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Abstract

Automated Text Scoring (ATS) provides
a cost-effective and consistent alternative
to human marking. However, in order
to achieve good performance, the pre-
dictive features of the system need to
be manually engineered by human ex-
perts. We introduce a model that forms
word representations by learning the ex-
tent to which specific words contribute to
the text’s score. Using Long-Short Term
Memory networks to represent the mean-
ing of texts, we demonstrate that a fully
automated framework is able to achieve
excellent results over similar approaches.
In an attempt to make our results more
interpretable, and inspired by recent ad-
vances in visualizing neural networks, we
introduce a novel method for identifying
the regions of the text that the model has
found more discriminative.

1 Introduction

Automated Text Scoring (ATS) refers to the set of
statistical and natural language processing tech-
niques used to automatically score a text on a
marking scale. The advantages of ATS systems
have been established since Project Essay Grade
(PEG) (Page, 1967; Page, 1968), one of the earli-
est systems whose development was largely moti-
vated by the prospect of reducing labour-intensive
marking activities. In addition to providing a
cost-effective and efficient approach to large-scale
grading of (extended) text, such systems ensure a
consistent application of marking criteria, there-
fore facilitating equity in scoring.

There is a large body of literature with re-
gards to ATS systems of text produced by non-
native English-language learners (Page, 1968; At-

tali and Burstein, 2006; Rudner and Liang, 2002;
Elliot, 2003; Landauer et al., 2003; Briscoe et al.,
2010; Yannakoudakis et al., 2011; Sakaguchi et
al., 2015, among others), overviews of which can
be found in various studies (Williamson, 2009;
Dikli, 2006; Shermis and Hammer, 2012). Im-
plicitly or explicitly, previous work has primarily
treated text scoring as a supervised text classifica-
tion task, and has utilized a large selection of tech-
niques, ranging from the use of syntactic parsers,
via vectorial semantics combined with dimension-
ality reduction, to generative and discriminative
machine learning.

As multiple factors influence the quality of
texts, ATS systems typically exploit a large range
of textual features that correspond to different
properties of text, such as grammar, vocabulary,
style, topic relevance, and discourse coherence
and cohesion. In addition to lexical and part-of-
speech (POS) ngrams, linguistically deeper fea-
tures such as types of syntactic constructions,
grammatical relations and measures of sentence
complexity are among some of the properties that
form an ATS system’s internal marking criteria.
The final representation of a text typically consists
of a vector of features that have been manually se-
lected and tuned to predict a score on a marking
scale.

Although current approaches to scoring, such
as regression and ranking, have been shown to
achieve performance that is indistinguishable from
that of human examiners, there is substantial man-
ual effort involved in reaching these results on dif-
ferent domains, genres, prompts and so forth. Lin-
guistic features intended to capture the aspects of
writing to be assessed are hand-selected and tuned
for specific domains. In order to perform well on
different data, separate models with distinct fea-
ture sets are typically tuned.
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Prompted by recent advances in deep learning
and the ability of such systems to surpass state-of-
the-art models in similar areas (Tang, 2015; Tai et
al., 2015), we propose the use of recurrent neural
network models for ATS. Multi-layer neural net-
works are known for automatically learning use-
ful features from data, with lower layers learn-
ing basic feature detectors and upper levels learn-
ing more high-level abstract features (Lee et al.,
2009). Additionally, recurrent neural networks are
well-suited for modeling the compositionality of
language and have been shown to perform very
well on the task of language modeling (Mikolov
et al., 2011; Chelba et al., 2013). We therefore
propose to apply these network structures to the
task of scoring, in order to both improve the per-
formance of ATS systems and learn the required
feature representations for each dataset automat-
ically, without the need for manual tuning. More
specifically, we focus on predicting a holistic score
for extended-response writing items.1

However, automated models are not a panacea,
and their deployment depends largely on the abil-
ity to examine their characteristics, whether they
measure what is intended to be measured, and
whether their internal marking criteria can be in-
terpreted in a meaningful and useful way. The
deep architecture of neural network models, how-
ever, makes it rather difficult to identify and ex-
tract those properties of text that the network has
identified as discriminative. Therefore, we also
describe a preliminary method for visualizing the
information the model is exploiting when assign-
ing a specific score to an input text.

