
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Short Papers), pages 218–224,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Frame-Semantic Role Labeling with Heterogeneous Annotations

Meghana Kshirsagar∗ Sam Thomson∗ Nathan Schneider†

Jaime Carbonell∗ Noah A. Smith∗ Chris Dyer∗
∗School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

†School of Informatics, University of Edinburgh, Edinburgh, Scotland, UK

Abstract

We consider the task of identifying and la-
beling the semantic arguments of a predi-
cate that evokes a FrameNet frame. This
task is challenging because there are only
a few thousand fully annotated sentences
for supervised training. Our approach aug-
ments an existing model with features de-
rived from FrameNet and PropBank and
with partially annotated exemplars from
FrameNet. We observe a 4% absolute in-
crease in F1 versus the original model.

1 Introduction

Paucity of data resources is a challenge for
semantic analyses like frame-semantic parsing
(Gildea and Jurafsky, 2002; Das et al., 2014) using
the FrameNet lexicon (Baker et al., 1998; Fillmore
and Baker, 2009).1 Given a sentence, a frame-
semantic parse maps word tokens to frames they
evoke, and for each frame, finds and labels its ar-
gument phrases with frame-specific roles. An ex-
ample appears in figure 1.

In this paper, we address this argument iden-
tification subtask, a form of semantic role label-
ing (SRL), a task introduced by Gildea and Juraf-
sky (2002) using an earlier version of FrameNet.
Our contribution addresses the paucity of annotated
data for training using standard domain adaptation
techniques. We exploit three annotation sources:

• the frame-to-frame relations in FrameNet, by
using hierarchical features to share statistical
strength among related roles (§3.2),

• FrameNet’s corpus of partially-annotated ex-
emplar sentences, by using “frustratingly
easy” domain adaptation (§3.3), and

‡ Corresponding author: mkshirsa@cs.cmu.edu
1http://framenet.icsi.berkeley.edu
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Figure 1: Part of a sentence from FrameNet full-text an-
notation. 3 frames and their arguments are shown: DESIR-
ING is evoked by want, ACTIVITY_FINISH by finish, and HOLD-
ING_OFF_ON by hold off. Thin horizontal lines representing
argument spans are labeled with role names. (Not shown: July
and August evoke CALENDRIC_UNIT and fill its Unit role.)
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Figure 2: A PropBank-annotated sentence from OntoNotes
(Hovy et al., 2006). The PB lexicon defines rolesets (verb
sense–specific frames) and their core roles: e.g., finish-v-01
‘cause to stop’, A0 ‘intentional agent’, A1 ‘thing finishing’, and
A2 ‘explicit instrument, thing finished with’. (finish-v-03, by
contrast, means ‘apply a finish, as to wood’.) Clear similarities
to the FrameNet annotations in figure 1 are evident, though
PB uses lexical frames rather than deep frames and makes
some different decisions about roles (e.g., want-v-01 has no
analogue to Focal_participant).

• a PropBank-style SRL system, by using guide
features (§3.4).2

These expansions of the training corpus and the
feature set for supervised argument identification
are integrated into SEMAFOR (Das et al., 2014),
the leading open-source frame-semantic parser
for English. We observe a 4% F1 improvement
in argument identification on the FrameNet test
set, leading to a 1% F1 improvement on the full
frame-semantic parsing task. Our code and mod-
els are available at http://www.ark.cs.cmu.edu/
SEMAFOR/.

2 FrameNet

FrameNet represents events, scenarios, and rela-
tionships with an inventory of frames (such as

2Preliminary experiments training on PropBank annota-
tions mapped to FrameNet via SemLink 1.2.2c (Bonial et al.,
2013) hurt performance, likely due to errors and coverage
gaps in the mappings.
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SHOPPING and SCARCITY). Each frame is associ-
ated with a set of roles (or frame elements) called
to mind in order to understand the scenario, and
lexical predicates (verbs, nouns, adjectives, and
adverbs) capable of evoking the scenario. For ex-
ample, the BODY_MOVEMENT frame has Agent and
Body_part as its core roles, and lexical entries in-
cluding verbs such as bend, blink, crane, and curtsy,
plus the noun use of curtsy. In FrameNet 1.5, there
are over 1,000 frames and 12,000 lexical predi-
cates.

