
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 876–886,
Berlin, Germany, August 7-12, 2016. c©2016 Association for Computational Linguistics

Normalized Log-Linear Interpolation of Backoff Language Models is
Efficient

Kenneth Heafield
University of Edinburgh

10 Crichton Street
Edinburgh EH8 9AB

United Kingdom
kheafiel@inf.ed.ac.uk

Chase Geigle Sean Massung
University of Illinois at Urbana-Champaign

707 S. Mathews Ave.
Urbana, IL 61801

United States
{geigle1,massung1,lanes}@illinois.edu

Lane Schwartz

Abstract

We prove that log-linearly interpolated
backoff language models can be efficiently
and exactly collapsed into a single nor-
malized backoff model, contradicting Hsu
(2007). While prior work reported that
log-linear interpolation yields lower per-
plexity than linear interpolation, normaliz-
ing at query time was impractical. We nor-
malize the model offline in advance, which
is efficient due to a recurrence relationship
between the normalizing factors. To tune
interpolation weights, we apply Newton’s
method to this convex problem and show
that the derivatives can be computed ef-
ficiently in a batch process. These find-
ings are combined in new open-source in-
terpolation tool, which is distributed with
KenLM. With 21 out-of-domain corpora,
log-linear interpolation yields 72.58 per-
plexity on TED talks, compared to 75.91
for linear interpolation.

1 Introduction

Log-linearly interpolated backoff language mod-
els yielded better perplexity than linearly interpo-
lated models (Klakow, 1998; Gutkin, 2000), but
experiments and adoption were limited due the im-
practically high cost of querying. This cost is due
to normalizing to form a probability distribution
by brute-force summing over the entire vocabu-
lary for each query. Instead, we prove that the
log-linearly interpolated model can be normalized
offline in advance and exactly expressed as an or-
dinary backoff language model. This contradicts
Hsu (2007), who claimed that log-linearly inter-
polated models “cannot be efficiently represented
as a backoff n–gram model.”

We show that offline normalization is efficient
due to a recurrence relationship between the

normalizing factors (Whittaker and Klakow,
2002). This forms the basis for our open-
source implementation, which is part of KenLM:
https://kheafield.com/code/kenlm/.

Linear interpolation (Jelinek and Mercer, 1980),
combines several language models pi into a single
model pL

pL(wn | wn−1
1) =

∑
i

λipi(wn | wn−1
1)

where λi are weights and wn1 are words. Because
each component model pi is a probability distri-
bution and the non-negative weights λi sum to 1,
the interpolated model pL is also a probability dis-
tribution. This presumes that the models have the
same vocabulary, an issue we discuss in §3.1.

A log-linearly interpolated model pLL uses the
weights λi as powers (Klakow, 1998).

pLL(wn | wn−1
1) ∝

∏
i

pi(wn | wn−1
1)λi

The weights λi are unconstrained real numbers,
allowing parameters to soften or sharpen distribu-
tions. Negative weights can be used to divide a
mixed-domain model by an out-of-domain model.
To form a probability distribution, the product is
normalized

pLL(wn | wn−1
1) =

∏
i pi(wn | wn−1

1)λi

Z(wn−1
1)

where normalizing factor Z is given by

Z(wn−1
1) =

∑
x

∏
i

pi(x | wn−1
1)λi

The sum is taken over all words x in the combined
vocabulary of the underlying models, which can
number in the millions or even billions. Comput-
ing Z efficiently is a key contribution in this work.

Our proofs assume the component models pi are
backoff language models (Katz, 1987) that mem-
orize probability for seen n–grams and charge a

876

backoff penalty bi for unseen n–grams.

pi(wn | wn−1
1) =

{
pi(wn | wn−1

1) if wn1 is seen
pi(wn | wn−1

2)bi(wn−1
1) o.w.

While linearly or log-linearly interpolated mod-
els can be queried online by querying the compo-
nent models (Stolcke, 2002; Federico et al., 2008),
doing so costs RAM to store duplicated n–grams
and CPU time to perform lookups. Log-linear in-
terpolation is particularly slow due to normalizing
over the entire vocabulary. Instead, it is preferable
to combine the models offline into a single back-
off model containing the union of n–grams. Do-
ing so is impossible for linear interpolation (§3.2);
SRILM (Stolcke, 2002) and MITLM (Hsu and
Glass, 2008) implement an approximation. In con-
trast, we prove that offline log-linear interpolation
requires no such approximation.

2 Related Work

Instead of building separate models then weight-
ing, Zhang and Chiang (2014) show how to train
Kneser-Ney models (Kneser and Ney, 1995) on
weighted data. Their work relied on prescriptive
weights from domain adaptation techniques rather
than tuning weights, as we do here.

Our exact normalization approach relies on the
backoff structure of component models. Sev-
eral approximations support general models: ig-
noring normalization (Chen et al., 1998), noise-
contrastive estimation (Vaswani et al., 2013), and
self-normalization (Andreas and Klein, 2015). In
future work, we plan to exploit the structure of
other features in high-quality unnormalized log-
linear language models (Sethy et al., 2014).