2 Related Work

In this section, we describe a number of the more
influential and/or recent approaches in automated
text scoring of non-native English-learner writing.

Project Essay Grade (Page, 1967; Page, 1968;
Page, 2003) is one of the earliest automated scor-
ing systems, predicting a score using linear regres-
sion over vectors of textual features considered to
be proxies of writing quality. Intelligent Essay
Assessor (Landauer et al., 2003) uses Latent Se-
mantic Analysis to compute the semantic similar-
ity between texts at specific grade points and a test
text, which is assigned a score based on the ones in

1The task is also referred to as Automated Essay Scoring.
Throughout this paper, we use the terms text and essay (scor-
ing) interchangeably.

the training set to which it is most similar. Lons-
dale and Strong-Krause (2003) use the Link Gram-
mar parser (Sleator and Templerley, 1995) to anal-
yse and score texts based on the average sentence-
level scores calculated from the parser’s cost vec-
tor.

The Bayesian Essay Test Scoring sYstem (Rud-
ner and Liang, 2002) investigates multinomial and
Bernoulli Naive Bayes models to classify texts
based on shallow content and style features. e-
Rater (Attali and Burstein, 2006), developed by
the Educational Testing Service, was one of the
first systems to be deployed for operational scor-
ing in high-stakes assessments. The model uses
a number of different features, including aspects
of grammar, vocabulary and style (among others),
whose weights are fitted to a marking scheme by
regression.

Chen et al. (2010) use a voting algorithm and
address text scoring within a weakly supervised
bag-of-words framework. Yannakoudakis et al.
(2011) extract deep linguistic features and employ
a discriminative learning-to-rank model that out-
performs regression.

Recently, McNamara et al. (2015) used a hier-
achical classification approach to scoring, utilizing
linguistic, semantic and rhetorical features, among
others. Farra et al. (2015) utilize variants of lo-
gistic and linear regression and develop models
that score persuasive essays based on features ex-
tracted from opinion expressions and topical ele-
ments.

There have also been attempts to incorporate
more diverse features to text scoring models. Kle-
banov and Flor (2013) demonstrate that essay
scoring performance is improved by adding to the
model information about percentages of highly
associated, mildly associated and dis-associated
pairs of words that co-exist in a given text. So-
masundaran et al. (2014) exploit lexical chains and
their interaction with discourse elements for evalu-
ating the quality of persuasive essays with respect
to discourse coherence. Crossley et al. (2015)
identify student attributes, such as standardized
test scores, as predictive of writing success and
use them in conjunction with textual features to
develop essay scoring models.

In 2012, Kaggle,2 sponsored by the Hewlett
Foundation, hosted the Automated Student As-
sessment Prize (ASAP) contest, aiming to demon-

2http://www.kaggle.com/c/asap-aes/

716



strate the capabilities of automated text scoring
systems (Shermis, 2015). The dataset released
consists of around twenty thousand texts (60% of
which are marked), produced by middle-school
English-speaking students, which we use as part
of our experiments to develop our models.

3 Models

3.1 C&W Embeddings

Collobert and Weston (2008) and Collobert et al.
(2011) introduce a neural network architecture
(Fig. 1a) that learns a distributed representation for
each word w in a corpus based on its local context.
Concretely, suppose we want to learn a represen-
tation for some target word wt found in an n-sized
sequence of words S = (w1, . . . , wt, . . . , wn)
based on the other words which exist in the same
sequence (∀wi ∈ S |wi 6= wt). In order to derive
this representation, the model learns to discrimi-
nate between S and some ‘noisy’ counterpart S ′
in which the target word wt has been substituted
for a randomly sampled word from the vocabu-
lary: S ′ = (w1, . . . , wc, . . . , wn |wc ∼ V). In this
way, every word w is more predictive of its local
context than any other random word in the corpus.

