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Abstract

We propose a neural network model for
scalable generative transition-based de-
pendency parsing. A probability distri-
bution over both sentences and transi-
tion sequences is parameterised by a feed-
forward neural network. The model sur-
passes the accuracy and speed of previ-
ous generative dependency parsers, reach-
ing 91.1% UAS. Perplexity results show
a strong improvement over n-gram lan-
guage models, opening the way to the ef-
ficient integration of syntax into neural
models for language generation.

1 Introduction

Transition-based dependency parsers that perform
incremental local inference with a discrimina-
tive classifier offer an appealing trade-off be-
tween speed and accuracy (Nivre, 2008; Zhang
and Nivre, 2011; Choi and Mccallum, 2013).
Recently neural network transition-based depen-
dency parsers have been shown to give state-of-
the-art performance (Chen and Manning, 2014;
Dyer et al., 2015; Weiss et al., 2015). However,
the downstream integration of syntactic structure
in language understanding and generation tasks is
often done heuristically.

Neural networks have also been shown to be
powerful generative models for language mod-
elling (Bengio et al., 2003; Mikolov et al., 2010)
and machine translation (Kalchbrenner and Blun-
som, 2013; Devlin et al., 2014; Sutskever et al.,
2014). However, currently these models lack
awareness of syntax, which limits their ability to
include longer-distance dependencies even when
potentially unbounded contexts are used.

In this paper we propose a generative model for
incremental parsing that offers an efficient way to
incorporate syntactic information into a generative
model. It relies on the strength of neural networks
to overcome sparsity in the long conditioning con-
texts required for an accurate model, while also of-
fering a principled approach to learn dependency-
based word representations (Levy and Goldberg,
2014; Bansal et al., 2014).

Generative models for graph-based dependency
parsing (Eisner, 1996; Wallach et al., 2008) are
much less accurate than their discriminative coun-
terparts. Syntactic language models based on
PCFGs (Roark, 2001; Charniak, 2001) and incre-
mental parsing (Chelba and Jelinek, 2000; Emami
and Jelinek, 2005) have been proposed for speech
recognition and machine translation. However,
these models are also limited in either scalability,
expressiveness, or both. A generative transition-
based dependency parser based on recurrent neu-
ral networks (Titov and Henderson, 2007) obtains
high accuracy, but training and decoding is pro-
hibitively expensive.

We perform efficient linear-time decoding with
a particle filtering-based beam-search method
where derivations after pruned after every word
generation and the beam size depends on the un-
certainty in the model (Buys and Blunsom, 2015).

The model obtains 91.1% UAS on the WSJ,
which is 0.2% UAS better than the previous high-
est accuracy generative dependency parser (Titov
and Henderson, 2007), while also being much
more efficient. As a language model its perplex-
ity reaches 111.8, a 23% reduction over an n-
gram baseline, when combining supervised train-
ing with unsupervised fine-tuning. Finally, we find
that the model is able to generate sentences that
display both local and syntactic coherence.
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2 Generative Transition-based Parsing

Our parsing model is based on transition-based
arc-standard projective dependency parsing (Nivre
and Scholz, 2004). The generative formulation
is similar to previous generative transition-based
parsers (Titov and Henderson, 2007; Cohen et al.,
2011; Buys and Blunsom, 2015), and also related
to the joint tagging and parsing model of Bohnet
and Nivre (2012).

The model predicts a sequence of parsing tran-
sitions: A shift transition generates a word (and
its POS tag), while a reduce transition adds an arc
(i, l, j), where i is the head node, j the dependent
and l is the dependency label.

The joint probability distribution over a sen-
tence with words w1:n, tags t1:n and a transition
sequence a1:2n is defined as

n∏
i=1

(
p(ti|hmi)p(wi|ti,hmi)

mi+1∏
j=mi+1

p(aj |hj)
)
,

where mi is the number of transitions that have
been performed when (ti, wi) is shifted and hj is
the conditioning context at the jth transition.