Ignoring normalization is particularly common
in speech recognition and machine translation.
This is one of our baselines. Unnormalized mod-
els can also be compiled into a single model by
multiplying the weighted probabilities and back-
offs.1 Many use unnormalized models because
weights can be jointly tuned along with other fea-
ture weights. However, Haddow (2013) showed
that linear interpolation weights can be jointly
tuned by pairwise ranked optimization (Hopkins
and May, 2011). In theory, normalized log-linear
interpolation weights can be jointly tuned in the
same way.

1Missing probabilities are found from the backoff algo-
rithm and missing backoffs are implicitly one.

Dynamic interpolation weights (Weintraub et
al., 1996) give more weight to models famil-
iar with a given query. Typically the weights
are a function of the contexts that appear in the
combined language model, which is compatible
with our approach. However, normalizing factors
would need to be calculated in each context.

3 Linear Interpolation

To motivate log-linear interpolation, we examine
two issues with linear interpolation: normalization
when component models have different vocabular-
ies and offline interpolation.

3.1 Vocabulary Differences
Language models are normalized with respect to
their vocabulary, including the unknown word.∑

x∈vocab(p1)

p1(x) = 1

If two models have different vocabularies, then
the combined vocabulary is larger and the sum is
taken over more words. Component models as-
sign their unknown word probability to these new
words, leading to an interpolated model that sums
to more than one. An example is shown in Table 1.

p1 p2 pL Zero
<unk> 0.4 0.2 0.3 0.3
A 0.6 0.4 0.3
B 0.8 0.6 0.4
Sum 1 1 1.3 1

Table 1: Linearly interpolating two models p1

and p2 with equal weight yields an unnormalized
model pL. If gaps are filled with zeros instead, the
model is normalized.

To work around this problem, SRILM (Stol-
cke, 2002) uses zero probability instead of the un-
known word probability for new words. This pro-
duces a model that sums to one, but differs from
what users might expect.

IRSTLM (Federico et al., 2008) asks the user to
specify a common large vocabulary size. The un-
known word probability is downweighted so that
all models sum to one over the large vocabulary.

A component model can also be renormalized
with respect to a larger vocabulary. For unigrams,
the extra mass is the number of new words times
the unknown word probability. For longer con-
texts, if we assume the typical case where the

877

unknown word appears only as a unigram, then
queries for new words will back off to unigrams.
The total mass in context wn−1

1 is

1 + |new|p(<unk>)
n−1∏
i=1

b(wn−1
i)

where new is the set of new words. This is effi-
cient to compute online or offline. While there are
tools to renormalize models, we are not aware of a
tool that does this for linear interpolation.

Log-linear interpolation is normalized by con-
struction. Nonetheless, in our experiments we ex-
tend IRSTLM’s approach by training models with
a common vocabulary size, rather than retrofitting
it at query time.

3.2 Offline Linear Interpolation

Given an interpolated model, offline interpolation
seeks a combined model meeting three criteria: (i)
encoding the same probability distribution, (ii) be-
ing a backoff model, and (iii) containing the union
of n–grams from component models.

Theorem 1. The three offline criteria cannot be
satisfied for general linearly interpolated backoff
models.

Proof. By counterexample. Consider the models
given in Table 2 interpolated with equal weight.

p1 p2 pL

p(A) 0.4 0.2 0.3
p(B) 0.3 0.3 0.3
p(C) 0.3 0.5 0.4
p(C | A) 0.4 0.8 0.6
b(A) 6

7 ≈ 0.857 0.4 2
3 ≈ 0.667

Table 2: Counterexample models.

The probabilities shown for pL result from encod-
ing the same distribution. Taking the union of n–
grams implies that pL only has entries for A, B, C,
and A C. Since the models have the same vocabu-
lary, they are all normalized to one.

p(A | A) + p(B | A) + p(C | A) = 1

Since all models have backoff structure,

p(A)b(A) + p(B)b(A) + p(C | A) = 1

which when solved for backoff b(A) gives the val-
ues shown in Table 2. We then query pL(B | A)

online and offline. Online interpolation yields

pL(B | A) =
1
2
p1(B | A) +

1
2
p2(B | A)

=
1
2
p1(B)b1(A) +

1
2
p2(B)b2(A) =

33
175

Offline interpolation yields

pL(B | A) = pL(B)bL(A) = 0.2 6= 33
175
≈ 0.189

The same problem happens with real language
models. To understand why, we attempt to solve
for the backoff bL(wn−1

1). Supposing wn1 is not in
either model, we query pL(wn | wn−1

1) offline

pL(wn|wn−1
1)

=pL(wn|wn−1
2)bL(w

n−1
1)

=(λ1p1(wn|wn−1
2) + λ2p2(wn|wn−1

2))bL(w
n−1
1)

while online interpolation yields

pL(wn|wn−1
1)

=λ1p1(wn|wn−1
1) + λ2p2(wn|wn−1

1)

=λ1p1(wn|wn−1
2)b1(w

n−1
1) + λ1p2(wn|wn−1

2)b2(w
n−1
1)

Solving for bL(wn−1
1) we obtain

λ1p1(wn|wn−1
2)b1(w

n−1
1) + λ2p2(wn|wn−1

2)b2(w
n−1
1)

λ1p1(wn|wn−1
2) + λ2p2(wn|wn−1

2)

which is a weighted average of the backoff weights
b1(wn−1

1) and b2(wn−1
1). The weights depend on

wn, so bL is no longer a function of wn−1
1 .