Every word in V is mapped to a real-valued
vector in Ω via a mapping function C(·) such
that C(wi) = 〈M?i〉, where M ∈ RD×|V| is
the embedding matrix and 〈M?i〉 is the ith col-
umn of M. The network takes S as input by
concatenating the vectors of the words found in
it; st = 〈C(w1)ᵀ‖ . . . ‖C(wt)ᵀ‖ . . . ‖C(wn)ᵀ〉 ∈
RnD. Similarly, S ′ is formed by substituting
C(wt) for C(wc) ∼M |wc 6= wt.

The input vector is then passed through a
hard tanh layer defined as,

htanh(x) =


−1 x < −1
x −1 6 x 6 1
1 x > 1

(1)

which feeds a single linear unit in the output layer.
The function that is computed by the network is
ultimately given by (4):

st = 〈Mᵀ
?1‖ . . . ‖Mᵀ

?t‖ . . . ‖Mᵀ
?n〉ᵀ (2)

i = σ(Whist + bh) (3)

f(st) = Wohi + bo (4)

f(s),bo ∈ R1

Woh ∈ RH×1

Whi ∈ RD×H

s ∈ RD

bo ∈ RH

where M,Woh,Whi,bo,bh are learnable param-
eters, D,H are hyperparameters controlling the
size of the input and the hidden layer, respectively;
σ is the application of an element-wise non-linear
function (htanh in this case).

The model learns word embeddings by ranking
the activation of the true sequence S higher than
the activation of its ‘noisy’ counterpart S ′. The
objective of the model then becomes to minimize
the hinge loss which ensures that the activations
of the original and ‘noisy’ ngrams will differ by
at least 1:

losscontext(target, corrupt) =

[1− f(st) + f(sck)]+, ∀k ∈ ZE
(5)

whereE is another hyperparameter controlling the
number of ‘noisy’ sequences we give along with
the correct sequence (Mikolov et al., 2013; Gut-
mann and Hyvärinen, 2012).

3.2 Augmented C&W model

Following Tang (2015), we extend the previous
model to capture not only the local linguistic en-
vironment of each word, but also how each word
contributes to the overall score of the essay. The
aim here is to construct representations which,
along with the linguistic information given by the
linear order of the words in each sentence, are able
to capture usage information. Words such as is,
are, to, at which appear with any essay score are
considered to be under-informative in the sense
that they will activate equally both on high and low
scoring essays. Informative words, on the other
hand, are the ones which would have an impact on
the essay score (e.g., spelling mistakes).

In order to capture those score-specific word
embeddings (SSWEs), we extend (4) by adding a
further linear unit in the output layer that performs
linear regression, predicting the essay score. Us-
ing (2), the activations of the network (presented
in Fig. 1b) are given by:
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Figure 1: Architecture of the original C&W model (left) and of our extended version (right).

fss(s) = Woh1i + bo1 (6)

fcontext(s) = Woh2i + bo2 (7)

fss(s) ∈ [min(score), max(score)]

bo1 ∈ R1

Woh1 ∈ R1×H

The error we minimize for fss (where ss stands for
score specific) is the mean squared error between
the predicted ŷ and the actual essay score y:

lossscore(s) =
1
N

N∑
i=1

(ŷi − yi)2 (8)

From (5) and (8) we compute the overall loss
function as a weighted linear combination of the
two loss functions (9), back-propagating the error
gradients to the embedding matrix M:

lossoverall(s) =
α · losscontext(s, s′)

+ (1− α) · lossscore(s)
(9)

where α is the hyper-parameter determining how
the two error functions should be weighted. α val-
ues closer to 0 will place more weight on the score-
specific aspect of the embeddings, whereas values
closer to 1 will favour the contextual information.

