum is the sum of
all chosen arguments’ probabilities. The proba-
bility here is the output of the arguments’ max-
imum entropy classifier. P role

sum is the sum of all
the classified roles’ probabilities. The probability
here is the output of the roles’ maximum entropy
classifier.

Eq 2 shows that while we should identify and
classify the candidate arguments with a larger
probability, the argument relationship evaluation

should also be as large as possible. The arguments
should also follow the following constraints.
These constraints together with Eq 2 can make
the argument identification and classification help
each other for a better result.

• Each entity can only take one role

• Each role can belong to one or more entities

• The role assignment must follow the event
schema of the corresponding type, which
means that only the roles in the event schema
can occur in the event mention

We use the Beam Search method to search for the
optimal assignment X as is shown in Algorithm 1.
The hyperparameters λ1 and λ2 can be chosen ac-
cording to development set.

Input: Argument relationship matrix: C
the argument probabilities required by

P arg
sum

the role probabilities required by P role
sum

Data: K: Beam size
n: Number of candidate arguments

Output: The best assignment X
Set beam B ← [ϵ] ;
for i← 1 · · ·n do

buf← {z′ ◦ l|z′ ∈ B, l ∈ {0, 1}};
B ← [ϵ] ;
while j ← 1 · · ·K do

xbest = argmaxx∈buf E(x);
B ← B ∪ {xbest};
buf←buf−{xbest};

end
end
Sort B descendingly according to E(X);
return B[0];

Algorithm 1: Beam Search decoding algorith-
m for event extraction. ◦means to concatenate
an element to the end of a vector.

5.2.1 Training the Argument Relationship
Structure

The argument relationship matrix C is very im-
portant in the regularization process. We train a
maximum entropy classifier to predict the connec-
tion between two entities. We intend to classify the
entity pairs into three classes: positive correlation,
negative correlation, and unclear correlation. The
entity pairs in the ground truth events (in training
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data) are used for our training data. We choose the
following features:

• TRIGGER: the trigger of the event. The
whole model is a pipelined model, so when
classifying the argument relationship, the
trigger has been identified and classified. So
the “trigger” is a feature of the argument
relation.

• ENTITY DISTANCE: the distance between
the two candidate arguments in the sentence,
namely the number of intervening words

• Whether the two candidate arguments occur
on the same side of the trigger

• PARENT DEPENDENCY DISTANCE: the dis-
tance between the two candidate arguments’
parents in the dependency parse tree, namely,
the path length.

• PARENT POS: if the two candidate ar-
guments share the same parent, take the
common parent’s POS tag as a feature

• Whether the two candidate arguments occur
on the same side of the common parent if the
two candidate arguments share the same par-
ent

For an entity pair, if both of the entities belong to
the same event’s arguments, we take it as positive
example. For each positive example, we randomly
exchange one of the entities with an irrelevant en-
tity (an irrelevant entity is in the same sentence as
the event, but it is not the event’s argument) to get
a negative example. In the testing procedure, we
predict the relationship between entity i and entity
j using the maximum entropy classifier.

When the output of the maximum entropy
classifier is around 0.5, it is not easy to figure
out whether it is the first relation or the second.
We call this kind of information “uncertain
information”(unclear correlation). For better per-
formance, we strengthen the certain information
and weaken the uncertain information. We set two
thresholds, if the output of the maximum entropy
classifier is larger than 0.8, we set Ci,j = 1
(positive correlation), if the output is lower than
0.2, we set Ci,j = −1 (negative correlation),
otherwise, we set Ci,j = 0 (unclear correlation).
The strengthen mapping is similar to the hard
tanh in neural network. If we do not do this,

according to the experiment, the performance
cannot beat most of the baselines since the
uncertain information has very bad noise.

6 Experiments

6.1 Data
We utilize ACE 2005 data sets as our testbed. As is
consistent with previous work, we randomly select
10 newswire texts from ACE 2005 training corpo-
ra as our development set, and then conduct blind
test on a separate set of 40 ACE 2005 newswire
texts. The remaining 529 documents in ACE train-
ing corpus are used as the training data.

The training dataset of the argument relation-
ship matrix contains 5826 cases (2904 positive and
2922 negative) which are randomly generated ac-
cording to the ground truth in the 529 training doc-
uments.

6.2 Systems to Compare
We compare our system against the following sys-
tems:

• JET is the baseline of (Grishman et al.,
2005), we report the paper values of this
method;

• Cross-Document is the method proposed
by Ji and Grishman (2008), which uses
topic-related documents to help extract
events in the current document;

• Cross-Event is the method proposed by Liao
and Grishman (2010), which uses document-
level information to improve the performance
of ACE event extraction.

