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Abstract

We propose a nonparametric Bayesian
model for joint unsupervised word seg-
mentation and part-of-speech tagging
from raw strings. Extending a previous
model for word segmentation, our model
is called a Pitman-Yor Hidden Semi-
Markov Model (PYHSMM) and consid-
ered as a method to build a class n-gram
language model directly from strings,
while integrating character and word level
information. Experimental results on stan-
dard datasets on Japanese, Chinese and
Thai revealed it outperforms previous re-
sults to yield the state-of-the-art accura-
cies. This model will also serve to analyze
a structure of a language whose words are
not identified a priori.

1 Introduction

Morphological analysis is a staple of natural lan-
guage processing for broad languages. Especially
for some East Asian languages such as Japanese,
Chinese or Thai, word boundaries are not explic-
itly written, thus morphological analysis is a cru-
cial first step for further processing. Note that
also in Latin and old English, scripts were orig-
inally written with no word indications (scripta
continua), but people felt no difficulty reading
them. Here, morphological analysis means word
segmentation and part-of-speech (POS) tagging.
For this purpose, supervised methods have of-
ten been employed for training. However, to
train such supervised classifiers, we have to pre-
pare a large amount of training data with cor-
rect annotations, in this case, word segmentation
and POS tags. Creating and maintaining these
data is not only costly but also very difficult, be-
cause generally there are no clear criteria for ei-
ther “correct” segmentation or POS tags. In fact,
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since there are different standards for Chinese
word segmentation, widely used SIGHAN Bake-
off dataset (Emerson, 2005) consists of multiple
parts employing different annotation schemes.

Lately, this situation has become increasingly
important because there are strong demands for
processing huge amounts of text in consumer gen-
erated media such as Twitter, Weibo or Facebook
(Figure 1). They contain a plethora of colloquial
expressions and newly coined words, including
sentiment expressions such as emoticons that can-
not be covered by fixed supervised data.

To automatically recognize such linguistic phe-
nomena beyond small “correct” supervised data,
we have to extract linguistic knowledge from the
statistics of strings themselves in an unsupervised
fashion. Needless to say, such methods will also
contribute to analyzing speech transcripts, classic
texts, or even unknown languages. From a scien-
tific point of view, it is worth while to find “words”
and their part-of-speech purely from a collection
of strings without any preconceived assumptions.

To achieve that goal, there have been two kinds
of approaches: heuristic methods and statisti-
cal generative models. Heuristic methods are
based on basic observations such that word bound-
aries will often occur at the place where predic-
tive entropy of characters is large (i.e. the next
character cannot be predicted without assuming
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EOSRHHHDODBIAULNSDERNERASDTDIALS
Y

FLUVEIFWOED R MY AR AFBIN VIR EEEEZH
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Figure 1: Sample of Japanese Twitter text that
is difficult to analyze by ordinary supervised seg-
mentation. It contains a lot of novel words, emoti-
cons, and colloquial expressions.
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the next word). By formulating such ideas as
search or MDL problems of given coding length!,
word boundaries are found in an algorithmic fash-
ion (Zhikov et al., 2010; Magistry and Sagot,
2013). However, such methods have difficulty in-
corporating higher-order statistics beyond simple
heuristics, such as word transitions, word spelling
formation, or word length distribution. Moreover,
they usually depends on tuning parameters like
thresholds that cannot be learned without human
intervention.

In contrast, statistical models are ready to in-
corporate all such phenomena within a consistent
statistical generative model of a string, and often
prove to work better than heuristic methods (Gold-
water et al., 2006; Mochihashi et al., 2009). In
fact, the statistical methods often include the cri-
teria of heuristic methods at least in a conceptual
level, which is noted in (Mochihashi et al., 2009)
and also explained later in this paper. In a statisti-
cal model, each word segmentation w of a string
s is regarded as a hidden stochastic variable, and
the unsupervised learning of word segmentation is
formulated as a maximization of a probability of
w given s:

argmax p(w|s) . (1)
w
This means that we want the most “natural” seg-
mentation w that have a high probability in a lan-
guage model p(w|s).

Lately, Chen et al. (2014) proposed an interme-
diate model between heuristic and statistical mod-
els as a product of character and word HMMs.
However, these two models do not have informa-
tion shared between the models, which is not the
case with generative models.