In the SRILM approximation (Stolcke, 2002),
probabilities for n–grams that exist in the model
are computed exactly. The backoff weights are
chosen to produce a model that sums to one.
However, newer versions of SRILM (Stolcke et
al., 2011) interpolate by ingesting one component
model at a time. For example, the first two mod-
els are approximately interpolated before adding
a third model. An n–gram appearing only in the
third model will have an approximate probabil-
ity. Therefore, the output depends on the order
in which users specify models. Moreover, weights
were optimized for correct linear interpolation, not
the approximation.

Stolcke (2002) find that the approximation actu-
ally decreases perplexity, which we also see in the
experiments (§6). However, approximation only
happens when the model backs off, which is less
likely to happen in fluent sentences used for per-
plexity scoring.

878

4 Offline Log-Linear Interpolation

Log-linearly interpolated backoff models pi can
be collapsed into a single offline model pLL. The
combined model takes the union of n–grams in
component models.2 For those n–grams, it mem-
orizes correct probability pLL.

pLL(wn | wn−1
1) =

∏
i pi(wn | wn−1

1)λi

Z(wn−1
1)

(1)

When wn1 does not appear, the backoff bLL(wn−1
1)

modifies pLL(wn | wn−1
2) to make an appropri-

ately normalized probability. To do so, it can-
cels out the shorter query’s normalization term
Z(wn−1

2) then applies the correct term Z(wn−1
1).

It also applies the component backoff terms.

bLL(wn−1
1) =

Z(wn−1
2)

Z(wn−1
1)

∏
i

bi(wn−1
1)λi (2)

Almost by construction, the model satisfies two
of our criteria (§3.2): being a backoff model and
containing the union of n–grams. However, back-
off models require that the backoff weight of an
unseen n–gram be implicitly 1.

Lemma 1. If wn−1
1 is unseen in the combined

model, then the backoff weight bLL(wn−1
1) = 1.

Proof. Because we have taken the union of en-
tries, wn−1

1 is unseen in component models. These
components are backoff models, so implicitly
bi(wn−1

1) = 1 ∀i. Focusing on the normalization
term Z(wn−1

1),

Z(wn−1
1) =

∑
x

∏
i

pi(x | wn−1
1)λi

=
∑
x

∏
i

pi(x | wn−1
2)λibi(wn−1

1)λi

=
∑
x

∏
i

pi(x | wn−1
2)λi

= Z(wn−1
2)

All of the models back off because wn−1
1 x is un-

seen, being a superstring of wn−1
1 . Relevant back-

off weights bi(wn−1
1) = 1 as noted earlier. Recall-

ing the definition of bLL(wn−1
1),

Z(wn−1
2)

Z(wn−1
1)

∏
i

bi(wn−1
1)λi =

Z(wn−1
2)

Z(wn−1
1)

= 1

2We further assume that every substring of a seen n–gram
is also seen. This follows from estimating on text, except in
the case of adjusted count pruning by SRILM. In such cases,
we add the missing entries to component models, with no
additional memory cost in trie data structures.

We now have a backoff model containing the
union of n–grams. It remains to show that the of-
fline model produces correct probabilities.

Theorem 2. The proposed offline model agrees
with online log-linear interpolation.

Proof. By induction on the number of words
backed off in offline interpolation. To disam-
biguate, we will use pon to refer to online inter-
polation and poff to refer to offline interpolation.
Base case: the queried n–gram is in the offline
model and we have memorized the online prob-
ability by construction.
Inductive case: Let poff(wn | wn−1

1) be a query
that backs off. In online interpolation,

pon(wn | wn−1
1) =

∏
i pi(wn | wn−1

1)λi

Z(wn−1
1)

Because wn1 is unseen in the offline model and we
took the union, it is unseen in every model pi.

=
∏
i pi(wn | wn−1

2)λibi(wn−1
1)λi

Z(wn−1
1)

=

(∏
i pi(wn | wn−1

2)λi
)∏

i bi(w
n−1
1)λi

Z(wn−1
1)

Recognizing the unnormalized probability
Z(wn−1

2)pon(wn | wn−1
2),

=
Z(wn−1

2)pon(wn | wn−1
2)

∏
i bi(w

n−1
1)λi

Z(wn−1
1)

= pon(wn | wn−1
2)

Z(wn−1
2)

Z(wn−1
1)

∏
i

bi(wn−1
1)λi

= pon(wn | wn−1
2)boff(wn−1

1)

The last equality follows from the definition of
boff and Lemma 1, which extended the domain of
boff to any wn−1

1 . By the inductive hypothesis,
pon(wn | wn−1

2) = poff(wn | wn−1
2) because it

backs off one less time.