Fig. 2 shows the advantage of using SSWEs in
the present setting. Based solely on the informa-
tion provided by the linguistic environment, words
such as computer and laptop are going to be placed
together with their mis-spelled counterparts cop-
muter and labtop (Fig. 2a). This, however, does
not reflect the fact that the mis-spelled words tend
to appear in lower scoring essays. Using SSWEs,
the correctly spelled words are pulled apart in the

vector space from the incorrectly spelled ones, re-
taining, however, the information that labtop and
copmuter are still contextually related (Fig. 2b).

3.3 Long-Short Term Memory Network

We use the SSWEs obtained by our model to
derive continuous representations for each essay.
We treat each essay as a sequence of tokens
and explore the use of uni- and bi-directional
(Graves, 2012) Long-Short Term Memory net-
works (LSTMs) (Hochreiter and Schmidhuber,
1997) in order to embed these sequences in a vec-
tor of fixed size. Both uni- and bi-directional
LSTMs have been effectively used for embedding
long sequences (Hermann et al., 2015). LSTMs
are a kind of recurrent neural network (RNN) ar-
chitecture in which the output at time t is condi-
tioned on the input s both at time t and at time
t− 1:

yt = Wyhht + by (10)

ht = H(Whsst + Whhht−1 + bh) (11)

where st is the input at time t, and H is usually
an element-wise application of a non-linear func-
tion. In LSTMs, H is substituted for a composite
function defining ht as:

it =
σ(Wisst + Wihht−1+

Wicct−1 + bi)
(12)

ft =
σ(Wfsst + Wfhht−1+

Wfcct−1 + bf )
(13)

ct =
it � g(Wcsst + Wchht−1 + bc)+

ft � ct−1
(14)
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Figure 2: Comparison between standard and score-specific word embeddings. By virtue of appearing in
similar environments, standard neural embeddings will place the correct and the incorrect spelling closer
in the vector space. However, since the mistakes are found in lower scoring essays, SSWEs are able to
discriminate between the correct and the incorrect versions without loss in contextual meaning.
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Figure 3: A single-layer Long Short Term Mem-
ory (LSTM) network. The word vectors wi enter
the input layer one at a time. The hidden layer
that has been formed at the last timestep is used
to predict the essay score using linear regression.
We also explore the use of bi-directional LSTMs
(dashed arrows). For ‘deeper’ representations, we
can stack more LSTM layers after the hidden layer
shown here.

ot =
σ(Wosst + Wohht−1+

Wocct + bo)
(15)

ht = ot � h(ct) (16)

where g, σ and h are element-wise non-linear
functions such as the logistic sigmoid ( 1

1+e−x ) and

the hyperbolic tangent ( e2z−1
e2z+1

);� is the Hadamard
product; W,b are the learned weights and biases
respectively; and i, f, o and c are the input, forget,
output gates and the cell activation vectors respec-
tively.

Training the LSTM in a uni-directional manner
(i.e., from left to right) might leave out important
information about the sentence. For example, our

interpretation of a word at some point ti might be
different once we know the word at ti+5. An ef-
fective way to get around this issue has been to
train the LSTM in a bidirectional manner. This re-
quires doing both a forward and a backward pass
of the sequence (i.e., feeding the words from left
to right and from right to left). The hidden layer
element in (10) can therefore be re-written as the
concatenation of the forward and backward hidden
vectors:

yt = Wyh

( ←−
h

ᵀ
t−→

h
ᵀ
t

)
+ by (17)

We feed the embedding of each word found
in each essay to the LSTM one at a time,
zero-padding shorter sequences. We form D-
dimensional essay embeddings by taking the ac-
tivation of the LSTM layer at the timestep where
the last word of the essay was presented to the net-
work. In the case of bi-directional LSTMs, the two
independent passes of the essay (from left to right
and from right to left) are concatenated together to
predict the essay score. These essay embeddings
are then fed to a linear unit in the output layer
which predicts the essay score (Fig. 3). We use the
mean square error between the predicted and the
gold score as our loss function, and optimize with
RMSprop (Dauphin et al., 2015), propagating the
errors back to the word embeddings.3

