
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Short Papers), pages 279–284,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

A Lexicalized Tree Kernel for Open Information Extraction

Ying Xu†, Christoph Ringlstetter‡, Mi-Young Kim†, Randy Goebel†,
Grzegorz Kondrak†, Yusuke Miyao§

†Department of Computing Science, University of Alberta
‡Gini, Muenchen

§National Institute of Informatics / JST, PRESTO
†{yx2,miyoung2,rgoebel,gkondrak}@ualberta.ca

‡c.ringlstetter@gini.net
§yusuke@nii.ac.jp

Abstract
In contrast with traditional relation ex-
traction, which only considers a fixed set
of relations, Open Information Extraction
(Open IE) aims at extracting all types
of relations from text. Because of data
sparseness, Open IE systems typically ig-
nore lexical information, and instead em-
ploy parse trees and Part-of-Speech (POS)
tags. However, the same syntactic struc-
ture may correspond to different relations.
In this paper, we propose to use a lexical-
ized tree kernel based on the word embed-
dings created by a neural network model.
We show that the lexicalized tree kernel
model surpasses the unlexicalized model.
Experiments on three datasets indicate that
our Open IE system performs better on the
task of relation extraction than the state-
of-the-art Open IE systems of Xu et al.
(2013) and Mesquita et al. (2013).

1 Introduction

Relation Extraction (RE) is the task of recognizing
relationships between entities mentioned in text.
In contrast with traditional relation extraction, for
which a target set of relations is fixed a priori,
Open Information Extraction (Open IE) is a gen-
eralization of RE that attempts to extract all re-
lations (Banko et al., 2007). Although Open IE
models that extract N-ary relations have been pro-
posed, here we concentrate on binary relations.

Most Open IE systems employ syntactic infor-
mation such as parse trees and part of speech
(POS) tags, but ignore lexical information. How-
ever, previous work suggests that Open IE would
benefit from lexical information because the same
syntactic structure may correspond to different re-
lations. For instance, the relation <Annacone,

coach of, Federer> is correct for the sentence
“Federer hired Annacone as a coach”, but not for
the sentence “Federer considered Annacone as a
coach,” even though they have the same depen-
dency path structure (Mausam et al., 2012). Lex-
ical information is required to distinguish the two
cases.

Here we propose a lexicalized tree kernel model
that combines both syntactic and lexical informa-
tion. In order to avoid lexical sparsity issues, we
investigate two smoothing methods that use word
vector representations: Brown clustering (Brown
et al., 1992) and word embeddings created by
a neural network model (Collobert and Weston,
2008). To our knowledge, we are the first to ap-
ply word embeddings and to use lexicalized tree
kernel models for Open IE.

Experiments on three datasets demonstrate that
our Open IE system achieves absolute improve-
ments in F-measure of up to 16% over the cur-
rent state-of-the-art systems of Xu et al. (2013)
and Mesquita et al. (2013). In addition, we ex-
amine alternative approaches for including lexical
information, and find that excluding named enti-
ties from the lexical information results in an im-
proved F-score.

2 System Architecture

The goal of the Open IE task is to extract from
text a set of triples {< E1, R, E2 >}, where E1

and E2 are two named entities, and R is a textual
fragment that indicates the semantic relation be-
tween the two entities. We concentrate on binary,
single-word relations between named entities. The
candidate relation words are extracted from depen-
dency structures, and then filtered by a supervised
tree kernel model.

Our system consists of three modules: entity
extraction, relation candidate extraction, and tree

279

Figure 1: Our Open IE system structure.

kernel filtering. The system structure is outlined
in Figure 1. We identify named entities, parse sen-
tences, and convert constituency trees into depen-
dency structures using the Stanford tools (Man-
ning et al., 2014). Entities within a fixed token dis-
tance (set to 20 according to development results)
are extracted as pairs {< E1, E2 >}. We then
identify relation candidates R for each entity pair
in a sentence, using dependency paths. Finally,
the candidate triples {< E1, R, E2 >} are paired
with their corresponding tree structures, and pro-
vided as input to the SVM tree kernel. Our Open
IE system outputs the triples that are classified as
positive. In the following sections, we describe the
components of the system in more detail.