= poff(wn | wn−1
2)boff(wn−1

1) = poff(wn | wn−1
1)

The offline model poff(wn | wn−1
1) backs off be-

cause that is the case we are considering. Combin-
ing our chain of equalities,

pon(wn | wn−1
1) = poff(wn | wn−1

1)

By induction, the claim holds for all wn1 .

879

4.1 Normalizing Efficiently
In order to build the offline model, the normaliza-
tion factor Z needs to be computed in every seen
context. To do so, we extend the tree-structure
method of Whittaker and Klakow (2002), which
they used to compute and cache normalization fac-
tors on the fly. It exploits the sparsity of language
models: when summing over the vocabulary, most
queries will back off. Formally, we define s(wn1)
to be the set of words x where pi(x | wn1) does not
back off in some model.

s(wn1) = {x : wn1x is seen in any model}
To exploit this, we use the normalizing factor
Z(wn2) from a lower order and patch it up by sum-
ming over s(wn1).
Theorem 3. The normalization factors Z obey a
recurrence relationship:

Z(wn1) =
∑

x∈s(wn
1)

∏
i

pi(x | wn1)λi+

Z(wn2)−
∑

x∈s(wn
1)

∏
i

pi(x | wn2)λi

∏
i

bi(wn1)λi

Proof. The first term handles seen n–grams while
the second term handles unseen n–grams. The
definition of Z

Z(wn1) =
∑

x∈vocab

∏
i

pi(x | wn1)λi

can be partitioned by cases.∑
x∈s(wn

1)

∏
i

pi(x | wn1)λi+
∑

x 6∈s(wn
1)

∏
i

pi(x | wn1)λi

The first term agrees with the claim, so we focus
on the case where x 6∈ s(wn1). By definition of s,
all models back off.∑
x 6∈s(wn

1)

∏
i

pi(x | wn1)λi

=
∑

x 6∈s(wn
1)

∏
i

pi(x | wn2)λibi(wn1)λi

=

 ∑
x 6∈s(wn

1)

∏
i

pi(x | wn2)λi

∏
i

bi(wn1)λi

=

Z(wn2)−
∑

x∈s(wn
1)

∏
i

pi(x | wn2)λi

∏
i

bi(wn1)λi

This is the second term of the claim.

LM1

LM2

. . .

LM`

Merge probabilities (§4.2.1)

Apply Backoffs (§4.2.2)

Normalize (§4.2.3)

Output (§4.2.4)

Context sort〈wn1 , m(wn1), 〉∏
i pi(wn|wn−1

mi(wn
1))

λi),∏
i pi(wn|wn−1

mi(wn
2))

λi)

In context order〈wn1 ,∏i bi(w
n−1
1)λi , 〉∏

i pi(wn | wn−1
1)λi ,∏

i pi(wn | wn−1
2)λi

In suffix order
bLL(wn1)

Suffix sort〈
wn1 , pLL(wn|wn−1

1)

〉

Figure 1: Multi-stage streaming pipeline for of-
fline log-linear interpolation. Bold arrows indicate
sorting is performed.

The recurrence structure of the normalization
factors suggests a computational strategy: com-
pute Z(ε) by summing over the unigrams, Z(wn)
by summing over bigramswnx, Z(wnn−1) by sum-
ming over trigrams wnn−1x, and so on.

4.2 Streaming Computation

Part of the point of offline interpolation is that
there may not be enough RAM to fit all the com-
ponent models. Moreover, with compression tech-
niques that rely on immutable models (Whittaker
and Raj, 2001; Talbot and Osborne, 2007), a mu-
table version of the combined model may not fit in
RAM. Instead, we construct the offline model with
disk-based streaming algorithms, using the frame-
work we designed for language model estimation
(Heafield et al., 2013). Our pipeline (Figure 1) has
four conceptual steps: merge probabilities, apply
backoffs, normalize, and output. Applying back-
offs and normalization are performed in the same
pass, so there are three total passes.

4.2.1 Merge Probabilities

This step takes the union of n–grams and multi-
plies probabilities from component models. We

880

assume that the component models are sorted in
suffix order (Figure 4), which is true of models
produced by lmplz (Heafield et al., 2013) or
stored in a reverse trie. Moreover, despite having
different word indices, the models are consistently
sorted using the string word, or a hash thereof.

3 2 1
A

A A
A A A
B A A

B

Table 3: Merging probabilities processes n–grams
in lexicographic order by suffix. Column headings
indicate precedence.