3The maximum time for jointly training a particular SSWE
+ LSTM combination took about 55–60 hours on an Ama-
zon EC2 g2.2xlarge instance (average time was 27–30
hours).
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3.4 Other Baselines

We train a Support Vector Regression model (see
Section 4), which is one of the most widely used
approaches in text scoring. We parse the data us-
ing the RASP parser (Briscoe et al., 2006) and
extract a number of different features for assess-
ing the quality of the essays. More specifically,
we use character and part-of-speech unigrams, bi-
grams and trigrams; word unigrams, bigrams and
trigrams where we replace open-class words with
their POS; and the distribution of common nouns,
prepositions, and coordinators. Additionally, we
extract and use as features the rules from the
phrase-structure tree based on the top parse for
each sentence, as well as an estimate of the error
rate based on manually-derived error rules.
Ngrams are weighted using tf–idf, while the rest

are count-based and scaled so that all features have
approximately the same order of magnitude. The
final input vectors are unit-normalized to account
for varying text-length biases.

Further to the above, we also explore the use
of the Distributed Memory Model of Paragraph
Vectors (PV-DM) proposed by Le and Mikolov
(2014), as a means to directly obtain essay embed-
dings. PV-DM takes as input word vectors which
make up ngram sequences and uses those to pre-
dict the next word in the sequence. A feature of
PV-DM, however, is that each ‘paragraph’ is as-
signed a unique vector which is used in the predic-
tion. This vector, therefore, acts as a ‘memory’,
retaining information from all contexts that have
appeared in this paragraph. Paragraph vectors are
then fed to a linear regression model to obtain es-
say scores (we refer to this model as doc2vec).

Additionally, we explore the effect of our score-
specific method for learning word embeddings,
when compared against three different kinds of
word embeddings:

• word2vec embeddings (Mikolov et al.,
2013) trained on our training set (see Sec-
tion 4).

• Publicly available word2vec embeddings
(Mikolov et al., 2013) pre-trained on the
Google News corpus (ca. 100 billion words),
which have been very effective in capturing
solely contextual information.

• Embeddings that are constructed on the fly by
the LSTM, by propagating the errors from its

hidden layer back to the embedding matrix
(i.e., we do not provide any pre-trained word
embeddings).4

4 Dataset

The Kaggle dataset contains 12.976 essays rang-
ing from 150 to 550 words each, marked by two
raters (Cohen’s κ = 0.86). The essays were writ-
ten by students ranging from Grade 7 to Grade
10, comprising eight distinct sets elicited by eight
different prompts, each with distinct marking cri-
teria and score range.5 For our experiments, we
use the resolved combined score between the two
raters, which is calculated as the average between
the two raters’ scores (if the scores are close), or
is determined by a third expert (if the scores are
far apart). Currently, the state-of-the-art on this
dataset has achieved a Cohen’s κ = 0.81 (using
quadratic weights). However, the test set was re-
leased without the gold score annotations, render-
ing any comparisons futile, and we are therefore
restricted in splitting the given training set to cre-
ate a new test set.

The sets where divided as follows: 80%
of the entire dataset was reserved for train-
ing/validation, and 20% for testing. 80% of
the training/validation subset was used for actual
training, while the remaining 20% for validation
(in absolute terms for the entire dataset: 64% train-
ing, 16% validation, 20% testing). To facilitate
future work, we release the ids of the validation
and test set essays we used in our experiments, in
addition to our source code and various hyperpa-
rameter values.6

5 Experiments

5.1 Results
The hyperparameters for our model were as fol-
lows: sizes of the layers H , D, the learning rate
η, the window size n, the number of ‘noisy’ se-
quences E and the weighting factor α. Also the
hyperparameters of the LSTM were the size of the
LSTM layer DLSTM as well as the dropout rate r.

