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Abstract

We propose IMAGINET, a model of learn-
ing visually grounded representations of
language from coupled textual and visual
input. The model consists of two Gated
Recurrent Unit networks with shared word
embeddings, and uses a multi-task objec-
tive by receiving a textual description of
a scene and trying to concurrently predict
its visual representation and the next word
in the sentence. Mimicking an important
aspect of human language learning, it ac-
quires meaning representations for indi-
vidual words from descriptions of visual
scenes. Moreover, it learns to effectively
use sequential structure in semantic inter-
pretation of multi-word phrases.

1 Introduction

Vision is the most important sense for humans
and visual sensory input plays an important role
in language acquisition by grounding meanings of
words and phrases in perception. Similarly, in
practical applications processing multimodal data
where text is accompanied by images or videos is
increasingly important. In this paper we propose
a novel model of learning visually-grounded rep-
resentations of language from paired textual and
visual input. The model learns language through
comprehension and production, by receiving a tex-
tual description of a scene and trying to “imagine”
a visual representation of it, while predicting the
next word at the same time.

The full model, which we dub IMAGINET, con-
sists of two Gated Recurrent Unit (GRU) networks
coupled via shared word embeddings. IMAGINET

uses a multi-task Caruana (1997) objective: both
networks read the sentence word-by-word in par-
allel; one of them predicts the feature represen-
tation of the image depicting the described scene

after reading the whole sentence, while the other
one predicts the next word at each position in the
word sequence. The importance of the visual and
textual objectives can be traded off, and either of
them can be switched off entirely, enabling us to
investigate the impact of visual vs textual infor-
mation on the learned language representations.

Our approach to modeling human language
learning has connections to recent models of im-
age captioning (see Section 2). Unlike in many of
these models, in IMAGINET the image is the target
to predict rather then the input, and the model can
build a visually-grounded representation of a sen-
tence independently of an image. We can directly
compare the performance of IMAGINET against a
simple multivariate linear regression model with
bag-of-words features and thus quantify the con-
tribution of the added expressive power of a recur-
rent neural network.

We evaluate our model’s knowledge of word
meaning and sentence structure through simulat-
ing human judgments of word similarity, retriev-
ing images corresponding to single words as well
as full sentences, and retrieving paraphrases of im-
age captions. In all these tasks the model outper-
forms the baseline; the model significantly corre-
lates with human ratings of word similarity, and
predicts appropriate visual interpretations of sin-
gle and multi-word phrases. The acquired knowl-
edge of sentence structure boosts the model’s per-
formance in both image and caption retrieval.

2 Related work

Several computational models have been proposed
to study early language acquisition. The acqui-
sition of word meaning has been mainly mod-
eled using connectionist networks that learn to
associate word forms with semantic or percep-
tual features (e.g., Li et al., 2004; Coventry et al.,
2005; Regier, 2005), and rule-based or proba-
bilistic implementations which use statistical reg-
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ularities observed in the input to detect associa-
tions between linguistic labels and visual features
or concepts (e.g., Siskind, 1996; Yu, 2008; Fazly
et al., 2010). These models either use toy lan-
guages as input (e.g., Siskind, 1996), or child-
directed utterances from the CHILDES database
(MacWhinney, 2014) paired with artificially gen-
erated semantic information. Some models have
investigated the acquisition of terminology for vi-
sual concepts from simple videos (Fleischman
and Roy, 2005; Skocaj et al., 2011). Lazaridou
et al. (2015) adapt the skip-gram word-embedding
model (Mikolov et al., 2013) for learning word
representations via a multi-task objective similar
to ours, learning from a dataset where some words
are individually aligned with corresponding im-
ages. All these models ignore sentence structure
and treat inputs as bags of words.

A few models have looked at the concurrent ac-
quisition of words and some aspect of sentence
structure, such as lexical categories (Alishahi and
Chrupała, 2012) or syntactic properties (Howell
et al., 2005; Kwiatkowski et al., 2012), from utter-
ances paired with an artificially generated repre-
sentation of their meaning. To our knowledge, no
existing model has been proposed for concurrent
learning of grounded word meanings and sentence
structure from large scale data and realistic visual
input.