A parser configuration (σ, β,A) for sentence s
consists of a stack σ of indices in s, an index β to
the next word to be generated, and a set of arcs A.
The stack elements are referred to as σ1, . . . , σ|σ|,
where σ1 is the top element. For any node a,
lc1(a) refers to the leftmost child of a in A, and
rc1(a) to its rightmost child. A root node is added
to the beginning of the sentence, and the head
word of the sentence (we assume there is only one)
is the dependent of the root.

The initial configuration is ([], 0, ∅), while A
terminal configuration is reached when β > |s|
and |σ| = 1.

The transition types are shift, left-arc and right-
arc. Shift generates the next word of the sentence
and pushes it on the stack. Left-arc adds an arc
(σ1, l, σ2) and removes σ2 from the stack. Right-
arc adds (σ2, l, σ1) and pops σ1.

The parsing strategy adds arcs bottom-up. In
a valid transition sequence the last transition is a
right-arc from the root to the head word, and the
root node is not involved in any other dependen-
cies. We use an oracle to extract transition se-
quences from the training data: The oracle prefers
reduce over shift transitions when both may lead
to a valid derivation.

Order Elements
1 σ1, σ2, σ3, σ4

2 lc1(σ1), rc1(σ1), lc1(σ2), rc1(σ2)
lc2(σ1), rc2(σ1), lc2(σ2), rc2(σ2)

3 lc1(lc1(σ1)), rc1(rc1(σ1))
lc1(lc1(σ2)), rc1(rc1(σ2))

Table 1: Conditioning context elements for neural
network input: First, second and third order de-
pendencies are used.

3 Neural Network Model

Our probability model is based on neural net-
work language models with distributed represen-
tations (Bengio et al., 2003; Mnih and Hinton,
2007), as well as feed-forward neural network
models for transition-based dependency pars-
ing (Chen and Manning, 2014; Weiss et al., 2015).
We estimate the distributions p(ti|hi), p(wi|ti,hi)
and p(aj |hj) with neural networks with shared in-
put and hidden layers but separate output layers.

The templates for the conditioning context used
are defined in Table 1. In the templates we ob-
tain sentence indexes, which are then mapped to
the corresponding words, tags and labels (for the
dependencies of 2nd and 3rd order elements). The
neural network allows us to include a large number
of elements without suffering from sparsity.

In the input layer we make use of additive rep-
resentations (Botha and Blunsom, 2014) so that
for each word input position i we can include the
word type, tag and other features, and learn input
representations for each of these. Each context
feature f has an input representation qf ∈ RD.
The composite representation is computed as qi =∑

f∈µ(wi)
qf , where µ(wi) are the word features.

The hidden layer is then defined as

φ(h) = g(
L∑
j=1

Cjqhj
),

where Cj ∈ RD×D are transformation matrices
defined for each position in sequence h, L = |h|
and g is a (usually non-linear) activation function
applied element-wise. The matrices Cj can be ap-
proximated to be diagonal to reduce the number
of model parameters and speed up the model by
avoiding expensive matrix multiplications.

For the output layer predicting the next transi-
tion a, the hidden layer is mapped with a scoring
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function

χ(a,h) = kTa φ(h) + ea,

where ka is the transition output representation
and ea is the bias weight. The score is normalised
with the soft-max function:

p(a|h) =
exp(χ(a,h))∑

a′∈A exp(χ(a′,h))
.

The output layer for predicting the next tag has
a similar form, using the scoring function

τ(t,h) = tTt φ(h) + ot

for tag representation tt and bias ot.
The probability p(w|t,h) can be estimated

similarly. However, to reduce the computa-
tional cost of normalising over the entire vocab-
ulary, we factorize the probability as P (w|h) =
P (c|t,h)P (w|c, t,h), where c = c(w) is the
unique class of word w. For each c, let Γ(c) be
the set of words in that class. The vocabulary is
clustered into approximately

√|V | classes using
Brown clustering (Brown et al., 1992), reducing
the number of items to sum over in the normal-
isation factor from O(|V |) to O(

√|V |). Class-
based factorization has been shown to be an effec-
tive strategy in normalizing neural language mod-
els (Baltescu and Blunsom, 2015),

The class prediction score is defined as
ψ(c,h) = sTc φ(h) + dc, where sc ∈ RD is the
output weight vector for class c and dc is the class
bias weight. The output layer then consists of a
softmax function for p(c|h) and another softmax
for the word prediction

p(w|c,h) =
exp(Φ(w,h))∑

w′∈Γ(c) exp(Φ(w′,h))
,

where Φ(w,h) = rTwφ(h)+bw is the word scoring
function with output word representation rw and
bias weight bw.