So far, these approaches only find word seg-
mentation, leaving part-of-speech information be-
hind. These two problems are not actually in-
dependent but interrelated, because knowing the
part-of-speech of some infrequent or unknown
word will give contextual clues to word segmen-
tation, and vice versa. For example, in Japanese

TEEEEL Y

can be segmented into notonly 3 £/&/€ /%
(plum/too/peach/too), but also into 9 €/ &/
£ % (plum/peach/peach), which is ungrammati-
cal. However, we could exclude the latter case
"For example, Zhikov et al. (2010) defined a coding
length using character n-grams plus MDL penalty. Since

this can be interpreted as a crude “likelihood” and a prior,
its essence is similar but driven by a quite simplistic model.

Character HPYLM « RRR-_
Word HPYLM /

¥

Figure 2: NPYLM represented in a hierarchical
Chinese restaurant process. Here, a character co-
gram HPYLM is embedded in a word m-gram
HPYLM and learned jointly during inference.

if we leverage knowledge that a state sequence
N/P/N/P is much more plausible in Japanese than
N/N/N from the part-of-speech information. Sirts
and Alumie (2012) treats a similar problem of
POS induction with unsupervised morphological
segmentation, but they know the words in advance
and only consider segmentation within a word.

For this objective, we attempt to maximize the
joint probability of words and tags:

argmax p(w,zl|s) «x p(w,z, s) (2)
W,Z

From the expression above, this amounts to
building a generative model of a string s with
words w and tags z along with an associated infer-
ence procedure. We solve this problem by extend-
ing previous generative model of word segmenta-
tion. Note that heuristic methods are never able to
model the hidden tags, and only statistical genera-
tive models can accommodate this objective.

This paper is organized as follows. In Sec-
tion 2, we briefly introduce NPYLM (Mochihashi
et al., 2009) on which our extension is based. Sec-
tion 3 extends it to include hidden states to yield a
hidden semi-Markov models (Murphy, 2002), and
we describe its inference procedure in Section 4.
We conduct experiments on some East Asian lan-
guages in Section 5. Section 6 discusses implica-
tions of our model and related work, and Section 7
concludes the paper.

2 Nested Pitman-Yor Language Model

Our joint model of words and states is an
extension of the Nested Pitman-Yor Language
Model (Mochihashi et al., 2009) of a string, which
in turn is an extension of a Bayesian n-gram lan-
guage model called Hierarchical Pitman-Yor Lan-
guage Model (HPYLM) (Teh, 2006).
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HPYLM is a nonparametric Bayesian model of
n-gram distribution based on the Pitman-Yor pro-
cess (Pitman and Yor, 1997) that generates a dis-
crete distribution G as G ~ PY (G, d, 6). Here,
d is a discount factor, “parent” distribution Gy is
called a base measure and 6 controls how similar
G is to (Gp in expectation. In HPYLM, n-gram
distribution Gy, = {p(wi|wi—1 - wy_(n—1))} is
assumed to be generated from the Pitman-Yor pro-

CESS
Gn ~ PY(Gn—ly dna 071) 5 (3)

where the base measure G,,_; is an (n—1)-gram
distribution generated recursively in accordance
with (3). Note that there are different G,, for each
n-gram history h = w¢_1 -+ w;_(,—1). When we
reach the unigram (1 and need to use a base mea-
sure G, i.e. prior probabilities of words, HPYLM
usually uses a uniform distribution over the lexi-
con.

However, in the case of unsupervised word seg-
mentation, every sequence of characters could be
a word, thus the size of the lexicon is unbounded.
Moreover, prior probability of forming a word
should not be uniform over all sequences of char-
acters: for example, English words rarely begin
with ‘gme’ but tend to end with *-ent’ like in seg-
ment. To model this property, NPYLM assumes
that word prior GGy is generated from character
HPYLM to model a well-formedness of w. In
practice, to avoid dependency on n in the charac-
ter model, we used an co-gram VPYLM (Mochi-
hashi and Sumita, 2008) in this research. Finally,
NPYLM gives an n-gram probability of word w
given a history h recursively by integrating out
Gn,
0+d-ty,.
plwlh) = 6+c(h)