Recently, the engineering task of generating
captions for images has received a lot of atten-
tion (Karpathy and Fei-Fei, 2014; Mao et al.,
2014; Kiros et al., 2014; Donahue et al., 2014;
Vinyals et al., 2014; Venugopalan et al., 2014;
Chen and Zitnick, 2014; Fang et al., 2014). From
the point of view of modeling, the research most
relevant to our interests is that of Chen and Zitnick
(2014). They develop a model based on a context-
dependent recurrent neural network (Mikolov and
Zweig, 2012) which simultaneously processes tex-
tual and visual input and updates two parallel hid-
den states. Unlike theirs, our model receives the
visual target only at the end of the sentence and is
thus encouraged to store in the final hidden state
of the visual pathway all aspects of the sentence
needed to predict the image features successfully.
Our setup is more suitable for the goal of learning
representations of complete sentences.

3 Models

IMAGINET consists of two parallel recurrent path-

Figure 1: Structure of IMAGINET

ways coupled via shared word embeddings. Both
pathways are composed of Gated Recurrent Units
(GRU) first introduced by Cho et al. (2014) and
Chung et al. (2014). GRUs are related to the
Long Short-Term Memory units (Hochreiter and
Schmidhuber, 1997), but do not employ a sepa-
rate memory cell. In a GRU, activation at time t is
the linear combination of previous activation, and
candidate activation:

ht = (1− zt)� ht−1 + zt � h̃t (1)

where � is elementwise multiplication. The up-
date gate determines how much the activation is
updated:

zt = σs(Wzxt + Uzht−1) (2)

The candidate activation is computed as:

h̃t = σ(Wxt + U(rt � ht−1)) (3)

The reset gate is defined as:

rt = σs(Wrxt + Urht−1) (4)

Our gated recurrent units use steep sigmoids for
gate activations:

σs(z) =
1

1 + exp(−3.75z)

and rectified linear units clipped between 0 and 5
for the unit activations:

σ(z) = clip(0.5(z + abs(z)), 0, 5)

Figure 1 illustrates the structure of the network.
The word embeddings is a matrix of learned pa-
rameters We with each column corresponding to a
vector for a particular word. The input word sym-
bol St of sentence S at each step t indexes into the
embeddings matrix and the vector xt forms input
to both GRU networks:

xt = We[:, St] (5)
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This input is mapped into two parallel hidden
states, hV

t along the visual pathway, and hT
t along

the textual pathway:

hV
t = GRUV (hV

t−1,xt) (6)

hT
t = GRUT (hT

t−1,xt) (7)

The final hidden state along the visual pathway hV
τ

is then mapped to the predicted target image rep-
resentation î by the fully connected layer with pa-
rameters V and the clipped rectifier activation:

î = σ(VhV
τ ) (8)

Each hidden state along the textual pathway hT
t is

used to predict the next symbol in the sentence S
via a softmax layer with parameters L:

p(St+1|S1:t) = softmax(LhT
t ) (9)

The loss function whose gradient is backpropa-
gated through time to the GRUs and the embed-
dings is a composite objective with terms penaliz-
ing error on the visual and the textual targets si-
multaneously:

L(θ) = αLT (θ) + (1− α)LV (θ) (10)

where θ is the set of all IMAGINET parameters. LT

is the cross entropy function:

LT (θ) = −1
τ

τ�
t=1

log p(St|S1:t) (11)

while LV is the mean squared error:

LV (θ) =
1
K

K�
k=1

(̂ik − ik)2 (12)

By setting α to 0 we can switch the whole textual
pathway off and obtain the VISUAL model vari-
ant. Analogously, setting α to 1 gives the TEX-
TUAL model. Intermediate values of α (in the ex-
periments below we use 0.1) give the full MUL-
TITASK version. Finally, as baseline for some of
the tasks we use a simple linear regression model
LINREG with a bag-of-words representation of the
sentence:

î = Ax + b (13)

where î is the vector of the predicted image fea-
tures, x is the vector of word counts for the in-
put sentence and (A, b) the parameters of the
linear model estimated via L2-penalized sum-of-
squared-errors loss.