3 Relation Candidates

Relation candidates are words that may repre-
sent a relation between two entities. We consider
only lemmatized nouns, verbs and adjectives that
are within two dependency links from either of
the entities. Following Wu and Weld (2010) and
Mausam et al. (2012), we use dependency pat-
terns rather than POS patterns, which allows us to
identify relation candidates which are farther away
from entities in terms of token distance.

We extract the first two content words along the
dependency path between E1 and E2. In the fol-
lowing example, the path is E1 → encounter →
build → E2, and the two relation word candidates
between “Mr. Wathen” and “Plant Security Ser-
vice” are encounter and build, of which the latter
is the correct one.

If there are no content words on the dependency
path between the two entities, we instead consider
words that are directly linked to either of them.
In the following example, the only relation candi-
date is the word battle, which is directly linked to
“Edelman.”

The relation candidates are manually annotated
as correct/incorrect in the training data for the tree
kernel models described in the following section.

4 Lexicalized Tree Kernel

We use a supervised lexicalized tree kernel to filter
negative relation candidates from the results of the
candidate extraction module. For semantic tasks,
the design of input structures to tree kernels is as
important as the design of the tree kernels them-
selves. In this section, we introduce our tree struc-
ture, describe the prior basic tree kernel, and fi-
nally present our lexicalized tree kernel function.

4.1 Tree Structure

In order to formulate the input for tree kernel
models, we need to convert the dependency path
to a tree-like structure with unlabelled edges.
The target dependency path is the shortest path
that includes the triple and other content words
along the path. Consider the following example,
which is a simplified representation of the sen-
tence “Georgia-Pacific Corp.’s unsolicited $3.9
billion bid for Great Northern Nekoosa Corp. was
hailed by Wall Street.” The candidate triple iden-
tified by the relation candidate extraction module
is <Georgia-Pacific Corp., bid, Great Northern
Nekoosa Corp.>.

Our unlexicalized tree representation model is
similar to the unlexicalized representations of Xu
et al. (2013), except that instead of using the POS
tag of the path’s head word as the root, we cre-
ate an abstract Root node. We preserve the depen-
dency labels, POS tags, and entity information as
tree nodes: (a) the top dependency labels are in-

280

(a) An un-lexicalized dependency tree. (b) A lexicalized dependency tree.

Figure 2: An unlexicalized tree and the corresponding lexicalized tree.

cluded as children of the abstract Root node, other
labels are attached to the corresponding parent la-
bels; (b) the POS tag of the head word of the de-
pendence path is a child of the Root; (c) other POS
tags are attached as children of the dependency la-
bels; and (d) the relation tag ‘R’ and the entity tags
‘NE’ are the terminal nodes attached to their re-
spective POS tags. Figure 2(a) shows the unlexi-
calized dependency tree for our example sentence.

Our lexicalized tree representation is derived
from the unlexicalized representation by attaching
words as terminal nodes. In order to reduce the
number of nodes, we collapse the relation and en-
tity tags with their corresponding POS tags. Fig-
ure 2(b) shows the resulting tree for the example
sentence.

4.2 Tree Kernels
Tree kernel models extract features from parse
trees by comparing pairs of tree structures. The
essential distinction between different tree kernel
functions is the ∆ function that calculates simi-
larity of subtrees. Our modified kernel is based on
the SubSet Tree (SST) Kernel proposed by Collins
and Duffy (2002). What follows is a simplified de-
scription of the kernel; a more detailed description
can be found in the original paper.

The general function for a tree kernel model
over trees T1 and T2 is:

K(T1, T2) =
∑

n1∈T1

∑
n2∈T2

∆(n1, n2), (1)

where n1 and n2 are tree nodes. The ∆ function
of SST kernel is defined recursively:

1. ∆(n1, n2) = 0 if the productions (context-
free rules) of n1 and n2 are different.