The algorithm processes n–grams in lexico-
graphic (depth-first) order by suffix (Table 3). In
this way, the algorithm processes pi(A) before it
might be used as a backoff point for pi(A | B)
in one of the models. It jointly streams through all
models, so that p1(A | B) and p2(A | B) are avail-
able at the same time. Ideally, we would compute
unnormalized probabilities.∏

i

pi(wn | wn−1
1)λi

However, these queries back off when models con-
tain different n–grams. The appropriate backoff
weights bi(wn−1

1) are not available in a stream-
ing fashion. Instead, we proceed without charging
backoffs ∏

i

pi(wn | wn−1
mi(wn

1))
λi

where mi(wn1) records what backoffs should be
charged later.

The normalization step (§4.2.3) also uses lower-
order probabilities∏

i

pi(wn | wn−1
2)λi

and needs to access them in a streaming fashion,
so we also output∏

i

pi(wn | wn−1
mi(wn

2))
λi

Suffix
3 2 1
Z B A
Z A B
B B B

Context
2 1 3
Z A B
B B B
Z B A

Table 4: Sorting orders (Heafield et al., 2013). In
suffix order, the last word is primary. In context
order, the penultimate word is primary. Column
headings indicate precedence.

Each output tuple has the form〈
wn1 ,m(wn1),

∏
i

pi(wn|wn−1
mi(wn

1))
λi ,

∏
i

pi(wn|wn−1
mi(wn

2))
λi

〉
wherem(wn1) is a vector of backoff requests, from
which m(wn2) can be computed.

4.2.2 Apply Backoffs
This step fulfills the backoff requests from merg-
ing probabilities. The merged probabilities are
sorted in context order (Table 4) so that n–
grams wn1 sharing the same context wn−1

1 are
consecutive. Moreover, contexts wn−1

1 appear
in suffix order. We use this property to stream
through the component models again in their
native suffix order, this time reading backoff
weights bi(wn−1

1), bi(wn−1
2), . . . , bi(wn−1). Mul-

tiplying the appropriate backoff weights by∏
i pi(wn|wn−1

mi(wn
1))

λi yields unnormalized proba-
bility ∏

i

pi(wn|wn−1
1)λi

The same applies to the lower order.∏
i

pi(wn|wn−1
2)λi

This step also merges backoffs from component
models, with output still in context order.〈

wn1 ,
∏
i

bi(wn−1
1)λi ,

∏
i

pi(wn|wn−1
1)λi

∏
i

pi(wn|wn−1
2)λi

〉
The implementation is combined with normaliza-
tion, so the tuple is only conceptual.

881

4.2.3 Normalize
This step computes normalization factor Z for
all contexts, which it applies to produce pLL and
bLL. Recalling §4.1, Z(wn−1

1) is efficient to com-
pute in a batch process by processing suffixes
Z(ε), Z(wn), . . . Z(wn−1

2) first. In order to min-
imize memory consumption, we chose to evaluate
the contexts in depth-first order by suffix, so that
Z(A) is computed immediately before it is needed
to compute Z(A A) and forgotten at Z(B).

Computing Z(wn−1
1) by applying Theorem 3

requires the sum∑
x∈s(wn−1

1)

∏
i

pi(x | wn−1
1)λi

where s(wn−1
1) restricts to seen n–grams. For this,

we stream through the output of the apply backoffs
step in context order, which makes the various val-
ues of x consecutive. Theorem 3 also requires a
sum over the lower-order unnormalized probabili-
ties ∑

x∈s(wn−1
1)

∏
i

pi(x | wn−1
2)λi

We placed these terms in the input tuple for
wn−1

1 x. Otherwise, it would be hard to access
these values while streaming in context order.

While we have shown how to compute
Z(wn−1

1), we still need to normalize the probabil-
ities. Unfortunately, Z(wn−1

1) is only known after
streaming through all records of the form wn−1

1 x,
which are the very same records to normalize. We
therefore buffer up to the vocabulary size for each
order in memory to allow rewinding. Processing
context wn−1

1 thus yields normalized probabilities
pLL(x | wn−1

1) for all seen wn−1
1 x.〈

wn1 , pLL(x | wn−1
1)

〉
These records are generated in context order, the
same order as the input.

The normalization step also computes backoffs.

bLL(wn−1
1) =

Z(wn−1
2)

Z(wn−1
1)

∏
i

bi(wn−1
1)λi

Normalization Z(wn−1
1) is computed by this step,

numerator Z(wn−1
2) is available due to depth-first

search, and the backoff terms
∏
i bi(w

n−1
1)λi are

present in the input. The backoffs bLL are gener-
ated in suffix order, since each context produces a
backoff value. These are written to a sidechannel
stream as bare values without keys.

4.2.4 Output
Language model toolkits store probability
pLL(wn | wn−1

1) and backoff bLL(wn1) together as
values for the key wn1 . To reunify them, we sort
〈wn1 , pLL(wn | wn−1

1)〉 in suffix order and merge
with the backoff sidechannel from normalization,
which is already in suffix order. Suffix order is
also preferable because toolkits can easily build a
reverse trie data structure.