c(wlh) —d-thw /
o) p(w|h’),
“4)
where h' is the shorter history of (n— 1)-grams.
c(w|h),c(h) =", c(w|h) are n-gram counts of
w appearing after h, and tp,,tp. = Zw thw are
associated latent variables explained below. In
case the history h is already empty at the unigram,
p(w|h') = po(w) is computed from the character
oo-grams for the word w=cy - - - ¢ :

pO(W) = p(cl ce Ck’) (5)
= H§:1 p(cilcio1---c1). (6)
In practice, we further corrected (6) so that a word

length follows a mixture of Poisson distributions.
For details, see (Mochihashi et al., 2009).

When we know word segmentation w of the

data, the probability above can be computed by
adding each n-gram count of w given A to the
model, i.e. increment c(w|h) in accordance with
a hierarchical Chinese restaurant process associ-
ated with HPYLM (Figure 2). When each n-gram
count called a customer is inferred to be actually
generated from (n— 1)-grams, we send its proxy
customer for smoothing to the parent restaurant
and increment ty,,, and this process will recurse.
Notice that if a word w is never seen in w, its
proxy customer is eventually sent to the parent
restaurant of unigrams. In that case?, w is decom-
posed to its character sequence c; - - - ¢ and this is
added to the character HPYLM in the same way,
making it a little “clever” about possible word
spellings.
Inference Because we do not know word seg-
mentation w beforehand, we begin with a trivial
segmentation in which every sentence is a single
word®. Then, we iteratively refine it by sampling
a new word segmentation w(s) of a sentence s
in a Markov Chain Monte Carlo (MCMC) frame-
work using a dynamic programming, as is done
with PCFG by (Johnson et al., 2007) shown in Fig-
ure 3 where we omit MH steps for computational
reasons. Further note that every hyperparameter
dpn, 0, of NPYLM can be sampled from the poste-
rior in a Bayesian fashion, as opposed to heuristic
methods that rely on a development set for tuning.
For details, see Teh (2000).

3 Pitman-Yor Hidden Semi-Markov
Models

NPYLM is a complete generative model of a
string, that is, a hierarchical Bayesian n-gram lan-

Input: a collection of strings .S
Add initial segmentation w(s) to ©
forj=1---Jdo
for s in randperm (.5) do
Remove customers of w(s) from O
Sample w(s) according to p(wl|s, ©)
Add customers of w(s) to ©
end for
Sample hyperparameters of ©
end for

Figure 3: MCMC inference of NPYLM ©.

>To be precise, this occurs whenever tj.,, is incremented
in the unigram restaurant.

3Note that a child first memorizes what his mother says as
a single word and gradually learns the lexicon.
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Ny
‘ Observation s

Figure 4: Graphical model of PYHSMM in a bi-
gram case. White nodes are latent variables, and
the shaded node is the observation. We only ob-
serve a string s that is a concatenation of hidden
words w1y -+ - wr.

guage model combining words and characters. It
can also be viewed as a way to build a Bayesian
word n-gram language model directly from a se-
quence of characters, without knowing “words” a
priori.

One possible drawback of it is a lack of part-of-
speech: as described in the introduction, grammat-
ical states will contribute much to word segmenta-
tion. Also, from a computational linguistics point
of view, it is desirable to induce not only words
from strings but also their part-of-speech purely
from the usage statistics (imagine applying it to an
unknown language or colloquial expressions). In
classical terms, it amounts to building a class n-
gram language model where both class and words
are unknown to us. Is this really possible?