SimLex MEN 3K
VISUAL 0.32 0.57
MULTITASK 0.39 0.63
TEXTUAL 0.31 0.53
LINREG 0.18 0.23

Table 1: Word similarity correlations with human
judgments measured by Spearman’s ρ (all correla-
tions are significant at level p < 0.01).

4 Experiments

Settings The model was implemented in Theano
(Bastien et al., 2012; Bergstra et al., 2010) and op-
timized by Adam (Kingma and Ba, 2014).1 The
fixed 4096-dimensional target image representa-
tion come from the pre-softmax layer of the 16-
layer CNN (Simonyan and Zisserman, 2014). We
used 1024 dimensions for the embeddings and for
the hidden states of each of the GRU networks. We
ran 8 iterations of training, and we report either
full learning curves, or the results for each model
after iteration 7 (where they performed best for the
image retrieval task). For training we use the stan-
dard MS-COCO training data. For validation and
test, we take a sample of 5000 images each from
the validation data.

4.1 Word representations
We assess the quality of the learned embeddings
for single words via two tasks: (i) we measure
similarity between embeddings of word pairs and
compare them to elicited human ratings; (ii) we
examine how well the model learns visual repre-
sentations of words by projecting word embed-
dings into the visual space, and retrieving images
of single concepts from ImageNet.

Word similarity judgment For similarity judg-
ment correlations, we selected two existing bench-
marks that have the largest vocabulary overlap
with our data: MEN 3K (Bruni et al., 2014) and
SimLex-999 (Hill et al., 2014). We measure the
similarity between word pairs by computing the
cosine similarity between their embeddings from
three versions of our model, VISUAL, MULTI-
TASK and TEXTUAL, and the baseline LINREG.

Table 1 summarizes the results. All IMAGINET

models significantly correlate with human simi-
larity judgments, and outperform LINREG. Ex-
amples of word pairs for which MULTITASK cap-

1Code available at github.com/gchrupala/imaginet.
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VISUAL MULTITASK LINREG

0.38 0.38 0.33

Table 2: Accuracy@5 of retrieving images with
compatible labels from ImageNet.

tures human similarity judgments better than VI-
SUAL include antonyms (dusk, dawn), colloca-
tions (sexy, smile), or related but not visually sim-
ilar words (college, exhibition).

Single-word image retrieval In order to visual-
ize the acquired meaning for individual words, we
use images from the ILSVRC2012 subset of Im-
ageNet (Russakovsky et al., 2014) as benchmark.
Labels of the images in ImageNet are synsets from
WordNet, which identify a single concept in the
image rather than providing descriptions of its
full content. Since the synset labels in ImageNet
are much more precise than the descriptions pro-
vided in the captions in our training data (e.g.,
elkhound), we use synset hypernyms from Word-
Net as substitute labels when the original labels
are not in our vocabulary.

We extracted the features from the 50,000 im-
ages of the ImageNet validation set. The labels
in this set result in 393 distinct (original or hyper-
nym) words from our vocabulary. Each word was
projected to the visual space by feeding it through
the model as a one-word sentence. We ranked
the vectors corresponding to all 50,000 images
based on their similarity to the predicted vector,
and measured the accuracy of retrieving an image
with the correct label among the top 5 ranked im-
ages (Accuracy@5). Table 2 summarizes the re-
sults: VISUAL and MULTITASK learn more accu-
rate word meaning representations than LINREG.

4.2 Sentence structure

In the following experiments, we examine the
knowledge of sentence structure learned by IMAG-
INET, and its impact on the model performance on
image and paraphrase retrieval.

