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Abstract

In recent years, distributional models
(DMs) have shown great success in repre-
senting lexical semantics. In this work we
show that the extent to which DMs rep-
resent semantic knowledge is highly de-
pendent on the type of knowledge. We
pose the task of predicting properties of
concrete nouns in a supervised setting,
and compare between learning taxonomic
properties (e.g., animacy) and attributive
properties (e.g., size, color). We employ
four state-of-the-art DMs as sources of
feature representation for this task, and
show that they all yield poor results when
tested on attributive properties, achieving
no more than an average F-score of 0.37 in
the binary property prediction task, com-
pared to 0.73 on taxonomic properties.
Our results suggest that the distributional
hypothesis may not be equally applicable
to all types of semantic information.

1 Introduction

The Distributional Hypothesis states that the
meaning of words can be inferred from their lin-
guistic environment (Harris, 1954). This hypothe-
sis lies at the heart of distributional models (DMs),
which approximate the meaning of words by con-
sidering the statistics of their co-occurrence with
other words in the lexicon.

DMs have shown impressive results in many
semantic tasks, such as predicting the similarity
of two words, grouping words into semantic cat-
egories, and solving analogy questions (see Ba-
roni et al. (2014) for a recent survey). They are
also used as a source of semantic information by
many downstream applications, including syntac-
tic parsing (Socher et al., 2013), image annotation
(Klein et al., 2014), and semantic frame identifica-
tion (Hermann et al., 2014).
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However, the empirical success of DMs may
not be uniform across the full range of semantic
knowledge. It has been argued that DMs can never
grasp the full meaning of words, as many aspects
of meaning are grounded in the physical world
(Andrews et al., 2009). This claim relies chiefly on
cognitive theory (Louwerse, 2011), and is some-
what supported in empirical findings (Baroni and
Lenci, 2008; Andrews et al., 2009). Moreover, a
recent study by (Hill et al., 2014) has shown that
DMs may not model word similarity as well as
previously believed.

In this work, we seek to further study the capa-
bilities of DMs in capturing semantic information.
For our purposes, we assume that the meaning of
a word referring to a concrete object (henceforth
concept) is comprised of a list of properties (Ba-
roni and Lenci, 2008). For example, the mean-
ing of the concept an apple is comprised of such
properties as red, round, edible, a fruit, etc. We
distinguish between taxonomic properties (Wu and
Barsalou, 2001; McRae et al., 2005), which de-
fine the conceptual category that a concept belongs
to (e.g. an apple is a fruit), and all other types
of properties (henceforth referred to as attributive
properties). In this paper we employ DMs in the
task of learning properties of concepts, and show
a very large discrepancy in performance between
learning taxonomic and attributive properties.

Several previous works addressed semantic
property learning, but mostly in terms of automati-
cally extracting salient properties of concepts from
raw text (Almuhareb and Poesio, 2005; Barbu,
2008; Baroni and Lenci, 2008; Devereux et al.,
2009; Baroni et al., 2010; Kelly, 2013). Baroni
and Lenci (2008) is the only work we are aware
of that addressed different property types, while
utilizing a DM for property extraction. However,
their approach is simple, and includes defining the
properties of a concept to be the 10 neighboring
words of that concept in the DM space.
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In order to determine to what extent proper-
ties of concepts are captured by DMs, we define
the following task. The goal is to predict, for a
given concept, whether it holds a specific prop-
erty or not (e.g., whether or not the concept ele-
phant is considered large) . We model this task as
a learning problem, in which concepts have a fea-
ture representation based on a state-of-the-art DM.
A property-predictor is then trained to predict, for
any given concept, whether the property applies
to it or not (in a binary classification setup), or the
strength of affiliation between the property and the
concept (in a regression setup). By evaluating the
performance of these predictors, we assess the de-
gree to which the property is captured by the DM.