Yes, we can say it is possible. The idea is sim-
ple: we augment the latent states to include a hid-
den part-of-speech z; for each word w;, which
is again unknown as displayed in Figure 4. As-
suming w; is generated from z;’-th NPYLM, we
can draw a generative model of a string s as fol-
lows:
2o =BOS; s=¢ (an empty string).
fort=1---Tdo
Draw z; ~ p(z¢|zi-1) »
Draw wy ~ p(w¢|wy -+ - wi—1,2¢)
Append wy to s.

end for

Here, z9 = BOS and z7,; = EOS are distin-
guished states for beginning and end of a sentence,
respectively. For the transition probability of hid-
den states, we put a HPY process prior as (Blun-
som and Cohn, 2011):

p(2t|2e-1) ~ HPY(d, 0) (7)

with the final base measure being a uniform dis-
tribution over the states. The word boundaries are

Word length

k  POSindex
Z

Timet o | mioms| omic | it

< | me |eom | mik |0
‘Bos‘ & wo|m | & | EOS

EEIVIEA]

“friends of each country”

Figure 5: Graphical representation of sampling
words and POSs. Each cell corresponds to an in-
side probability «[t][k][z]. Note each cell is not
always connected to adjacent cells, because of an
overlap of substrings associated with each cell.

known in (Blunsom and Cohn, 2011), but in our
case it is also learned from data at the same time.
Note that because w; depends on already gener-
ated words ws - - - wy—1, our model is considered
as an autoregressive HMM rather than a vanilla
HMM, as shown in Figure 4 (w¢_; — w; depen-
dency).

Since segment models like NPYLM have seg-
ment lengths as hidden states, they are called semi-
Markov models (Murphy, 2002). In contrast, our
model also has hidden part-of-speech, thus we
call it a Pitman-Yor Hidden Semi-Markov model
(PYHSMM).* Note that this is considered as a
generative counterpart of a discriminative model
known as a hidden semi-Markov CRF (Sarawagi
and Cohen, 2005).

4 Inference

Inference of PYHSMM proceeds in almost the
same way as NPYLM in Figure 3: For each sen-
tence, first remove the customers associated with
the old segmentation similarly to adding them. Af-
ter sampling a new segmentation and states, the
model is updated by adding new customers in ac-
cordance with the new segmentation and hidden
states.

4.1 Sampling words and states

To sample words and states (part-of-speech)
jointly, we first compute inside probabilities for-
ward from BOS to EOS and sample backwards
from EOS according to the Forward filtering-
Backward sampling algorithm (Scott, 2002). This

“Lately, Johnson et al. (2013) proposed a nonparamet-
ric Bayesian hidden semi-Markov models for general state
spaces. However, it depends on a separate distribution for a
state duration, thus is clealy different from ours for a natural
language.
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can be regarded as a “stochastic Viterbi” algorithm
that has the advantage of not being trapped in local
minima, since it is a valid move of a Gibbs sampler
in a Bayesian model.

For a word bigram case for simplicity, inside
variable «[t][k][z] is a probability that a substring
c1---ceof astring s=cy - - - ¢ is generated with
its last k characters being a word, generated from
state z as shown in Figure 5. From the definition
of PYHSMM, this can be computed recursively as
follows:

L K
K]z = S0 plel_yleh 1102
TP p(zly)alt—kllly] . (8)

Here, cz is a substring ¢s - - - ¢; and L (<t) is the
maximum length of a word, and K is the number
of hidden states.’

In Figure 5, each cell represents «/[t][k][z] and
a single path connecting from EOS to BOS cor-
responds to a word sequence w and its state se-
quence z. Note that each cell is not always con-
nected to adjacent cells (we omit the arrows), be-
cause the length-k substring associated with each
cell already subsumes that of neighborhood cells.

Once w and z are sampled, each w;, is added to
z¢’-th NPYLM to update its statistics.

4.2 Efficient computation by the Negative
Binomial generalized linear model

Inference algorithm of PYHSMM has a computa-
tional complexity of O(K?L?N), where N is a
length of the string to analyze. To reduce com-
putations it is effective to put a small L of maxi-
mum word length, but it might also ignore occa-
sionally long words. Since these long words are
often predictable from some character level infor-
mation including suffixes or character types, in a

Type | Feature

G Character at time t—2 (0<¢<1)

t; Character type at time t—i (0<:<4)

cont | # of the same character types before ¢

ch # of times character types changed
within 8 characters before ¢

Table 1: Features used for the Negative Binomial
generalized linear model for maximum word
length prediction.

SFor computational reasons, we do not pursue using a
Dirichlet process to yield an infinitt HMM (Van Gael et al.,
2009), but it is straightforward to extend our PYHSMM to
iHMM.

semi-supervised setting we employ a Negative Bi-
nomial generalized linear model (GLM) for set-
ting L, adaptively for each character position ¢ in
the corpus.