4Another option would be to use standard C&W embed-
dings; however, this is equivalent to using SSWEs withα = 1,
which we found to produce low results.

5Five prompts employed a holistic scoring rubric, one was
scored with a two-trait rubric, and two were scored with a
multi-trait rubric, but reported as a holistic score (Shermis
and Hammer, 2012).

6The code, by-model hyperparameter configurations and
the IDs of the testing set are available at https://
github.com/dimalik/ats/.
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Model Spearman’s ρ Pearson r RMSE Cohen’s κ
doc2vec 0.62 0.63 4.43 0.85
SVM 0.78 0.77 8.85 0.75
LSTM 0.59 0.60 6.8 0.54
BLSTM 0.7 0.5 7.32 0.36
Two-layer LSTM 0.58 0.55 7.16 0.46
Two-layer BLSTM 0.68 0.52 7.31 0.48
word2vec + LSTM 0.68 0.77 5.39 0.76
word2vec + BLSTM 0.75 0.86 4.34 0.85
word2vec + Two-layer LSTM 0.76 0.71 6.02 0.69
word2vec + Two-layer BLSTM 0.78 0.83 4.79 0.82
word2vecpre-trained + Two-layer BLSTM 0.79 0.91 3.2 0.92
SSWE + LSTM 0.8 0.94 2.9 0.94
SSWE + BLSTM 0.8 0.92 3.21 0.95
SSWE + Two-layer LSTM 0.82 0.93 3 0.94
SSWE + Two-layer BLSTM 0.91 0.96 2.4 0.96

Table 1: Results of the different models on the Kaggle dataset. All resulting vectors were trained
using linear regression. We optimized the parameters using a separate validation set (see text)
and report the results on the test set.

Since the search space would be massive for grid
search, the best hyperparameters were determined
using Bayesian Optimization (Snoek et al., 2012).
In this context, the performance of our models in
the validation set is modeled as a sample from a
Gaussian process (GP) by constructing a proba-
bilistic model for the error function and then ex-
ploiting this model to make decisions about where
to next evaluate the function. The hyperparame-
ters for our baselines were also determined using
the same methodology.

All models are trained on our training
set (see Section 4), except the one prefixed
‘word2vecpre-trained’ which uses pre-trained em-
beddings on the Google News Corpus. We re-
port the Spearman’s rank correlation coefficient ρ,
Pearson’s product-moment correlation coefficient
r, and the root mean square error (RMSE) be-
tween the predicted scores and the gold standard
on our test set, which are considered more appro-
priate metrics for evaluating essay scoring systems
(Yannakoudakis and Cummins, 2015). However,
we also report Cohen’s κ with quadratic weights,
which was the evaluation metric used in the Kag-
gle competition. Performance of the models is
shown in Table 1.

In terms of correlation, SVMs produce com-
petitive results (ρ = 0.78 and r = 0.77), out-
performing doc2vec, LSTM and BLSTM, as
well as their deep counterparts. As described

above, the SVM model has rich linguistic knowl-
edge and consists of hand-picked features which
have achieved excellent performance in similar
tasks (Yannakoudakis et al., 2011). However, in
terms of RMSE, it is among the lowest performing
models (8.85), together with ‘BLSTM’ and ‘Two-
layer BLSTM’. Deep models in combination
with word2vec (i.e., ‘word2vec + Two-layer
LSTM’ and ‘word2vec + Two-layer BLSTM’)
and SVMs are comparable in terms of r and ρ,
though not in terms of RMSE, where the former
produce better results, with RMSE improving by
half (4.79). doc2vec also produces competitive
RMSE results (4.43), though correlation is much
lower (ρ = 0.62 and r = 0.63).

The two BLSTMs trained with word2vec em-
beddings are among the most competitive models
in terms of correlation and outperform all the mod-
els, except the ones using pre-trained embeddings
and SSWEs. Increasing the number of hidden lay-
ers and/or adding bi-directionality does not always
improve performance, but it clearly helps in this
case and performance improves compared to their
uni-directional counterparts.