The model is trained with minibatch stochas-
tic gradient descent (SGD) with Adagrad (Duchi
et al., 2011) and L2 regularisation, to minimise
the negative log likelihood of the joint distribu-
tion over parsed training sentences. For our ex-
periments we train the model while the training
objective improves, and choose the parameters of
the iteration with the best development set accu-
racy (early stopping). The model obtains high ac-
curacy with only a few training iterations.

4 Decoding

Beam-search decoders for transition-based pars-
ing (Zhang and Clark, 2008) keep a beam of par-
tial derivations, advancing each derivation by one
transition at a time. When the size of the beam
exceeds a set threshold, the lowest-scoring deriva-
tions are removed. However, in an incremental
generative model we need to compare derivations
with the same number of words shifted, rather than
transitions performed. To let the decoding time re-
main linear, we also need to bound the total num-
ber of reduce transitions that can be performed
over all derivations between two shift transitions.

To achieve this, we use a decoding method re-
cently proposed for generative incremental pars-
ing (Buys and Blunsom, 2015) based on particle
filtering (Doucet et al., 2001), a sequential Monte
Carlo sampling method.

In the algorithm, a fixed number of particles
are divided among the partial derivations in the
beam. Suppose iwords have been shifted in all the
derivations on the beam. To predict the next tran-
sition from derivation dj , its particles are divided
according to p(a|h). In practice, adding only shift
and the most likely reduce transition leads to al-
most no accuracy loss. After all the derivations
have been advanced to shift word i+1, a selection
step is performed: The number of particles of each
derivation is redistributed according to its proba-
bility, weighted by its current number of particles.
Some derivations may be assigned 0 particles, in
which case they are removed.

The particle filtering method lets the beam size
depend of the uncertainty of the model, somewhat
similar to Choi and Mccallum (2013), while fixing
the total number of particles constrains the decod-
ing time to be linear. The particle filter also allow
us to sample outputs, and to marginalise over the
syntax when generating.

5 Experiments

We evaluate our model for parsing and language
modelling on the English Penn Treebank (Marcus
et al., 1993) WSJ parsing setup1. Constituency
trees are converted to projective CoNLL syntac-
tic dependencies (Johansson and Nugues, 2007)
with the LTH converter2. For some experiments

1Training on sections 02-21, development on section 22,
and testing on section 23.

2http://nlp.cs.lth.se/software/treebank converter/
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Activation UAS LAS
linear 88.40 86.48
rectifier 89.99 88.31
tanh 90.91 89.22
sigmoid 91.48 89.94

Table 2: Parsing accuracies using different neural
network activation functions.

we also use the Stanford dependency representa-
tion (De Marneffe and Manning, 2008) (SD)3.

Our neural network implementation is partly
based on the OxLM neural language modelling
framework (Baltescu et al., 2014). The model pa-
rameters are initialised randomly by drawing from
a Gaussian distribution with mean 0 and variance
0.1, except for the bias weights, which are ini-
tialised by the unigram distributions of their out-
put. We use minibatches of size 128, the L2 regu-
larization parameter is 10, and the word represen-
tation and hidden layer of size is 256. The Ada-
grad learning rate is initialised to 0.05.

POS tags for the development and test sets are
obtained with the Stanford POS tagger (Toutanova
et al., 2003), with 97.5% test set accuracy. Words
that occur only once in the training data are treated
as unknown words. Unknown words are replaced
by tokens representing morphological surface fea-
tures (based on capitalization, numbers, punctua-
tion and common suffixes) similar to those used
in the implementation of generative constituency
parsers (Klein and Manning, 2003).