2.1 Hierarchy
The FrameNet lexicon is organized as a network,
with several kinds of frame-to-frame relations
linking pairs of frames and (subsets of) their ar-
guments (Ruppenhofer et al., 2010). In this work,
we consider two kinds of frame-to-frame relations:
Inheritance: E.g., ROBBERY inherits from
COMMITTING_CRIME, which inherits from MIS-
DEED. Crucially, roles in inheriting frames
are mapped to corresponding roles in inher-
ited frames: ROBBERY.Perpetrator links to
COMMITTING_CRIME.Perpetrator, which links to
MISDEED.Wrongdoer, and so forth.
Subframe: This indicates a subevent within a
complex event. E.g., the CRIMINAL_PROCESS frame
groups together subframes ARREST, ARRAIGN-
MENT and TRIAL. CRIMINAL_PROCESS.Defendant,
for instance, is mapped to ARREST.Suspect,
TRIAL.Defendant, and SENTENCING.Convict.

We say that a parent of a role is one that has
either the Inheritance or Subframe relation to it.
There are 4,138 Inheritance and 589 Subframe
links among role types in FrameNet 1.5.

Prior work has considered various ways of group-
ing role labels together in order to share statisti-
cal strength. Matsubayashi et al. (2009) observed
small gains from using the Inheritance relation-
ships and also from grouping by the role name
(SEMAFOR already incorporates such features).
Johansson (2012) reports improvements in SRL for
Swedish, by exploiting relationships between both
frames and roles. Baldewein et al. (2004) learn
latent clusters of roles and role-fillers, reporting
mixed results. Our approach is described in §3.2.

2.2 Annotations
Statistics for the annotations appear in table 1.
Full-text (FT): This portion of the FrameNet cor-
pus consists of documents and has about 5,000
sentences for which annotators assigned frames

Full-Text Exemplars
train test train test

Sentences 2,780 2,420 137,515 4,132
Frames 15,019 4,458 137,515 4,132
Overt arguments 25,918 7,210 278,985 8,417

TYPES
Frames 642 470 862 562
Roles 2,644 1,420 4,821 1,224
Unseen frames vs. train: 46 0
Roles in unseen frames vs. train: 178 0
Unseen roles vs. train: 289 38
Unseen roles vs. combined train: 103 32

Table 1: Characteristics of the training and test data. (These
statistics exclude the development set, which contains 4,463
frames over 746 sentences.)

and arguments to as many words as possible. Be-
ginning with the SemEval-2007 shared task on
FrameNet analysis, frame-semantic parsers have
been trained and evaluated on the full-text data
(Baker et al., 2007; Das et al., 2014).3 The full-text
documents represent a mix of genres, prominently
including travel guides and bureaucratic reports
about weapons stockpiles.
Exemplars: To document a given predicate, lexi-
cographers manually select corpus examples and
annotate them only with respect to the predicate
in question. These singly-annotated sentences
from FrameNet are called lexicographic exem-
plars. There are over 140,000 sentences containing
argument annotations and relative to the FT dataset,
these contain an order of magnitude more frame
annotations and over two orders of magnitude more
sentences. As these were manually selected, the
rate of overt arguments per frame is noticeably
higher than in the FT data. The exemplars formed
the basis of early studies of frame-semantic role
labeling (e.g., Gildea and Jurafsky, 2002; Thomp-
son et al., 2003; Fleischman et al., 2003; Litkowski,
2004; Kwon et al., 2004). Exemplars have not yet
been exploited successfully to improve role label-
ing performance on the more realistic FT task.4

2.3 PropBank

PropBank (PB; Palmer et al., 2005) is a lexicon and
corpus of predicate–argument structures that takes
a shallower approach than FrameNet. FrameNet
frames cluster lexical predicates that evoke sim-

3Though these were annotated at the document level,
and train/development/test splits are by document, the frame-
semantic parsing is currently restricted to the sentence level.

4Das and Smith (2011, 2012) investigated semi-supervised
techniques using the exemplars and WordNet for frame iden-
tification. Hermann et al. (2014) also improve frame iden-
tification by mapping frames and predicates into the same
continuous vector space, allowing statistical sharing.
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ilar kinds of scenarios In comparison, PropBank
frames are purely lexical and there are no formal
relations between different predicates or their roles.
PropBank’s sense distinctions are generally coarser-
grained than FrameNet’s. Moreover, FrameNet lex-
ical entries cover many different parts of speech,
while PropBank focuses on verbs and (as of re-
cently) eventive noun and adjective predicates. An
example with PB annotations is shown in figure 2.

3 Model

We use the model from SEMAFOR (Das et al.,
2014), detailed in §3.1, as a starting point. We ex-
periment with techniques that augment the model’s
training data (§3.3) and feature set (§3.2, §3.4).