Specifically, we model the word length ¢ by a
Negative Binomial distribution (Cook, 2009):

LUt e —py. )

¢ ~ NB(l|r,p) = T

This counts the number of failures of Bernoulli
draws with probability (1—p) before r’th success.
For our model, note that Negative Binomial is ob-
tained from a Poisson distribution Po(\) whose
parameter A again follows a Gamma distribution
Ga(r, b) and integrated out:

p(lr,b) = / Po(£|\)Ga(A|r, b)dA (10)

T(r+0) (b \/ 1\" "
- T(r) 2! <1+b> <1+b> - an

This construction exactly mirrors the Poisson-
Gamma word length distribution in (Mochihashi
et al., 2009) with sampled A. Therefore, our Neg-
ative Binomial is basically a continuous analogue
of the word length distribution in NPYLM.5

Since 7 >0 and 0 <p <1, we employ an expo-
nential and sigmoidal linear regression

(12)

where o(z) is a sigmoid function and w,, w,, are
weight vectors to learn. f is a feature vector com-
puted from the substring c; - - - ¢, including fo=1
for a bias term. Table 1 shows the features we
used for this Negative Binomial GLM. Since Neg-
ative Binomial GLM is not convex in w,. and w,
we endow a Normal prior N (0, 021) for them and
used a random walk MCMC for inference.

r=exp(wif), p= J(W;;Ff)

Predicting L; Once the model is obtained, we
can set L; adaptively as the time where the cu-
mulative probability of ¢ exceeds some threshold
0 (we used 6 = 0.99). Table 2 shows the preci-
sion of predicting maximum word length learned
from 10,000 sentences from each set: it measures
whether the correct word boundary in test data is
included in the predicted L;.

Overall it performs very well with high preci-
sion, and works better for longer words that cannot
be accommodated with a fixed maximum length.

®Because NPYLM employs a mixture of Poisson distri-
butions for each character type of a substring, this correspon-
dence is not exact.
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Lang | Dataset Training | Test
Ja Kyoto corpus 37,400 1,000
BCCWJ OC 20,000 1,000
SIGHAN MSR 86,924 3,985
Zh SIGHAN CITYU | 53,019 1,492
SIGHAN PKU 19,056 1,945
Th InterBEST Novel | 1,000 1,000

Table 3: Datasets used for evaluation. Abbrevi-
ations: Ja=Japanese, Zh=Chinese, Th=Thai lan-
guage.

Figure 6 shows the distribution of predicted max-
imum lengths for Japanese. Although we used
0 = 0.99, it is rather parsimonious but accurate
that makes the computation faster.

Because this cumulative Negative Binomial
prediction is language independent, we believe it
might be beneficial for other natural language pro-
cessing tasks that require some maximum lengths
within which to process the data.

5 Experiments

To validate our model, we conducted experiments
on several corpora of East Asian languages with
no word boundaries.

Datasets For East Asian languages, we used
standard datasets in Japanese, Chinese and Thai
as shown in Table 3. The Kyoto corpus is a
collection of sentences from Japanese newspaper
(Kurohashi and Nagao, 1998) with both word seg-
mentation and part-of-speech annotations. BC-
CWIJ (Balanced Corpus of Contemporary Writ-
ten Japanese) is a balanced corpus of written
Japanese (Maekawa, 2007) from the National
Institute of Japanese Language and Linguistics,
also with both word segmentation and part-of-
speech annotations from slightly different crite-
ria. For experiments on colloquial texts, we used
a random subset of “OC” register from this cor-
pus that is comprised of Yahoo!Japan Answers

ducted on standard datasets of SIGHAN Bakeoff
2005 (Emerson, 2005); for comparison we used
MSR and PKU datasets for simplified Chinese,
and the CITYU dataset for traditional Chinese.
SIGHAN datasets have word boundaries only, and
we conformed to original training/test splits pro-
vided with the data. InterBEST is a dataset in
Thai used in the InterBEST 2009 word segmen-
tation contest (Kosawat, 2009). For contrastive
purposes, we used a “Novel” subset of it with a
random sampling without replacement for training
and test data. Accuracies are measured in token
F'-measures computed as follows:

2PR
=— 13
P+R’ (13)
_ # of correc.t words ’ (14)
# of words in output
# of correct words (15)

T # of words in gold standard

Unsupervised word segmentation In Table 4,
we show the accuracies of unsupervised word seg-
mentation with previous figures. We used bi-
gram PYHSMM and set L = 4 for Chinese, L =
5,8,10,21 for Japanese with different types of
contiguous characters, and L = 6 for Thai. The
number of hidden states are K = 10 (Chinese and
Thai), K =20 (Kyoto) and K =30 (BCCW]J).