5.1 Parsing results

We report unlabelled attachment score (UAS) and
labelled attachment score (LAS) in our results,
excluding punctuation. On the development set,
we consider the effect of the choice of activation
function (Table 2), finding that a sigmoid activa-
tion (logistic function) performs best, following by
tanh. Under our training setup the model can ob-
tain up to 91.0 UAS after only 1 training iteration,
thereby performing pure online learning.

We found that including third order depen-
dencies in the conditioning context performs just
0.1% UAS better than including only first and sec-
ond order dependencies. Including additional ele-
ments does not improve performance further. The
model can obtain 91.18 UAS, 89.02 LAS when

3Converted with version 3.4.1 of the Stanford parser,
available at http::/nlp.stanford.edu/software/lex-parser.shtml.

Model UAS LAS
Wallach et al. (2008) 85.7 -
Titov and Henderson (2007) 90.93 89.42
NN-GenDP 91.11 89.41
Chen and Manning (2014) 92.0 90.7

Table 3: Parsing accuracies for dependency
parsers on the WSJ test set, CoNLL dependencies.

trained only on words, not POS tags. Dependency
parsers that do not use distributed representations
tend to rely much more on the tags.

Test set results comparing generative depen-
dency parsers are given in Table 3 (our model is
refered to as NN-GenDP). The graph-based gen-
erative baseline (Wallach et al., 2008), parame-
terised by Pitman-Yor Processes, is quite weak.
Our model outperforms the generative model of
Titov and Henderson (2007), which we retrained
on our dataset, by 0.2%, despite that model be-
ing able to condition on arbitrary-sized contexts.
The decoding speed of our model is around 20 sen-
tences per second, against less than 1 sentence per
second for Titov and Henderson’s model. Using
diagonal transformation matrices further increases
our model’s speed, but reduces parsing accuracy.

On the Stanford dependency representation our
model obtains 90.63% UAS, 88.27% LAS. Al-
though this performance is promising, it is still
below the discriminative neural network models of
Dyer et al. (2015) and Weiss et al. (2015), who ob-
tained 93.1% UAS and 94.0% UAS respectively.

5.2 Language modelling
We also evaluate our parser as a language model,
on the same WSJ data used for the parsing eval-
uation4. We perform unlabelled parsing, as ex-
periments show that including labels in the con-
ditioning context has a very small impact on per-
formance. Neither do we use POS tags, as they
are too expensive to predict in language genera-
tion applications.

Perplexity results on the WSJ are given in Ta-
ble 4. As baselines we report results on modified
Knesser-Ney (Kneser and Ney, 1995) and neu-
ral network 5-gram models. For our dependency-
based language models we report perplexities
based on the most likely parse found by the de-
coder, which gives an upper bound on the true

4However instead of using multiple unknown word
classes, we replace all numbers by 0 and have a single un-
known word token.
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the u.s. union board said revenue rose 11 % to $ NUM million , or $ NUM a share .
mr. bush has UNK-ed a plan to buy the company for $ NUM to NUM million , or $ NUM a share .
the plan was UNK-ed by the board ’s decision to sell its $ NUM million UNK loan loan funds .
in stocks coming months , china ’s NUM shares rose 10 cents to $ NUM million , or $ NUM a share .
in the case , mr. bush said it will sell the company business UNK concern to buy the company .
it was NUM common shares in addition , with $ NUM million , or $ NUM a share , according to mr. bush .
in the first quarter , 1989 shares closed yesterday at $ NUM , mr. bush has increased the plan .
last year ’s retrenchment price index index rose 11 cents to $ NUM million , or $ NUM million is asked .
last year earlier , net income rose 11 million % to $ NUM million , or 91 cents a share .
the u.s. union has UNK-ed $ NUM million , or 22 cents a share , in 1990 , payable nov. 9 .

Table 5: Sentences of length 20 or greater generated by the neural generative dependency model.