5 Tuning

Weights are tuned to maximize the log probability
of held-out data. This is a convex optimization
problem (Klakow, 1998). Iterations are expensive
due to the need to normalize over the vocabulary
at least once. However, the number of weights is
small, which makes the Hessian matrix cheap to
store and invert. We therefore selected Newton’s
method.3

The log probability of tuning data w is

log
∏
n

pLL(wn | wn−1
1)

which expands according to the definition of pLL∑
n

(∑
i

λi log pi(wn | wn−1
1)

)
− logZ(wn−1

1)

The gradient with respect to λi has a compact form∑
n

log pi(wn | wn−1
1) + CH(pLL, pi | wn−1

1)

where CH is cross entropy. However, comput-
ing the cross entropy directly would entail a sum
over the vocabulary for every word in the tun-
ing data. Instead, we apply Theorem 3 to ex-
press Z(wn−1

1) in terms of Z(wn−1
2) before tak-

ing the derivative. This allows us to perform the
same depth-first computation as before (§4.2.3),
only this time ∂

∂λi
Z(wn−1

1) is computed in terms
of ∂

∂λi
Z(wn−1

2).
The same argument applies when taking the

Hessian with respect to λi and λj . Rather than
compute it directly in the form∑

n

−
∑

x

pLL(x|wn−1
1) log pi(x|wn−1

1) log pj(x|wn−1
1)

+ CH(pLL, pi | wn−1
1)CH(pLL, pj | wn−1

1)

we apply Theorem 3 to compute the Hessian for
wn1 in terms of the Hessian for wn2 .

3We also considered minibatches, though grouping tuning
data to reduce normalization cost would introduce bias.

882

6 Experiments

We perform experiments for perplexity, query
speed, memory consumption, and effectiveness in
a machine translation system.

Individual language models were trained on En-
glish corpora from the WMT 2016 news transla-
tion shared task (Bojar et al., 2016). This includes
the seven newswires (afp, apw, cna, ltw, nyt,
wpb, xin) from English Gigaword Fifth Edition
(Parker et al., 2011); the 2007–2015 news crawls;4

News discussion; News commmentary v11; En-
glish from Europarl v8 (Koehn, 2005); the English
side of the French-English parallel corpus (Bojar
et al., 2013); and the English side of SETIMES2
(Tiedemann, 2009). We additionally built one lan-
guage model trained on the concatenation of all
of the above corpora. All corpora were prepro-
cessed using the standard Moses (Koehn et al.,
2007) scripts to perform normalization, tokeniza-
tion, and truecasing. To prevent SRILM from run-
ning out of RAM, we excluded the large mono-
lingual CommonCrawl data, but included English
from the parallel CommonCrawl data.

All language models are 5-gram backoff lan-
guage models trained with modified Kneser-Ney
smoothing (Chen and Goodman, 1998) using
lmplz (Heafield et al., 2013). Also to prevent
SRILM from running out of RAM, we pruned sin-
gleton trigrams and above.

For linear interpolation, we tuned weights us-
ing IRSTLM. To work around SRILM’s limitation
of ten models, we interpolated the first ten then
carried the combined model and added nine more
component models, repeating this last step as nec-
essary. Weights were normalized within batches
to achieve the correct final weighting. This simply
extends the way SRILM internally carries a com-
bined model and adds one model at a time.

6.1 Perplexity experiments
We experiment with two domains: TED talks,
which is out of domain, and news, which is in-
domain for some corpora. For TED, we tuned
on the IWSLT 2010 English dev set and test on
the 2010 test set. For news, we tuned on the
English side of the WMT 2015 Russian–English
evaluation set and test on the WMT 2014 Russian–
English evaluation set. To measure generalization,
we also evaluated news on models tuned for TED
and vice-versa. Results are shown in Table 5.

4For News Crawl 2014, we used version 2.

Component Models
Component TED test News test
Gigaword afp 163.48 221.57
Gigaword apw 140.65 206.85
Gigaword cna 299.93 448.56
Gigaword ltw 106.28 243.35
Gigaword nyt 97.21 211.75
Gigaword wpb 151.81 341.48
Gigaword xin 204.60 246.32
News 07 127.66 243.53
News 08 112.48 202.86
News 09 111.43 197.32
News 10 114.40 209.31
News 11 107.69 187.65
News 12 105.74 180.28
News 13 104.09 155.89
News 14 v2 101.85 139.94
News 15 101.13 141.13
News discussion 99.88 249.63
News commentary v11 236.23 495.27
Europarl v8 268.41 574.74
CommonCrawl fr-en.en 149.10 343.20
SETIMES2 ro-en.en 331.37 521.19
All concatenated 80.69 96.15

TED weights
Interpolation TED test News test
Offline linear 75.91 100.43
Online linear 76.93 152.37
Log-linear 72.58 112.31

News weights
Interpolation TED test News test
Offline linear 83.34 107.69
Online linear 83.94 110.95
Log-linear 89.62 124.63

Table 5: Test set perplexities. In the middle ta-
ble, weights are optimized for TED and include
a model trained on all concatenated text. In the
bottom table, weights are optimized for news and
exclude the model trained on all concatenated text.