We can see that our PYHSMM outperforms on
all the datasets. Huang and Zhao (2007) reports
that the maximum possible accuracy in unsuper-
vised Chinese word segmentation is 84.8%, de-
rived through the inconsistency between different
segmentation standards of the SIGHAN dataset.
Our PYHSMM performs nearer to this best possi-
ble accuracy, leveraging both word and character
knowledge in a consistent Bayesian fashion. Fur-
ther note that in Thai, quite high performance is
achieved with a very small data compared to pre-
vious work.

Unsupervised part-of-speech induction As

from users. For Chinese, experiments are con- stated above, Kyoto, BCCWJ and Weibo datasets
Dataset Kyoto BCCWJ MSR CITYU BEST 14000
Precision (AIl) | 99.9 999 996 999 990  » 2000 |
Precision (> 5) 96.7 984 73.6 870 917 S 8000 -
Maximum length| 15 48 23 12 21 S 6000 -
T 4000 f
Table 2: Precision of maximum word length prediction with 2000
. . . . . . 0
a Negative Binomial generalized linear model (in percent). L 2 4 6 8 10 12 14 16

> 5 are figures for word length > 5. Final row is the maxi-

mum length of a word found in each dataset.

Figure 6: Distribution of predicted maxi-
mum word lengths on the Kyoto corpus.
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Dataset | PYHSMM | NPY || BE | HMM?
Kyoto | 71.5 62.1 || 71.3 | NA
BCCWIJ | 70.5 NA || NA | NA
MSR 82.9 80.2 || 78.2 | 81.7
CITYU | 82.6* 824 | 787 | NA
PKU 81.6 NA || 80.8 | 81.1
BEST 82.1 NA | 821 | NA

Table 4: Accuracies of unsupervised word seg-
mentation. BE is a Branching Entropy method of
Zhikov et al. (2010), and HMM? is a product of
word and character HMMSs of Chen et al. (2014).
* is the accuracy decoded with L = 3: it becomes
81.7 with L=4 as MSR and PKU.

have part-of-speech annotations as well. For these
data, we also evaluated the precision of part-of-
speech induction on the output of unsupervised
word segmentation above. Note that the precision
is measured only over correct word segmentation
that the system has output. Table 5 shows the
precisions; to the best of our knowledge, there
are no previous work on joint unsupervised learn-
ing of words and tags, thus we only compared
with Bayesian HMM (Goldwater and Griffiths,
2007) on both NPYLM segmentation and gold
segmentation. In this evaluation, we associated
each tag of supervised data with a latent state that
cooccurred most frequently with that tag. We
can see that the precision of joint POS tagging is
better than NPYLM+HMM, and even better than
HMM that is run over the gold segmentation.

For colloquial Chinese, we also conducted an
experiment on the Leiden Weibo Corpus (LWC), a
corpus of Chinese equivalent of Twitter’. We used
random 20,000 sentences from this corpus, and re-
sults are shown in Figure 7. In many cases plausi-
ble words are found, and assigned to syntactically
consistent states. States that are not shown here
are either just not used or consists of a mixture of
different syntactic categories. Guiding our model
to induce more accurate latent states is a common
problem to all unsupervised part-of-speech induc-
tion, but we show some semi-supervised results
next.

Dataset | PYHSMM | NPY+HMM | HMM
Kyoto 57.4 53.8 49.5
BCCWIJ | 50.2 44.1 442
LWC 33.0 30.9 329

Table 5: Precision of POS tagging on correctly
segmented words.