3.1 Baseline

In SEMAFOR, the argument identification task is
treated as a structured prediction problem. Let
the classification input be a dependency-parsed
sentence x, the token(s) p constituting the pred-
icate in question, and the frame f evoked by p (as
determined by frame identification). We use the
heuristic procedure described by (Das et al., 2014)
for extracting candidate argument spans for the
predicate; call this spans(x, p, f ). spans always
includes a special span denoting an empty or non-
overt role, denoted ∅. For each candidate argument
a ∈ spans(x, p, f ) and each role r, a binary feature
vector φφφ(a,x, p, f ,r) is extracted. We use the fea-
ture extractors from (Das et al., 2014) as a baseline,
adding additional ones in our experiments (§3.2–
§3.4). Each a is given a real-valued score by a
linear model:

scorew(a ∣ x, p, f ,r) =w⊺φφφ(a,x, p, f ,r) (1)

The model parameters w are learned from data (§4).
Prediction requires choosing a joint assignment

of all arguments of a frame, respecting the con-
straints that a role may be assigned to at most one
span, and spans of overt arguments must not over-
lap. Beam search, with a beam size of 100, is used
to find this argmax.5

3.2 Hierarchy Features

We experiment with features shared between re-
lated roles of related frames in order to capture

5Recent work has improved upon global decoding tech-
niques (Das et al., 2012; Täckström et al., 2015). We expect
such improvements to be complementary to the gains due to
the added features and data reported here.

statistical generalizations about the kinds of argu-
ments seen in those roles. Our hypothesis is that
this will be beneficial given the small number of
training examples for individual roles.

All roles that have a common parent based on
the Inheritance and Subframe relations will share
a set of features in common. Specifically, for each
base feature φ which is conjoined with the role r
in the baseline model (φ ∧ "role=r"), and for each
parent r′ of r, we add a new copy of the feature
that is the base feature conjoined with the parent
role, (φ ∧"parent_role=r′"). We experimented with
using more than one level of the hierarchy (e.g.,
grandparents), but the additional levels did not im-
prove performance.

3.3 Domain Adaptation and Exemplars

Daumé (2007) proposed a feature augmentation
approach that is now widely used in supervised
domain adaptation scenarios. We use a variant
of this approach. Let Dex denote the exemplars
training data, and Dft denote the full text training
data. For every feature φ(a,x, p, f ,r) in the base
model, we add a new feature φft(⋅) that fires only
if φ(⋅) fires and x ∈Dft. The intuition is that each
base feature contributes both a “general” weight
and a “domain-specific” weight to the model; thus,
it can exhibit a general preference for specific roles,
but this general preference can be fine-tuned for
the domain. Regularization encourages the model
to use the general version over the domain-specific,
if possible.

3.4 Guide Features

Another approach to domain adaptation is to train a
supervised model on a source domain, make predic-
tions using that model on the target domain, then
use those predictions as additional features while
training a new model on the target domain. The
source domain model is effectively a form of pre-
processing, and the features from its output are
known as guide features (Johansson, 2013; Kong
et al., 2014).6

In our case, the full text data is our target do-
main, and PropBank and the exemplars data are our
source domains, respectively. For PropBank, we
run the SRL system of Illinois Curator 1.1.4 (Pun-

6This is related to the technique of model stacking, where
successively richer models are trained by cross-validation on
the same dataset (e.g., Cohen and Carvalho, 2005; Nivre and
McDonald, 2008; Martins et al., 2008).
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yakanok et al., 2008)7 on verbs in the full-text data.
For the exemplars, we train baseline SEMAFOR
on the exemplars and run it on the full-text data.

We use two types of guide features: one encodes
the role label predicted by the source model, and
the other indicates that a span a was assigned some
role. For the exemplars, we use an additional fea-
ture to indicate that the predicted role matches the
role being filled.

4 Learning

Following SEMAFOR, we train using a local ob-
jective, treating each role and span pair as an in-
dependent training instance. We have made two
modifications to training which had negligible im-
pact on full-text accuracy, but decreased training
time significantly:8

• We use the online optimization method
AdaDelta (Zeiler, 2012) with minibatches, in-
stead of the batch method L-BFGS (Liu and
Nocedal, 1989). We use minibatches of size
4,000 on the full text data, and 40,000 on the
exemplar data.

• We minimize squared structured hinge loss
instead of a log-linear loss. Let ((x, p, f ,r),a)
be the ith training example. Then the squared
hinge loss is given by Lw(i) =

(max
a′
{w⊺φφφ(a′,x, p, f ,r)

+111{a′ /= a} }−w⊺φφφ(a,x, p, f ,r))
2

We learn w by minimizing the `2-regularized aver-
age loss on the dataset:

w∗ = argmin
w

1
N

N

∑
i=1

Lw(i)+
1
2

λ∥w∥22 (2)

5 Experimental Setup

We use the same FrameNet 1.5 data and train/test
splits as Das et al. (2014). Automatic syntactic de-
pendency parses from MSTParserStacked (Martins
et al., 2008) are used, as in Das et al. (2014).
Preprocessing. Out of 145,838 exemplar sen-
tences, we removed 4,191 sentences which had
no role annotations. We removed sentences that ap-
peared in the full-text data. We also merged spans
which were adjacent and had the same role label.