883

LM Tuning Compiling Querying
All concatenated N/A N/A N/A N/A 0.186µs 46.7G
Offline linear 0.876m 60.2G 641m 123G 0.186µs 46.8G
Online linear 0.876m 60.2G N/A N/A 5.67µs 89.1G
Log-linear 600m 63.9G 89.8m 63.9G 0.186µs 46.8G

Table 6: Speed and memory consumption of LM combination methods. Interpolated models include the
concatenated model. Tuning and compiling times are in minutes, memory consumption in gigabytes,
and query time in microseconds per query (on 1G of held-out Common Crawl monolingual data).

Log-linear interpolation performs better on
TED (72.58 perplexity versus 75.91 for offline lin-
ear interpolation). However, it performs worse
on news. In future work, we plan to investigate
whether log-linear wins when all corpora are out-
of-domain since it favors agreement by all models.

Table 6 compares the speed and memory per-
formance of the competing methods. While the
log-linear tuning is much slower, its compilation is
faster compared to the offline linear model’s long
run time. Since the model formats are the same
for the concatenation and log-linear, they share
the fastest query speeds. Query speed was mea-
sured using KenLM’s (Heafield, 2011) faster prob-
ing data structure.5

6.2 MT experiments

We trained a statistical phrase-based machine
translation system for Romanian-English on the
Romanian-English parallel corpora released as
part of the 2016 WMT news translation shared
task. We trained three variants of this MT system.
The first used a single language model trained on
the concatenation of the 21 individual LM train-
ing corpora. The second used 22 language mod-
els, with each LM presented to Moses as a sep-
arate feature. The third used a single language
model which is an interpolation of all 22 mod-
els. This variant was run with offline linear, online
linear, and log-linear interpolation. All MT sys-
tem variants were optimized using IWSLT 2011
Romanian-English TED test as the development
set, and were evaluated using the IWSLT 2012
Romanian-English TED test set.

As shown in Table 7, no significant difference in
MT quality as measured by BLEU was observed;
the best BLEU score came from separate features
at 18.40 while log-linear scored 18.15. We leave

5KenLM does not natively implement online linear inter-
polation, so we wrote a custom wrapper, which is faster than
querying IRSTLM.

LM BLEU BLEU-c
22 separate LMs 18.40 17.91
All concatenated 18.02 17.55
Offline linear 18.00 17.53
Online linear 18.27 17.82
Log-linear 18.15 17.70

Table 7: Machine translation performance com-
parison in an end-to-end system.

jointly tuned normalized log-linear interpolation
to future work.

7 Conclusion

Normalized log-linear interpolation is now a
tractable alternative to linear interpolation for
backoff language models. Contrary to Hsu (2007),
we proved that these models can be exactly col-
lapsed into a single backoff language model.
This solves the query speed problem. Empiri-
cally, compiling the log-linear model is faster than
SRILM can collapse its approximate offline linear
model. In future work, we plan to improve per-
formace of feature weight tuning and investigate
more general features.

Acknowledgments

Thanks to João Sedoc, Grant Erdmann, Jeremy
Gwinnup, Marcin Junczys-Dowmunt, Chris Dyer,
Jon Clark, and MT Marathon attendees for discus-
sions. Partial funding was provided by the Ama-
zon Academic Research Awards program. This
material is based upon work supported by the NSF
GRFP under Grant Number DGE-1144245.

References

Jacob Andreas and Dan Klein. 2015. When and why
are log-linear models self-normalizing? In NAACL
2015.

884

Ondřej Bojar, Christian Buck, Chris Callison-Burch,
Christian Federmann, Barry Haddow, Philipp
Koehn, Christof Monz, Matt Post, Radu Soricut, and
Lucia Specia. 2013. Findings of the 2013 workshop
on statistical machine translation. In Proceedings of
the Eighth Workshop on Statistical Machine Trans-
lation, pages 1–44, Sofia, Bulgaria, August. Associ-
ation for Computational Linguistics.

Ondřej Bojar, Christian Buck, Rajen Chatterjee, Chris-
tian Federmann, Liane Guillou, Barry Haddow,
Matthias Huck, Antonio Jimeno Yepes, Aurélie
Névéol, Mariana Neves, Pavel Pecina, Martin Popel,
Philipp Koehn, Christof Monz, Matteo Negri, Matt
Post, Lucia Specia, Karin Verspoor, Jörg Tiede-
mann, and Marco Turchi. 2016. Findings of the
2016 Conference on Machine Translation. In Pro-
ceedings of the First Conference on Machine Trans-
lation (WMT’16), Berlin, Germany, August.

Stanley Chen and Joshua Goodman. 1998. An em-
pirical study of smoothing techniques for language
modeling. Technical Report TR-10-98, Harvard
University, August.