Using pre-trained word embeddings improves
the results further. More specifically, we found
‘word2vecpre-trained + Two-layer BLSTM’ to be
the best configuration, increasing correlation to
0.79 ρ and 0.91 r, and reducing RMSE to 3.2.
We note however that this is not an entirely
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fair comparison as these are trained on a much
larger corpus than our training set (which we use
to train our models). Nevertheless, when we
use our SSWEs models we are able to outper-
form ‘word2vecpre-trained + Two-layer BLSTM’,
even though our embeddings are trained on fewer
data points. More specifically, our best model
(‘SSWE + Two-layer BLSTM’) improves correla-
tion to ρ = 0.91 and r = 0.96, as well as RMSE
to 2.4, giving a maximum increase of around 10%
in correlation. Given the results of the pre-trained
model, we believe that the performance of our best
SSWE model will further improve should more
training data be given to it.7

5.2 Discussion

Our SSWE + LSTM approach having no prior
knowledge of the grammar of the language or the
domain of the text, is able to score the essays in
a very human-like way, outperforming other state-
of-the-art systems. Furthermore, while we tuned
the models’ hyperparameters on a separate vali-
dation set, we did not perform any further pre-
processing of the text other than simple tokeniza-
tion.

In the essay scoring literature, text length tends
to be a strong predictor of the overall score. In
order to investigate any possible effects of essay
length, we also calculate the correlation between
the gold scores and the length of the essays. We
find that the correlations on the test set are rela-
tively low (r = 0.3, ρ = 0.44), and therefore con-
clude that there are no such strong effects.

As described above, we used Bayesian Op-
timization to find optimal hyperparameter con-
figurations in fewer steps than in regular grid
search. Using this approach, the optimization
model showed some clear preferences for some
parameters which were associated with better
scoring models:8 the number of ‘noisy’ sequences
E, the weighting factor α and the size of the
LSTM layer DLSTM . The optimal α value was
consistently set to 0.1, which shows that our SSWE
approach was necessary to capture the usage of
the words. Performance dropped considerably as
α increased (less weight on SSWEs and more on
the contextual aspect). When using α = 1, which

7Our approach outperforms all the other models in terms
of Cohen’s κ too.

8For the best scoring model the hyperparameters were as
follows: D = 200, H = 100, η = 1e − 7, n = 9, E =
200, α = 0.1, DLSTM = 10, r = 0.5.

is equivalent to using the basic C&W model, we
found that performance was considerably lower
(e.g., correlation dropped to ρ = 0.15).

The number of ‘noisy’ sequences was set to
200, which was the highest possible setting we
considered, although this might be related more to
the size of the corpus (see Mikolov et al. (2013) for
a similar discussion) rather than to our approach.
Finally, the optimal value for DLSTM was 10 (the
lowest value investigated), which again may be
corpus-dependent.

6 Visualizing the black box

In this section, inspired by recent advances in
(de-) convolutional neural networks in computer
vision (Simonyan et al., 2013) and text summa-
rization (Denil et al., 2014), we introduce a novel
method of generating interpretable visualizations
of the network’s performance. In the present con-
text, this is particularly important as one advantage
of the manual methods discussed in § 2 is that we
are able to know on what grounds the model made
its decisions and which features are most discrim-
inative.