7http://cogcomp.cs.illinois.edu/page/software_

view/SRL
8With SEMAFOR’s original features and training data, the

result of the above changes is that full-text F1 decreases from
59.3% to 59.1%, while training time (running optimization to
convergence) decreases from 729 minutes to 82 minutes.

Training Configuration Model P R F1
(Features) Size (%) (%) (%)

FT (Baseline) 1.1 65.6 53.8 59.1

FT (Hierarchy) 1.9 67.2 54.8 60.4

Exemplars
guide
ÐÐÐ→ FT 1.2 65.2 55.9 60.2

FT+Exemplars (Basic) 5.0 66.0 58.2 61.9
FT+Exemplars (DA) 5.8 65.7 59.0 62.2

PB-SRL
guide
ÐÐÐ→ FT 1.2 65.0 54.8 59.5

Combining the best methods

PB-SRL
guide
ÐÐÐ→ FT+Exemplars 5.5 67.4 58.8 62.8

FT+Exemplars (Hierarchy) 9.3 66.0 60.4 63.1

Table 2: Argument identification results on the full-text test
set. Model size is in millions of features.

Hyperparameter tuning. We determined the
stopping criterion and the `2 regularization parame-
ter λ by tuning on the FT development set, search-
ing over the following values for λ : 10−5, 10−7,
10−9, 10−12.
Evaluation. A complete frame-semantic parsing
system involves frame identification and argument
identification. We perform two evaluations: one as-
suming gold-standard frames are given, to evaluate
argument identification alone; and one using the
output of the system described by Hermann et al.
(2014), the current state-of-the-art in frame identi-
fication, to demonstrate that our improvements are
retained when incorporated into a full system.

6 Results

Argument Identification. We present precision,
recall, and F1-measure microaveraged across the
test instances in table 2, for all approaches. The
evaluation used in Das et al. (2014) assesses both
frames and arguments; since our focus is on SRL,
we only report performance for arguments, ren-
dering our scores more interpretable. Under our
argument-only evaluation, the system of Das et al.
(2014) gets 59.3% F1.

The first block shows baseline performance. The
next block shows the benefit of FrameNet hierarchy
features (+1.2% F1). The third block shows that
using exemplars as training data, especially with
domain adaptation, is preferable to using them as
guide features (2.8% F1 vs. 0.9% F1). PropBank
SRL as guide features offers a small (0.4% F1) gain.

The last two rows of table 2 show the perfor-
mance upon combining the best approaches. Both
use full-text and exemplars for training; the first
uses PropBank SRL as guide features, and the sec-
ond adds hierarchy features. The best result is the
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Figure 3: F1 for each role appearing in the test set, ranked by
frequency. F1 values have been smoothed with loess, with
a smoothing parameter of 0.2. “Siblings” refers to hierarchy
features.

latter, gaining 3.95% F1 over the baseline.

Role-level evaluation. Figure 3(b) shows F1 per
frame element, for the baseline and the three best
models. Each x-axis value is one role, sorted by
decreasing frequency (the distribution of role fre-
quencies is shown in figure 3(a)). For frequent
roles, performance is similar; our models achieve
gains on rarer roles.

Full system. When using the frame output of
Hermann et al. (2014), F1 improves by 1.1%, from
66.8% for the baseline, to 67.9% for our combined
model (from the last row in table 2).

7 Conclusion

We have empirically shown that auxiliary semantic
resources can benefit the challenging task of frame-
semantic role labeling. The significant gains come
from the FrameNet exemplars and the FrameNet hi-
erarchy, with some signs that the PropBank scheme
can be leveraged as well.

We are optimistic that future improvements to
lexical semantic resources, such as crowdsourced
lexical expansion of FrameNet (Pavlick et al., 2015)
as well as ongoing/planned changes for PropBank
(Bonial et al., 2014) and SemLink (Bonial et al.,
2013), will lead to further gains in this task. More-

over, the techniques discussed here could be further
explored using semi-automatic mappings between
lexical resources (such as UBY; Gurevych et al.,
2012), and correspondingly, this task could be used
to extrinsically validate those mappings.

Ours is not the only study to show benefit from
heterogeneous annotations for semantic analysis
tasks. Feizabadi and Padó (2015), for example,
successfully applied similar techniques for SRL of
implicit arguments.9 Ultimately, given the diversity
of semantic resources, we expect that learning from
heterogeneous annotations in different corpora will
be necessary to build automatic semantic analyzers
that are both accurate and robust.
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