2. Otherwise, ∆(n1, n2) = 1 if n1 and n2 are
matching pre-terminals (POS tags).

3. Otherwise,
∆(n1, n2) =

∏
j(1 + ∆(c(n1, j), c(n2, j)),

where c(n, j) is the jth child of n.

4.3 Lexicalized Tree Kernel
Since simply adding words to lexicalize a tree ker-
nel leads to sparsity problems, a type of smoothing
must be applied. Bloehdorn and Moschitti (2007)
measure the similarity of words using WordNet.
Croce et al. (2011) employ word vectors created
by Singular Value Decomposition (Golub and Ka-
han., 1965) from a word co-occurrence matrix.
Plank and Moschitti (2013) use word vectors cre-
ated by Brown clustering algorithm (Brown et al.,
1992), which is another smoothed word represen-
tation that represents words as binary vectors. Sri-
vastava et al. (2013) use word embeddings of Col-
lobert and Weston (2008), but their tree kernel
does not incorporate POS tags or dependency la-
bels.

We propose using word embeddings created
by a neural network model (Collobert and We-
ston, 2008), in which words are represented by
n-dimensional real valued vectors. Each dimen-
sion represents a latent feature of the word that re-
flects its semantic and syntactic properties. Next,
we describe how we embed these vectors into tree
kernels.

Our lexicalized tree kernel model is the same as
SST, except in the following case: if n1 and n2 are
matching pre-terminals (POS tags), then

∆(n1, n2) = 1 + G(c(n1), c(n2)), (2)

where c(n) denotes the word w that is the unique
child of n, and G(w1, w2) = exp(−γ∥w1−w2∥2)
is a Gaussian function for two word vectors, which
is a valid kernel.

We examine the contribution of different types
of words by comparing three methods of including
lexical information: (1) relation words only; (2) all
words (relation words, named entities, and other
words along the dependency path fragment); and
(3) all words, except named entities. The words
that are excluded are assumed to be different; for
example, in the third method, G(E1, E2) is always
zero, even if the entities, E1 and E2, are the same.

281

5 Experiments

Here we evaluate alternative tree kernel configura-
tions, and compare our Open IE system to previ-
ous work.

We perform experiments on three datasets (Ta-
ble 1): the Penn Treebank set (Xu et al., 2013),
the New York Times set (Mesquita et al., 2013),
and the ClueWeb set which we created for this
project from a large collection of web pages.1 The
models are trained on the Penn Treebank training
set and tested on the three test sets, of which the
Penn Treebank set is in-domain, and the other two
sets are out-of-domain. For word embedding and
Brown clustering representations, we use the data
provided by Turian et al. (2010). The SVM param-
eters, as well as the Brown cluster size and code
length, are tuned on the development set.

Set train dev test
Penn Treebank 750 100 100
New York Times — 300 500
ClueWeb — 450 250

Table 1: Data sets and their size (number of sen-
tences).

Table 2 shows the effect of different smooth-
ing and lexicalization techniques on the tree ker-
nels. In order to focus on tree kernel functions,
we use the relation candidate extraction (Section
3) and tree structure (Section 4.1) proposed in
this paper. The results in the first two rows indi-
cate that adding unsmoothed lexical information
to the method of Xu et al. (2013) is not help-
ful, which we attribute to data sparsity. On the
other hand, smoothed word representations do im-
prove F-measure. Surprisingly, a neural network
approach of creating word embeddings actually
achieves a lower recall than the method of Plank
and Moschitti (2013) that uses Brown clustering;
the difference in F-measure is not statistically sig-
nificant according to compute-intensive random-
ization test (Padó, 2006).

With regards to lexicalization, the inclusion of
relation words is important. However, unlike
Plank and Moschitti (2013), we found that it is
better to exclude the lexical information of entities
themselves, which confirms the findings of Riedel
et al. (2013). We hypothesize that the correctness
of a relation triple in Open IE is not closely re-

1The Treebank set of (Xu et al., 2013), with minor correc-
tions, and the ClueWeb set are appended to this publication.