At the outset, our goal is to assess the ‘qual-
ity’ of our word vectors. By ‘quality’ we mean
the level to which a word appearing in a particu-
lar context would prove to be problematic for the
network’s prediction. In order to identify ‘high’
and ‘low’ quality vectors, we perform a single pass
of an essay from left to right and let the LSTM
make its score prediction. Normally, we would
provide the gold scores and adjust the network
weights based on the error gradients. Instead, we
provide the network with a pseudo-score by taking
the maximum score this specific essay can take9

and provide this as the ‘gold’ score. If the word
vector is of ‘high’ quality (i.e., associated with
higher scoring texts), then there is going to be lit-
tle adjustment to the weights in order to predict the
highest score possible. Conversely, providing the
minimum possible score (here 0), we can assess
how ‘bad’ our word vectors are. Vectors which re-
quire minimal adjustment to reach the lowest score
are considered of ‘lower’ quality. Note that since
we do a complete pass over the network (without
doing any weight updates), the vector quality is
going to be essay dependent.

9Note the in the Kaggle dataset essays from different es-
say sets have different maximum scores. Here we take as
ỹmax the essay set maximum rather than the global maxi-
mum.
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. . . way to show that Saeng is a determined . . . .

. . . sometimes I do . Being patience is being . . .
. . . which leaves the reader satisfied . . .

. . . is in this picture the cyclist is riding a dry and area which could mean that it is very
and the looks to be going down hill there looks to be a lot of turns . . . .

. . . The only reason im putting this in my own way is because know one is
patient in my family . . . .

. . . Whether they are building hand-eye coordination , researching a country , or family and
friends through @CAPS3 , @CAPS2 , @CAPS6 the internet is highly and

I hope you feel the same way .

Table 2: Several example visualizations created by our LSTM. The full text of the essay is shown in
black and the ‘quality’ of the word vectors appears in color on a range from dark red (low quality) to
dark green (high quality).

Concretely, using the network function f(x) as
computed by Eq. (12) – (17), we can approximate
the loss induced by feeding the pseudo-scores by
taking the magnitude of each error vector (18) –
(19). Since lim‖w‖2→0 ŷ = y, this magnitude
should tell us how much an embedding needs to
change in order to achieve the gold score (here
pseudo-score). In the case where we provide the
minimum as a pseudo-score, a ‖w‖2 value closer
to zero would indicate an incorrectly used word.
For the results reported here, we combine the mag-
nitudes produced from giving the maximum and
minimum pseudo-scores into a single score, com-
puted as L(ỹmax, f(x))− L(ỹmin, f(x)), where:

L(ỹ, f(x)) ≈ ‖w‖2 (18)

w = ∇L(x) , ∂L

∂x

∣∣∣∣
(ỹ,f(x))

(19)

where ‖w‖2 is the vector Euclidean norm w =√∑N
i=1w

2
i ; L(·) is the mean squared error as in

Eq. (8); and ỹ is the essay pseudo-score.
We show some examples of this visualization

procedure in Table 2. The model is capable of
providing positive feedback. Correctly placed
punctuation or long-distance dependencies (as in
Sentence 6 are . . . researching) are particularly
favoured by the model. Conversely, the model
does not deal well with proper names, but is able
to cope with POS mistakes (e.g., Being patience or
the internet is highly and . . . ). However, as seen
in Sentence 3 the model is not perfect and returns
a false negative in the case of satisfied.

One potential drawback of this approach is that
the gradients are calculated only after the end of
the essay. This means that if a word appears mul-

tiple times within an essay, sometimes correctly
and sometimes incorrectly, the model would not
be able to distinguish between them. Two possi-
ble solutions to this problem are to either provide
the gold score at each timestep which results into
a very computationally expensive endeavour, or to
feed sentences or phrases of smaller size for which
the scoring would be more consistent.10

7 Conclusion

In this paper, we introduced a deep neural network
model capable of representing both local contex-
tual and usage information as encapsulated by es-
say scoring. This model yields score-specific word
embeddings used later by a recurrent neural net-
work in order to form essay representations.

We have shown that this kind of architecture is
able to surpass similar state-of-the-art systems, as
well as systems based on manual feature engineer-
ing which have achieved results close to the upper
bound in past work. We also introduced a novel
way of exploring the basis of the network’s inter-
nal scoring criteria, and showed that such models
are interpretable and can be further exploited to
provide useful feedback to the author.
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