Model Perplexity
KN 5-gram 145.7
NN 5-gram 142.5
NN-GenDP 132.2
NN-GenDP + unsup 111.8

Table 4: WSJ Language modelling test results.
We compare our model, with and without unsu-
pervised tuning, to n-gram baselines.

value of the model perplexity.
First we only perform standard supervised train-

ing with the model - this already leads to an im-
provement of 10 perplexity points over the neu-
ral n-gram model. Second we consider a train-
ing setup where we first perform 5 supervised it-
erations, and then perform unsupervised training,
treating the transition sequence as latent. For each
minibatch parse trees are sampled with a parti-
cle filter. This approach further improves the per-
plexity to 111.8, a 23% reduction relative to the
Knesser-Ney model.

The unsupervised training stage lets the parsing
accuracy fall from 91.48 to 89.49 UAS. We pos-
tulate that the model is learning to make small ad-
justments to favour of parsing structures that ex-
plain the data better than the annotated parse trees,
leading to the improvement in perplexity.

To test the scalability of our model, we also
trained it on a larger unannotated corpus – a sub-
set (of around 7 million words) of the billion word
language modeling benchmark dataset (Chelba et
al., 2013). After training the model on the WSJ,
we parsed the unannotated data with the model,
and continued to train on the obtained parses.
We observed a small increase in perplexity, from
203.5 for a neural n-gram model to 200.7 for the
generative dependency model. We expect larger
improvements when training on more data and
with more sophisticated inference.

To evaluate our generative model qualitatively,

we perform unconstrained generation of sentences
(and parse trees) from the model, and found that
sentences display a higher degree of syntactic co-
herence than sentences generated by an n-gram
model. See Table 5 for examples generated by the
model. The highest-scoring sentences of length 20
or more are given, from 1000 samples generated.
Note that the generation includes unknown word
tokens (here NUM, UNK and UNK-ed are used).

6 Conclusion

We presented an incremental generative depen-
dency parser that can obtain accuracies competi-
tive with discriminative models. The same model
can be applied as an efficient syntactic language
model, and for future work it should be integrated
into language generation tasks such as machine
translation.

Acknowledgements

We acknowledge the financial support of the Ox-
ford Clarendon Fund and the Skye Foundation.

References

Paul Baltescu and Phil Blunsom. 2015. Pragmatic neu-
ral language modelling in machine translation. In
Proceedings of NAACL-HTL, pages 820–829.

Paul Baltescu, Phil Blunsom, and Hieu Hoang. 2014.
Oxlm: A neural language modelling framework for
machine translation. The Prague Bulletin of Mathe-
matical Linguistics, 102(1):81–92, October.

Mohit Bansal, Kevin Gimpel, and Karen Livescu.
2014. Tailoring continuous word representations for
dependency parsing. In Proceedings of the ACL.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search, 3:1137–1155.

867



Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and la-
beled non-projective dependency parsing. In Pro-
ceedings of EMNLP-CONLL, pages 1455–1465.

Jan A. Botha and Phil Blunsom. 2014. Compositional
morphology for word representations and language
modelling. In Proceedings of the 31st International
Conference on Machine Learning (ICML).

Peter F. Brown, Peter V. deSouza, Robert L. Mer-
cer, Vincent J. Della Pietra, and Jenifer C. Lai.
1992. Class-based n-gram models of natural lan-
guage. Computational Linguistics, 18(4):467–479.

Jan Buys and Phil Blunsom. 2015. A Bayesian model
for generative transition-based dependency parsing.
arXiv preprint arXiv:1506.04334.

Eugene Charniak. 2001. Immediate-head parsing for
language models. In Proceedings of ACL, pages
124–131. Association for Computational Linguis-
tics.

Ciprian Chelba and Frederick Jelinek. 2000. Struc-
tured language modeling. Computer Speech & Lan-
guage, 14(4):283–332.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. Tech-
nical report, Google.

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of EMNLP.

Jinho D. Choi and Andrew Mccallum. 2013.
Transition-based dependency parsing with selec-
tional branching. In Proceedings of ACL.
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