Smoothing Lexical info P R F1

none (Xu13) none 85.7 72.7 78.7
none all words 89.8 66.7 76.5
Brown (PM13) relation only 88.7 71.2 79.0
Brown (PM13) all words 84.5 74.2 79.0
Brown (PM13) excl. entities 86.2 75.8 80.7
embedding relation only 93.9 69.7 80.0
embedding all words 93.8 68.2 79.0
embedding excl. entities 95.9 71.2 81.7

Table 2: The results of relation extraction with al-
ternative smoothing and lexicalization techniques
on the Penn Treebank set (with our relation candi-
date extraction and tree structure).

lated to entities. Consider the example mentioned
in (Riedel et al., 2013): for relations like “X vis-
its Y”, X could be a person or organization, and Y
could be a location, organization, or person.

Our final set of experiments evaluates the best-
performing version of our system (the last row
in Table 2) against two state-of-the-art Open IE
systems: Mesquita et al. (2013), which is based
on several hand-crafted dependency patterns; and
Xu et al. (2013), which uses POS-based relation
candidate extraction and an unlexicalized tree ker-
nel. Tree kernel systems are all trained on the
Penn Treebank training set, and tuned on the cor-
responding development sets.

The results in Table 3 show that our system con-
sistently outperforms the other two systems, with
absolute gains in F-score between 4 and 16%. We
include the reported results of (Xu et al., 2013)
on the Penn Treebank set, and of (Mesquita et al.,
2013) on the New York Times set. The ClueWeb
results were obtained by running the respective
systems on the test set, except that we used our
relation candidate extraction method for the tree
kernel of (Xu et al., 2013). We conclude that the
substantial improvement on the Penn Treebank set
can be partly attributed to a superior tree kernel,
and not only to a better relation candidate extrac-
tion method. We also note that word embeddings
statistically outperform Brown clustering on the
ClueWeb set, but not on the other two sets.

The ClueWeb set is quite challenging because
it contains web pages which can be quite noisy.
As a result we’ve found that a number of Open IE
errors are caused by parsing. Conjunction struc-
tures are especially difficult for both parsing and
relation extraction. For example, our system ex-
tracts the relation triple <Scotland, base, Scott>
from the sentence “Set in 17th century Scotland

282

P R F1

Penn Treebank set
Xu et al. (2013)* 66.1 50.7 57.4
Brown (PM13) 82.8 65.8 73.3
Ours (embedding) 91.8 61.6 73.8

New York Times set
Mesquita et al. (2013)* 72.8 39.3 51.1
Brown (PM13) 83.5 44.0 57.6
Ours (embedding) 85.9 40.7 55.2

ClueWeb set
Xu et al. (2013) 54.3 35.8 43.2
Mesquita et al. (2013) 63.3 29.2 40.0
Brown (PM13) 54.1 31.1 39.5
Ours (embedding) 45.8 51.9 48.7

Table 3: Comparison of complete Open IE sys-
tems. The asterisks denote results reported in pre-
vious work.

and based on a novel by Sir Walter Scott, its high
drama...” with the wrong dependency path Scot-

land
conj and→ based

prep by→ Scott. In the future, we
will investigate whether adding information from
context words that are not on the dependency path
between two entities may alleviate this problem.

6 Conclusion

We have proposed a lexicalized tree kernel model
for Open IE, which incorporates word embeddings
learned from a neural network model. Our sys-
tem combines a dependency-based relation candi-
date extraction method with a lexicalized tree ker-
nel, and achieves state-of-the-art results on three
datasets. Our experiments on different configu-
rations of the smoothing and lexicalization tech-
niques show that excluding named entity informa-
tion is a better strategy for Open IE.

In the future, we plan to mitigate the perfor-
mance drop on the ClueWeb set by adding in-
formation about context words around relation
words. We will also investigate other ways of col-
lapsing different types of tags in the lexicalized
tree representation.