Stanley F. Chen, Kristie Seymore, and Ronald Rosen-
feld. 1998. Topic adaptation for language modeling
using unnormalized exponential models. In Acous-
tics, Speech and Signal Processing, 1998. Proceed-
ings of the 1998 IEEE International Conference on,
volume 2, pages 681–684. IEEE.

Marcello Federico, Nicola Bertoldi, and Mauro Cet-
tolo. 2008. IRSTLM: an open source toolkit for
handling large scale language models. In Proceed-
ings of Interspeech, Brisbane, Australia.

Alexander Gutkin. 2000. Log-linear interpolation of
language models. Master’s thesis, University of
Cambridge, November.

Barry Haddow. 2013. Applying pairwise ranked opti-
misation to improve the interpolation of translation
models. In Proceedings of NAACL.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H.
Clark, and Philipp Koehn. 2013. Scalable modi-
fied Kneser-Ney language model estimation. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics, Sofia, Bulgaria,
August.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, Edin-
burgh, UK, July. Association for Computational Lin-
guistics.

Mark Hopkins and Jonathan May. 2011. Tuning as
ranking. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1352—-1362, Edinburgh, Scotland, July.

Bo-June Hsu and James Glass. 2008. Iterative lan-
guage model estimation: Efficient data structure &
algorithms. In Proceedings of Interspeech, Bris-
bane, Australia.

Bo-June Hsu. 2007. Generalized linear interpolation
of language models. In Automatic Speech Recogni-
tion & Understanding, 2007. ASRU. IEEE Workshop
on, pages 136–140. IEEE.

Frederick Jelinek and Robert L. Mercer. 1980. In-
terpolated estimation of Markov source parameters
from sparse data. In Proceedings of the Workshop
on Pattern Recognition in Practice, pages 381–397,
May.

Slava Katz. 1987. Estimation of probabilities from
sparse data for the language model component of a
speech recognizer. IEEE Transactions on Acoustics,
Speech, and Signal Processing, ASSP-35(3):400–
401, March.

Dietrich Klakow. 1998. Log-linear interpolation of
language models. In Proceedings of 5th Interna-
tional Conference on Spoken Language Processing,
pages 1695–1699, Sydney, November.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In
Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing, pages
181–184.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexan-
dra Constantin, and Evan Herbst. 2007. Moses:
Open source toolkit for statistical machine transla-
tion. In Annual Meeting of the Association for Com-
putational Linguistics (ACL), Prague, Czech Repub-
lic, June.

Philipp Koehn. 2005. Europarl: A parallel corpus
for statistical machine translation. In Proceedings
of MT Summit.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2011. English gigaword fifth edi-
tion, June. LDC2011T07.

Abhinav Sethy, Stanley Chen, Bhuvana Ramabhadran,
and Paul Vozila. 2014. Static interpolation of ex-
ponential n–gram models using features of features.
In 2014 IEEE International Conference on Acoustic,
Speech and Signal Processing (ICASSP).

Andreas Stolcke, Jing Zheng, Wen Wang, and Vic-
tor Abrash. 2011. SRILM at sixteen: Update
and outlook. In Proc. 2011 IEEE Workshop on
Automatic Speech Recognition & Understanding
(ASRU), Waikoloa, Hawaii, USA.

Andreas Stolcke. 2002. SRILM - an extensible lan-
guage modeling toolkit. In Proceedings of the Sev-
enth International Conference on Spoken Language
Processing, pages 901–904.

David Talbot and Miles Osborne. 2007. Randomised
language modelling for statistical machine trans-
lation. In Proceedings of ACL, pages 512–519,
Prague, Czech Republic.

885

Jörg Tiedemann. 2009. News from OPUS - A col-
lection of multilingual parallel corpora with tools
and interfaces. In N. Nicolov, K. Bontcheva,
G. Angelova, and R. Mitkov, editors, Recent
Advances in Natural Language Processing, vol-
ume V, pages 237–248. John Benjamins, Amster-
dam/Philadelphia, Borovets, Bulgaria.

Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and
David Chiang. 2013. Decoding with large-scale
neural language models improves translation. In
Proceedings of EMNLP.

Mitch Weintraub, Yaman Aksu, Satya Dharanipragada,
Sanjeev Khudanpur, Hermann Ney, John Prange,
Andreas Stolcke, Fred Jelinek, and Liz Shriberg.
1996. LM95 project report: Fast training and
portability. Research Note 1, Center for Language
and Speech Processing, Johns Hopkins University,
February.

Edward D. W. Whittaker and Dietrich Klakow. 2002.
Efficient construction of long-range language mod-
els using log-linear interpolation. In 7th Interna-
tional Conference on Spoken Language Processing,
pages 905–908.

Edward Whittaker and Bhiksha Raj. 2001.
Quantization-based language model compres-
sion. In Proceedings of Eurospeech, pages 33–36,
Aalborg, Denmark, December.

Hui Zhang and David Chiang. 2014. Kneser-Ney
smoothing on expected counts. In Proceedings of
the 52nd Annual Meeting of the Association for
Computational Linguistics, pages 765–774. ACL.

886