"http://twc.daanvanesch.nl/

Semi-supervised experiments Because our
PYHSMM is a generative model, it is easily
amenable to semi-supervised segmentation and
tagging. We used random 10,000 sentences from
supervised data on Kyoto, BCCWJ, and LWC
datasets along with unsupervised datasets in
Table 3.

Results are shown in Table 6: segmentation ac-
curacies came close to 90% but do not go be-
yond. By inspecting the segmentation and POS
that PYHSMM has output, we found that this is
not necessarily a fault of our model, but it came
from the often inconsistet or incorrect tagging of
the dataset. In many cases PYHSMM found more
“natural” segmentations, but it does not always
conform to the gold annotations. On the other
hand, it often oversegments emotional expressions
(sequence of the same character, for example) and
this is one of the major sources of errors.

Finally, we note that our proposed model for un-
supervised learning is most effective for the lan-
guage which we do not know its syntactic behavior
but only know raw strings as its data. In Figure 8,
we show an excerpt of results to model a Japanese
local dialect (Mikawa-ben around Nagoya district)
collected from a specific Twitter. Even from the
surface appearance of characters, we can see that
similar words are assigned to the same state in-
cluding some emoticons (states 9,29,32), and in
fact we can identify a state of postpositions spe-
cific to that dialect (state 3). Notice that the
words themselves are not trivial before this anal-
ysis. There are also some name of local places
(state 41) and general Japanese postpositions (2)
or nouns (11,18,25,27,31). Because of the spar-
sity promoting prior (7) over the hidden states, ac-
tually used states are sparse and the results can be
considered quite satisfactory.

6 Discussion

The characteristics of NPYLM is a Baysian inte-
gration of character and word level information,
which is related to (Blunsom and Cohn, 2011) and
the adaptor idea of (Goldwater et al., 2011). This

Dataset | Seg POS
Kyoto 92.1 87.1
BCCWJ | 894 83.1
LWC 88.5 86.9

Table 6: Semi-supervised segmentation and POS
tagging accuracies. POS is measured by precision.
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Figure 7: Some interesting words and states induced from Weibo corpus (K = 20). Numbers represent
frequencies that each word is generated from that class. Although not perfect, emphatic (z = 1), end-
of-sentence expressions (z = 3), and locative words (z = 18) are learned from tweets. Distinction is far
more clear in the semi-supervised experiments (not shown here).
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Figure 8: Unsupervised analysis of a Japanese lo-
cal dialect by PYHSMM. (K =50)

is different from (and misunderstood in) a joint
model of Chen et al. (2014), where word and char-
acter HMMs are just multiplied. There are no in-
formation shared from the model structure, and
in fact it depends on a BIO-like heuristic tagging
scheme in the character HMM.

In the present paper, we extended it to include
a hidden state for each word. Therefore, it might
be interesting to introduce a hidden state also for
each character. Unlike western languages, there
are many kinds of Chinese characters that work
quite differently, and Japanese uses several distinct
kinds of characters, such as a Chinese character,
Hiragana, Katakana, whose mixture would consti-
tute a single word. Therefore, statistical modeling
of different types of characters is an important re-

search venue for the future.

NPYLM has already applied and extended to
speech recognition (Neubig et al., 2010), statisti-
cal machine translation (Nguyen et al., 2010), or
even robotics (Nakamura et al., 2014). For all
these research area, we believe PYHSMM would
be beneficial for their extension.

7 Conclusion

In this paper, we proposed a Pitman-Yor Hidden
Semi-Markov model for joint unsupervised word
segmentation and part-of-speech tagging on a raw
sequence of characters. It can also be viewed as
a way to build a class n-gram language model di-
rectly on strings, without any “word” information
a priori.

We applied our PYHSMM on several standard
datasets on Japanese, Chinese and Thai, and it out-
performed previous figures to yield the state-of-
the-art results, as well as automatically induced
word categories. It is especially beneficial for col-
loquial text, local languages or speech transcripts,
where not only words themselves are unknown but
their syntactic behavior is a focus of interest.

In order to adapt to human standards given in
supervised data, it is important to conduct a semi-
supervised learning with discriminative classifiers.
Since semi-supervised learning requires genera-
tive models in advance, our proposed Bayesian
generative model will also lay foundations to such
an extension.
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