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Abstract

We propose Neural Responding Ma-
chine (NRM), a neural network-based re-
sponse generator for Short-Text Conver-
sation. NRM takes the general encoder-
decoder framework: it formalizes the gen-
eration of response as a decoding process
based on the latent representation of the in-
put text, while both encoding and decod-
ing are realized with recurrent neural net-
works (RNN). The NRM is trained with
a large amount of one-round conversation
data collected from a microblogging ser-
vice. Empirical study shows that NRM
can generate grammatically correct and
content-wise appropriate responses to over
75% of the input text, outperforming state-
of-the-arts in the same setting, including
retrieval-based and SMT-based models.

1 Introduction

Natural language conversation is one of the
most challenging artificial intelligence problems,
which involves language understanding, reason-
ing, and the utilization of common sense knowl-
edge. Previous works in this direction mainly fo-
cus on either rule-based or learning-based meth-
ods (Williams and Young, 2007; Schatzmann et
al., 2006; Misu et al., 2012; Litman et al., 2000).
These types of methods often rely on manual effort
in designing rules or automatic training of model
with a particular learning algorithm and a small
amount of data, which makes it difficult to develop
an extensible open domain conversation system.
Recently due to the explosive growth of mi-
croblogging services such as Twitter' and Weibo?,
the amount of conversation data available on the
web has tremendously increased. This makes a

Uhttps://twitter.com/.
“http://www.weibo.com/.

data-driven approach to attack the conversation
problem (Ji et al., 2014; Ritter et al., 2011) pos-
sible. Instead of multiple rounds of conversation,
the task at hand, referred to as Short-Text Conver-
sation (STC), only considers one round of conver-
sation, in which each round is formed by two short
texts, with the former being an input (referred to as
post) from a user and the latter a response given by
the computer. The research on STC may shed light
on understanding the complicated mechanism of
natural language conversation.

Previous methods for STC fall into two cat-
egories, 1) the retrieval-based method (Ji et al.,
2014), and 2) the statistical machine translation
(SMT) based method (Sordoni et al., 2015; Rit-
ter et al., 2011). The basic idea of retrieval-
based method is to pick a suitable response by
ranking the candidate responses with a linear or
non-linear combination of various matching fea-
tures (e.g. number of shared words). The main
drawbacks of the retrieval-based method are the
following

o the responses are pre-existing and hard to cus-

tomize for the particular text or requirement
from the task, e.g., style or attitude.

o the use of matching features alone is usu-
ally not sufficient for distinguishing posi-
tive responses from negative ones, even after
time consuming feature engineering. (e.g., a
penalty due to mismatched named entities is
difficult to incorporate into the model)

The SMT-based method, on the other hand, is
generative. Basically it treats the response genera-
tion as a translation problem, in which the model is
trained on a parallel corpus of post-response pairs.
Despite its generative nature, the method is intrin-
sically unsuitable for response generation, because
the responses are not semantically equivalent to
the posts as in translation. Actually one post can
receive responses with completely different con-
tent, as manifested through the example in the fol-
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lowing figure:

’ Post ‘ Having my fish sandwich right now

UserA | For god’s sake, it is 11 in the morning
UserB | Enhhhh... sounds yummy
UserC | which restaurant exactly?

Empirical studies also showed that SMT-based
methods often yield responses with grammatical
errors and in rigid forms, due to the unnecessary
alignment between the “source” post and the “tar-
get” response (Ritter et al., 2011). This rigid-
ity is still a serious problem in the recent work
of (Sordoni et al., 2015), despite its use of neu-
ral network-based generative model as features in
decoding.

1.1 Overview

In this paper, we take a probabilistic model to ad-
dress the response generation problem, and pro-
pose employing a neural encoder-decoder for this
task, named Neural Responding Machine (NRM).
The neural encoder-decoder model, as illustrated
in Figure 1, first summarizes the post as a vector
representation, then feeds this representation to a
decoder to generate responses. We further gener-
alize this scheme to allow the post representation
to dynamically change during the generation pro-
cess, following the idea in (Bahdanau et al., 2014)
originally proposed for neural-network-based ma-
chine translation with automatic alignment.

For god's sake, it is 11 in the morning

Decoder

ﬁ vector

Encoder

)

Having my fish sandwich right now

Enhhhh... sounds yummy which restaurant exactly?

Figure 1: The diagram of encoder-decoder frame-
work for automatic response generation.