We experiment with four state-of-the-art DMs
(Baroni and Lenci, 2010; Mikolov et al., 2013;
Levy and Goldberg, 2014; Pennington et al.,
2014). Our results show that all DMs, quite suc-
cessful in many semantic tasks, fail when it comes
to predicting attributive properties of concepts.
For example, in the classification task, the best
performing DM achieves an averaged F-score of
only 0.37, contrasted with an average F-score of
0.73 achieved by the same model for taxonomic
properties. This result, which may be attributed
to an essential difference between taxonomic and
attributive properties, demonstrates possible limi-
tations of the distributional hypothesis, at least in
terms of the information captured by current state-
of-the-art DMs.

2 Learning Semantic Properties of
Concepts

The goal of this paper is to gain better understand-
ing of the type of information DMs encode. We
do so by evaluating the performance of a predictor
trained on a DM-based representation to learn a
semantic property. In this section, we describe the
proposed learning task, the dataset and the DMs
which serve as feature representations.

2.1 Task Description

We model the problem of learning a single seman-
tic property both as a binary classification problem
and as a regression problem. The binary setup is
simpler, however it may be argued that a regres-
sion setup is more appropriate, since the nature of
the affiliation between a concept and its properties
is not necessarily binary.
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Binary Classification. For each property p, we
take concepts for which p applies to be positive
instances, and concepts for which it does not as
negative instances. For example, the property is
loud is positive for a trumpet but negative for a
mouse. Let X denote the domain of concepts,
and ), = {£1} denote the binary label space.
Then for each property p we learn a predictor
hy : Y(X) — Vp, where ¢(X) C R" is a map-
ping from the concept domain to some DM space.

Regression. Here we consider the saliency of
a property for a concept and regard it as a real-
valued measure. For example, white is a salient
property of swan, a less salient property of house,
and not a property at all of hammer. The formal
definitions are the same as in the binary classifica-
tion setup, except that here ), = R.

2.2 The Data

We use the McRae Feature Norms dataset (McRae
etal., 2005). This data was collected in a set of ex-
periments, where participants were presented with
concepts (concrete nouns only) and were asked to
write down properties that describe them. This re-
sulted in a matrix of 541 concepts and 2,526 prop-
erties, where each (concept, property) entry holds
the number of participants who elicited the prop-
erty for the concept. This dataset has been widely
used in the past as a proxy to the human percep-
tual representation of concrete objects (Baroni and
Lenci, 2008; Barbu, 2008; Devereux et al., 2009;
Johns and Jones, 2012).

In the binary classification setting, for each
property, we take all concepts for which this prop-
erty was elicited (by any number of participants)'
to be positive, and all other concepts to be nega-
tive. In the regression setting, we take the [0, 1]-
scaled number of participants who elicited each
property for a concept to be the real-valued mea-
sure of its saliency for that concept.

2.3 Distributional Models

We experiment with four state-of-the-art DMs as
feature representations for the concept domain.
The models differ with respect to their method
of generation (neural network or transformed co-
occurrence counts) and their consideration of lin-

"Due to a pre-defined threshold applied by McRae et al.
(2005), only properties mentioned by at least 5 participants
are considered positive.



guistic information (using plain text only, mor-
phology, syntax or pattern information).

word2vec. word2vec (w2v, Mikolov et al.
(2013)) is a neural network model which imple-
ments a language model objective. It has reached
state-of-the-art results for word similarity, catego-
rization and analogy tasks (Baroni et al., 2014).
We use the off-the-shelf 300-dimensional version
trained on a corpus of 100B tokens.?

GloVe. GloVe (gv, Pennington et al. (2014)) is a
log bilinear regression model. The authors report
state-of-the-art results in word similarity, seman-
tic analogies and NER tasks. We use the off-the-
shelf 300-dimensional version trained on a corpus
of 840B tokens.?