Acknowledgments

We would like to thank the anonymous review-
ers for their helpful suggestions. This work was
funded in part by Alberta Innovates Center for
Machine Learning (AICML), Natural Sciences
and Engineering Research Council of Canada
(NSERC), Alberta Innovates Technology Futures
(AITF), and National Institute of Informatics (NII)
International Internship Program.

References
Michele Banko, Michael J Cafarella, Stephen Soderl,

Matt Broadhead, and Oren Etzioni. 2007. Open in-
formation extraction from the web. In International
Joint Conference on Artificial Intelligence, pages
2670–2676.

Stephan Bloehdorn and Alessandro Moschitti. 2007.
Structure and semantics for expressive text kernels.
In Proceedings of the Sixteenth ACM Conference
on Conference on Information and Knowledge Man-
agement, CIKM ’07, pages 861–864, New York,
NY, USA. ACM.

Peter F. Brown, Peter V. deSouza, Robert L. Mer-
cer, Vincent J. Della Pietra, and Jenifer C. Lai.
1992. Class-based n-gram models of natural lan-
guage. Comput. Linguist., 18(4):467–479, Decem-
ber.

Michael Collins and Nigel Duffy. 2002. New rank-
ing algorithms for parsing and tagging: kernels over
discrete structures, and the voted perceptron. In Pro-
ceedings of the 40th Annual Meeting on Association
for Computational Linguistics, ACL ’02, pages 263–
270, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Interna-
tional Conference on Machine Learning, ICML.

Danilo Croce, Alessandro Moschitti, and Roberto
Basili. 2011. Structured lexical similarity via con-
volution kernels on dependency trees. In Proceed-
ings of the Conference on Empirical Methods in
Natural Language Processing, EMNLP ’11, pages
1034–1046, Stroudsburg, PA, USA. Association for
Computational Linguistics.

G. Golub and W. Kahan. 1965. Calculating the singu-
lar values and pseudo-inverse of a matrix. Journal of
the Society for Industrial and Applied Mathematics:
Series B, Numerical Analysis, page 205224.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Proceedings of 52nd
Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations, pages
55–60.

Mausam, Michael Schmitz, Robert Bart, Stephen
Soderland, and Oren Etzioni. 2012. Open language
learning for information extraction. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 523–534. Asso-
ciation for Computational Linguistics.

Filipe Mesquita, Jordan Schmidek, and Denilson Bar-
bosa. 2013. Effectiveness and efficiency of open

283

relation extraction. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language
Processing, pages 447–457. Association for Com-
putational Linguistics.

Sebastian Padó, 2006. User’s guide to sigf: Signifi-
cance testing by approximate randomisation.

Barbara Plank and Alessandro Moschitti. 2013. Em-
bedding semantic similarity in tree kernels for do-
main adaptation of relation extraction. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1498–1507, Sofia, Bulgaria, August.
Association for Computational Linguistics.

Sebastian Riedel, Limin Yao, Benjamin M. Marlin, and
Andrew McCallum. 2013. Relation extraction with
matrix factorization and universal schemas. In Joint
Human Language Technology Conference/Annual
Meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics (HLT-NAACL
’13), June.

Shashank Srivastava, Dirk Hovy, and Eduard Hovy.
2013. A walk-based semantically enriched tree ker-
nel over distributed word representations. In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1411–
1416, Seattle, Washington, USA, October. Associa-
tion for Computational Linguistics.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th Annual Meeting of the Association for Com-
putational Linguistics, ACL ’10, pages 384–394,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Fei Wu and Daniel S. Weld. 2010. Open information
extraction using wikipedia. In Proceedings of the
48th Annual Meeting of the Association for Com-
putational Linguistics, ACL ’10, pages 118–127,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Ying Xu, Mi-Young Kim, Kevin Quinn, Randy Goebel,
and Denilson Barbosa. 2013. Open information
extraction with tree kernels. In Proceedings of the
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 868–877, At-
lanta, Georgia, June. Association for Computational
Linguistics.

284