• Cross-Entity is the method proposed by
Hong et al. (2011), which extracts events
using cross-entity inference.

• Joint is the method proposed by Li et al.
(2013), which extracts events based on
structure prediction. It is the best-reported
structure-based system.

• DMCNN is the method proposed by Chen
et al. (2015), which uses a dynamic multi-
pooling convolutional neural network to
extract events. It is the only neural network
based method.

The Cross-Document, Cross-Event and Cross-
Entity are all extensions of JET. Among these
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Method
Trigger Argument Argument

Classification Identification Role
P R F1 P R F1 P R F1

JET 67.6 53.5 59.7 46.5 37.2 41.3 41.0 32.8 36.5
Cross-Event 68.7 68.9 68.8 50.9 49.7 50.3 45.1 44.1 44.6
Cross-Entity 72.9 64.3 68.3 53.4 52.9 53.1 51.6 45.5 48.3
Joint 73.7 62.3 67.5 69.8 47.9 56.8 64.7 44.4 52.7
DMCNN 75.6 63.6 69.1 68.8 51.9 59.1 62.2 46.9 53.5
RBPB(JET) 62.3 59.9 61.1 50.4 45.8 48.0 41.9 36.5 39.0
+ ET 66.7 65.9 66.3 60.6 56.7 58.6 49.2 48.3 48.7
+ Regu 67.2 61.7 64.3 62.8 57.5 60.0 52.6 48.4 50.4
+ ET + Regu 70.3 67.5 68.9 63.2 59.4 61.2 54.1 53.5 53.8

Table 1: Overall performance with gold-standard entities, timex, and values, the candidate arguments
are annotated in ACE 2005. “ET” means the pattern balancing event type classifier, “Regu” means the
regularization method

methods, Cross-Event, Cross-Entity, and DM-
CNN make use of the gold-standard entities,
timex, and values annotated in the corpus as the
argument candidates. Cross-Document uses the
JET system to extract candidate arguments. Li
et al. (2013) report the performance with both
gold-standard argument candidates and predicted
argument candidates. Therefore, we compare
our results with methods based on gold argument
candidates in Table 1 and methods based on
predicted argument candidates in Table 2.

We have done a series of ablation experiments:

• RBPB(JET): Our own implementation of
JET

• RBPB(JET) + ET: Add pattern balanced
event type classifier to RBPB(JET)

• RBPB(JET) + Regu: Add regularization
mechanism to RBPB(JET)

• RBPB(JET) + ET + Regu: Add both pattern
balanced event type classifier and regulariza-
tion mechanism to RBPB(JET)

6.2.1 The Selection of Hyper-parameters
We tune the coefficients λ1 and λ2 of Eq 2 on the
development set, and finally we set λ1 = 0.10 and
λ2 = 0.45. Figure 3 shows the variation of ar-
gument identification’s F1 measure and argument
classification’s F1 measure when we fix one pa-
rameter and change another. Note that the third
coefficient 1− λ1 − λ2 must be positive, which is
the reason why the curve decreases sharply when
λ2 is fixed and λ1 > 0.65. Therefore, Figure 3

illustrates that the robustness of our method is very
good, which means if the hyperparameters λ1, λ2

are larger or smaller, it will not affect the result
very much.

6.3 Experiment Results

We conduct experiments to answer the following
questions. (1) Can pattern balancing lead to
a higher performance in trigger classification,
argument identification, and classification while
retaining the precision value? (2) Can the
regularization step improve the performance of
argument identification and classification?

Table 1 shows the overall performance on the
blind test set. We compare our results with the
JET baseline as well as the Cross-Event, Cross-
Entity, and joint methods. When adding the event
type classifier, in the line titled “+ ET”, we see a
significant increase in the three measures over the
JET baseline in recall. Although our trigger’s pre-
cision is lower than RBPB(JET), it gains 5.2% im-
provement on the trigger’s F1 measure, 10.6% im-
provement on argument identification’s F1 mea-
sure and 9.7% improvement on argument classifi-
cation’s F1 measure. We also test the performance
with argument candidates automatically extracted
by JET in Table 2, our approach “+ ET” again sig-
nificantly outperforms the JET baseline. Remark-
ably, our result is comparable with the Joint model
although we only use lexical features.