Distributional Memory. The Distributional
Memory model (dm, Baroni and Lenci (2010)) is a
co-occurrence based DM, which admits morpho-
logical, structural and pattern information. The
authors have shown that it is highly competitive
with state-of-the-art co-occurrence models in a
range of semantic tasks. We use the off-the-shelf
5K-dimensional version trained on 3B tokens.*

Dependency  word2vec. The  dependency
word2vec model (dep, Levy and Goldberg (2014))
is a variation of the word2vec model, which
takes into account the dependency links between
words. The authors have shown that it accurately
models word similarity. We use the off-the-shelf
300-dimensional version trained on Wikipedia.’

2.4 Experimental Setup

In our experiments, we consider properties which
have at least 25 positive instances in the dataset.
We then discard attributive properties that clearly
correspond to a taxonomic property. For exam-
ple, the property has feathers is no different from
the bird category, or the property lives in water is
identical to the fish category. The final list consists
of 7 taxonomic and 13 attributive properties.®

For each property, we learn both a linear SVM
classifier in the binary setup, and a linear SVM re-
gressor in the regression setup. For both setups we

2code.google.com/p/word2vec/
*nlp.stanford.edu/projects/glove/
‘clic.cimec.unitn.it/dm/
Slevyomer.wordpress.com/2014/04/25/
dependency-based-word-embeddings/
SThe average number of positive instances per property is
42 for taxonomic properties and 61 for attributive properties.
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use the lib-svm package (Chang and Lin, 2011)’
and follow a 5-fold cross-validation protocol.

In the binary setup, we report F-scores only, as
accuracy measures tend to be misleading due to
an unbalanced label distribution. In the regression
setup, we report Pearson’s correlation scores be-
tween predicted values and gold standard values.

2.5 Results

Table 1 shows our results in the binary setup (left
side) and in the regression setup (right side) for all
models. We display average scores separately for
taxonomic and attributive properties.

The results for the binary setup show a rather
low performance on learning attributive proper-
ties, attaining an average F-score of no more than
0.37 (dep model). This is emphasized when com-
pared to the average performance on taxonomic
properties, which is 0.73 for dep, and can be as
high as 0.78 (w2v). The regression setup shows a
similar trend; the average correlation for attribu-
tive properties is at most 0.28 (dep), compared to
0.59 for taxonomic properties.

While linear Support Vectors are a well-
established method for classification and regres-
sion, we have attempted the same experiments
with several other methods, including K-Nearest-
Neighbors and Decision Trees for classification,
and simple Least Squares for regression. In all
cases, the results were found to be inferior to the
ones obtained by the Support Vectors, while main-
taining the discrepancy in performance between
taxonomic and attributive property learning.

3 Discussion

Our results show that there is a great difference
between the performance of DMs when used to
predict taxonomic and attributive properties. Con-
cretely, four state-of-the-art DMs fail to predict at-
tributive properties, implying that even if the prop-
erty information is indicated in text, it is signaled
very weakly, at least by means of linguistic regu-
larities captured by current, state-of-the-art DMs.

Our findings are in line with previous work,
such as (Baroni and Lenci, 2008), who demon-
strated that taxonomic properties are more dom-
inant in text compared to attributive properties.
This suggests that the distributional hypothesis
may not be equally applicable to all types of se-
mantic information, and in particular, it may be

"www.csie.ntu.edu.tw/~cjlin/libsvm



Property Binary Classification Regression

w2v | gv | dm | dep || w2v | gv | dm | dep

a bird 0.83 | 0.86 | 0.78 | 0.71 || 0.63 | 0.63 | 0.39 | 0.57

a fruit 086 | 0.8 | 0.72 | 0.6 || 0.66 | 0.69 | 0.57 | 0.55

.2 | a mammal 0.71 1 0.69 | 0.65 | 0.73 || 0.47 | 0.44 | 0.46 | 0.41
§ a vegetable 0.74 1 0.81 | 0.75 | 0.7 || 0.65 | 0.69 | 0.54 | 0.56
S | a weapon 0.72 | 0.64 | 0.67 | 0.77 || 0.61 | 0.58 | 0.48 | 0.58
£ | an animal 0.8 {077 | 0.74 | 0.82 || 0.79 | 0.73 | 0.51 | 0.78
clothing 0.81 | 0.84 | 0.64 | 0.81 || 0.63 | 0.69 | 0.36 | 0.67
Average 0.78 | 0.77 | 0.71 | 0.73 || 0.63 | 0.64 | 0.47 | 0.59