Image retrieval We retrieve images based on
the similarity of their vectors with those predicted
by IMAGINET in two conditions: sentences are fed
to the model in their original order, or scrambled.
Figure 2 (left) shows the proportion of sentences
for which the correct image was in the top 5 high-
est ranked images for each model, as a function of
the number of training iterations: both models out-

Figure 2: Left: Accuracy@5 of image retrieval
with original versus scrambled captions. Right:
Recall@4 of paraphrase retrieval with original
vs scrambled captions.

perform the baseline. MULTITASK is initially bet-
ter in retrieving the correct image, but eventually
the gap disappears. Both models perform substan-
tially better when tested on the original captions
compared to the scrambled ones, indicating that
models learn to exploit aspects of sentence struc-
ture. This ability is to be expected for MULTI-
TASK, but the VISUAL model shows a similar ef-
fect to some extent. In the case of VISUAL, this
sensitivity to structural aspects of sentence mean-
ing is entirely driven by how they are reflected in
the image, as this models only receives the visual
supervision signal.

Qualitative analysis of the role of sequential
structure suggests that the models are sensitive
to the fact that periods terminate a sentence, that
sentences tend not to start with conjunctions, that
topics appear in sentence-initial position, and that
words have different importance as modifiers ver-
sus heads. Figure 3 shows an example; see supple-
mentary material for more.

IMAGINET vs captioning systems While it is
not our goal to engineer a state-of-the-art image
retrieval system, we want to situate IMAGINET’s
performance within the landscape of image re-
trieval results on captioned images. As most of
these are on Flickr30K (Young et al., 2014), we
ran MULTITASK on it and got an accuracy@5 of
32%, within the range of numbers reported in pre-
vious work: 29.8% (Socher et al., 2014), 31.2%
(Mao et al., 2014), 34% (Kiros et al., 2014) and
37.7% (Karpathy and Fei-Fei, 2014). Karpathy
and Fei-Fei (2014) report 29.6% on MS-COCO,
but with additional training data.
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Original a couple of horses UNK their head over a rock pile
rank 1 two brown horses hold their heads above a rocky wall .
rank 2 two horses looking over a short stone wall .

Scrambled rock couple their head pile a a UNK over of horses
rank 1 an image of a man on a couple of horses
rank 2 looking in to a straw lined pen of cows

Original a cute baby playing with a cell phone
rank 1 small baby smiling at camera and talking on phone .
rank 2 a smiling baby holding a cell phone up to ear .

Scrambled phone playing cute cell a with baby a
rank 1 someone is using their phone to send a text or play a game .
rank 2 a camera is placed next to a cellular phone .

Table 3: Examples of two nearest neighbors retrieved by MULTITASK for original and scrambled cap-
tions.

“ a variety of kitchen utensils hanging from a UNK board .”

“kitchen of from hanging UNK variety a board utensils a .”

Figure 3: For the original caption MULTITASK un-
derstands kitchen as a modifier of headword uten-
sils, which is the topic. For the scrambled sen-
tence, the model thinks kitchen is the topic.

Paraphrase retrieval In our dataset each image
is paired with five different captions, which can
be seen as paraphrases. This affords us the op-
portunity to test IMAGINET’s sentence represen-
tations on a non-visual task. Although all mod-
els receive one caption-image pair at a time, the
co-occurrence with the same image can lead the
model to learn structural similarities between cap-
tions that are different on the surface. We feed
the whole set of validation captions through the
trained model and record the final hidden visual
state hV

τ . For each caption we rank all others ac-
cording to cosine similarity and measure the pro-
portion of the ones associated with the same image
among the top four highest ranked. For the scram-
bled condition, we rank original captions against
a scrambled one. Figure 2 (right) summarizes the
results: both models outperform the baseline on
ordered captions, but not on scrambled ones. As
expected, MULTITASK is more affected by manip-
ulating word order, because it is more sensitive to

structure. Table 3 shows concrete examples of the
effect of scrambling words in what sentences are
retrieved.

5 Discussion

IMAGINET is a novel model of grounded lan-
guage acquisition which simultaneously learns
word meaning representations and knowledge of
sentence structure from captioned images. It
acquires meaning representations for individual
words from descriptions of visual scenes, mim-
icking an important aspect of human language
learning, and can effectively use sentence structure
in semantic interpretation of multi-word phrases.
In future we plan to upgrade the current word-
prediction pathway to a sentence reconstruction
and/or sentence paraphrasing task in order to en-
courage the formation of representations of full
sentences. We also want to explore the acquired
structure further, especially for generalizing the
grounded meanings to those words for which vi-
sual data is not available.
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