The line titled “+ Regu” in Table 1 and Table 2
represents the performance when we only use the
regularization method. In Table 1, Compared to
the four baseline systems, the argument identifi-
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Method Trigger F1 Arg id F1 Arg id+cl F1

JET 59.7 42.5 36.6
Cross-Document 67.3 46.2 42.6
Joint 65.6 - 41.8
RBPB(JET) 60.4 44.3 37.1
+ ET 66.0 47.8 39.7
+ Regu 64.8 54.6 42.0
+ ET + Regu 67.8 55.4 43.8

Table 2: Overall performance with predicted entities, timex, and values, the candidate arguments are
extracted by JET. “ET” is the pattern balancing event type classifier, “Regu” is the regularization method
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Figure 3: The trend graph when fix one coefficient and change another

cation’s F1 measure of “+ Regu” is significantly
higher. In Table 2, the “+ Regu” again gains a
higher F1 measure than the JET, Cross-Document,
joint model baseline and “+ ET”.

The complete approach is denoted as “RBPB”
in Table 1 and Table 2. Remarkably, our approach
performances comparable in trigger classification
with the state-of art methods: Cross-Document,
Cross-Event, Cross-Entity, Joint model, DMCNN
and significantly higher than them in argument
identification as well as classification although
we did not use the cross-document, cross-event
information or any global feature. Therefore,
the relationship between argument candidates
can indeed contribute to argument identification
performance. The event type classifier also
contributes a lot in trigger identification &
classification. We do the Wilcoxon Signed
Rank Test on trigger classification, argument
identification and argument classification, all the
three have p < 0.01.

A more detailed study of the pattern feature’s
effect is shown in Table 3. We can see that RBPB
with both plain feature and pattern feature can gain

Method (RBPB) Trigger Arg id Arg id+cl
+ Plain feature 66.0 60.5 50.4
+ Pattern feature 65.8 60.1 49.2
+ Both 68.9 61.2 53.8

Table 3: The effect (F1 value) of pattern feature

much better performance than with two kinds of
features alone.

However, our approach is just a pipeline
approach which suffers from error propagation
and the argument performance may not affect the
trigger too much. We can see from Table 1 that
although we use gold argument candidates, the
trigger performance is still lower than DMCNN.
Another limitation is that our regularization
method does not improve the argument classifi-
cation too much since it only uses constraints to
affect roles. Future work may be done to solve
these two limitations.

6.4 Analysis of Argument Relationships

The accuracy of the argument relationship max-
ent classifier is 82.4%. Fig 4 shows an example
of the argument relationship matrix, which works
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Powerful bomb
A waiting shed

Davao airport
Bus

Powerful bomb

A waiting shed

Davao airport

Bus

Powerful bomb
A waiting shed

Davao airport
Bus

Powerful bomb

A waiting shed

Davao airport

Bus

Figure 4: The Argument Relationship Matrix. Left is the origin matrix. Right is the strengthened matrix

for the sentence in Fig 1. In the left part of Fig 4,
we can see the argument relationship we capture
directly (the darker blue means stronger connec-
tion, lighter blue means weaker connection). After
strengthening, on the right, the entities with strong
connections are classified as positive correlations
(the black squares), weak connections are classi-
fied as negative correlations (the white squares).
Others (the grey squares) are unclear correlation-
s. We can see that positive correlation is between
“Powerful bomb” and “A waiting shed” as well as
“A waiting shed” and “Davao airport”. Therefore,
these entities tend to be extracted at the same time.
However, “Powerful bomb” and “Bus” has a neg-
ative correlation, so they tend not to be extracted
at the same time. In practice, the argument prob-
ability of “Powerful bomb” and “A waiting shed”
are much higher than the other two. Therefore,
“Powerful bomb”, “A waiting shed” and “Davao
airport” are the final extraction results.

7 Conclusion

In this paper, we propose two improvements based
on the event extraction baseline JET. We find that
JET depends too much on event patterns for event
type priori and JET considers each candidate
argument separately. However, patterns cannot
cover all events and the relationship between
candidate arguments may help when identifying
arguments. For a trigger, if no pattern can be
matched, the event type cannot be assigned and
the arguments cannot be correctly identified and
classified. Therefore, we develop an event type
classifier to assign the event type, using both
pattern matching information and other features,

which gives our system the capability to deal with
failed match cases when using patterns alone.

On the other hand, we train a maximum entropy
classifier to predict the relationship between can-
didate arguments. Then we propose a regulariza-
tion method to make full use of the argument rela-
tionship. Our experiment results show that the reg-
ularization method is a significant improvement in
argument identification over previous works.

In summary, by using the event type classifier
and the regularization method, we have achieved
a good performance in which the trigger
classification is comparable to state-of-the-
art methods, and the argument identification
& classification performance is significantly
better than state-of-the-art methods. However,
we only use sentence-level features and our
method is a pipelined approach. Also, the
argument classification seems not to be affected
too much by the regularization. Future work
may be done to integrate our method into a joint
approach, use some global feature, which may
improve our performance. The code is available
at https://github.com/shalei120/
RBPB/tree/master/RBET_release
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