of different colors | 0.44 | 0.41 | 0.33 | 0.46 || 0.36 | 0.32 | 0.22 | 0.38

is black 024 | 0.2 | 0.17 | 022 || 0.09 | 0.17 | 0.13 | 0.15

o | is brown 0.28 | 0.23 | 0.29 | 0.33 || 0.25 | 0.25 | 0.16 | 0.27
E is green 04 | 04 | 045|044 || 028 | 0.24 | 0.28 | 0.39
'E | is white 0.19 | 022 | 0.11 | 0.2 || 0.06 | 0.1 | 0.06 | 0.15
< | is yellow 0.21 | 0.14 | 0.15 | 0.21 || 0.12 | 0.15 | 0.12 | 0.23
is large 04 | 041042044 | 039|034 | 038 0.33

is small 043 | 04 | 043|048 || 0.29 | 0.21 | 0.25 | 0.31

is long 0.31 | 0.24 | 0.31 | 0.36 || 0.24 | 0.03 | 0.14 | 0.27

is round 029 | 03 | 029|043 | 022 0.15] 0.24 | 0.28

is loud 035027 | 03 | 036 | 033|025 0.15] 0.23

is dangerous 0451047 1049 | 0.5 || 032 0.3 | 025 041

is fast 04110341029 |035| 033|032 0.19]| 0.26
Average 034 | 0.31 | 0.31 | 0.37 || 0.25 | 0.22 | 0.2 | 0.28

Table 1: Results for the Property Learning Task. On the left: F-scores for the binary classification task.
On the right: Pearson correlation scores for the regression task.

limited with respect to attributive properties.

An interesting observation is found in the rela-
tive success of DMs in predicting taxonomic prop-
erties. This result, in line with past research,
e.g. (Schwartz et al., 2014), may be explained
by considering taxonomic properties as a rich ag-
gregate of attributive properties (Baroni and Lenci,
2010). For example, animals usually have legs and
mouths, they make sounds, they can be killed, etc.
This is contrasted with attributive properties such
as is white, whose members do not have much in
common, other than the property itself. We there-
fore hypothesize that although attributive proper-
ties may be signaled very weakly in text, as our
results indicate, their accumulation is sufficient to
distinguish concepts that share most of them from
concepts that do not.

To demonstrate this, we turned back to the
McRae dataset. For each property, we observed
the vector of its values across all concepts in the
dataset. We then found its 5 nearest neighbors
in terms of correlation, and computed the average
correlation with these neighbors, denoted c. Next,
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we compared the averaged c value for taxonomic
properties with that of attributive properties. Taxo-
nomic properties show an average c value of 0.62,
compared to 0.32 only for attributive properties.
This supports our hypothesis that members of tax-
onomic properties are similar to each other in var-
ious aspects, while members of attributive proper-
ties are much less so. This finding may provide
a partial explanation as to why taxonomic proper-
ties are more easily learned compared to attribu-
tive properties, as demonstrated in this paper.

To conclude, we have shown that in the con-
text of learning semantic properties, state-of-the-
art distributional models perform differently with
respect to the type of property learned. Our results
serve as a basis for establishing the limitations to
the distributional hypothesis. As future work we
propose to further investigate the nature of the dis-
tributional hypothesis in its manifestation as DMs,
possibly by considering a more fine grained dis-
tinction between property types. For example, we
intend to compare the performance between prop-
erties grounded in the physical world, like colors



or size, and more abstract properties such as dan-
gerous or cute.
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