NRM essentially estimates the likelihood of a
response given a post. Clearly the estimated prob-
ability should be complex enough to represent all
the suitable responses. Similar framework has
been used for machine translation with a remark-
able success (Kalchbrenner and Blunsom, 2013;
Auli et al., 2013; Sutskever et al., 2014; Bah-
danau et al., 2014). Note that in machine trans-

lation, the task is to estimate the probability of a
target language sentence conditioned on the source
language sentence with the same meaning, which
is much easier than the task of STC which we
are considering here. In this paper, we demon-
strate that NRM, when equipped with a reasonable
amount of data, can yield a satisfying estimator of
responses (hence response generator) for STC, de-
spite the difficulty of the task.

Our main contributions are two-folds: 1) we
propose to use an encoder-decoder-based neu-
ral network to generate a response in STC; 2)
we have empirically verified that the proposed
method, when trained with a reasonable amount of
data, can yield performance better than traditional
retrieval-based and translation-based methods.

1.2 RoadMap

In the remainder of this paper, we start with in-
troducing the dataset for STC in Section 2. Then
we elaborate on the model of NRM in Section 3,
followed by the details on training in Section 4.
After that, we report the experimental results in
Section 5. In Section 6 we conclude the paper.

2 The Dataset for STC

Our models are trained on a corpus of roughly 4.4
million pairs of conversations from Weibo 3.

2.1 Conversations on Sina Weibo

Weibo is a popular Twitter-like microblogging ser-
vice in China, on which a user can post short mes-
sages (referred to as post in the reminder of this
paper) visible to the public or a group of users fol-
lowing her/him. Other users make comment on a
published post, which will be referred to as a re-
sponse. Just like Twitter, Weibo also has the length
limit of 140 Chinese characters on both posts and
responses, making the post-response pair an ideal
surrogate for short-text conversation.

2.2 Dataset Description

To construct this million scale dataset, we first
crawl hundreds of millions of post-response pairs,
and then clean the raw data in a similar way as
suggested in (Wang et al., 2013), including 1) re-
moving trivial responses like “wow”, 2) filtering
out potential advertisements, and 3) removing the
responses after first 30 ones for topic consistency.
Table 1 shows some statistics of the dataset used

3http://www.noahlab.com.hk/topics/ShortTextConversation
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#posts 219,905

Training #responses 4,308,211

#pairs 4,435,959

Test Data #test posts 110

#posts 225

L:;\b:eyedllzatis)et #responses 6,017

retevaihase #labeled pairs 6,017

. . #posts 2,925

Flsn;T’I;um;g #responses 3,000

(SMT-base Hpairs 3,000
Table 1: Some statistics of the dataset. Labeled

Dataset and Fine Tuning are used by retrieval-
based method for learning to rank and SMT-based
method for fine tuning, respectively.

in this work. It can be seen that each post have 20
different responses on average. In addition to the
semantic gap between post and its responses, this
is another key difference to a general parallel data
set used for traditional translation.

3 Neural Responding Machines for STC

The basic idea of NRM is to build a hidden rep-
resentation of a post, and then generate the re-
sponse based on it, as shown in Figure 2. In
the particular illustration, the encoder converts
the input sequence x = (z1,--- ,2p) into a set
of high-dimensional hidden representations h =
(h1,- -+, hp), which, along with the attention sig-
nal at time ¢ (denoted as o), are fed to the context-
generator to build the context input to decoder at
time ¢ (denoted as c¢;). Then ¢; is linearly trans-
formed by a matrix L (as part of the decoder) into
a stimulus of generating RNN to produce the t-th
word of response (denoted as ;).

In neural translation system, L converts the rep-
resentation in source language to that of target lan-
guage. In NRM, L plays a more difficult role: it
needs to transform the representation of post (or
some part of it) to the rich representation of many
plausible responses. It is a bit surprising that this
can be achieved to a reasonable level with a linear
transformation in the “space of representation”, as
validated in Section 5.3, where we show that one
post can actually invoke many different responses
from NRM.

The role of attention signal is to determine
which part of the hidden representation h should
be emphasized during the generation process. It
should be noted that a; could be fixed over time or

1 yt

\ Decoder

ay
Attention Signal Context Generator
| h
/ Encoder \

I

(371,"' 7£CT)

Figure 2: The general framework and dataflow of
the encoder-decoder-based NRM.

changes dynamically during the generation of re-
sponse sequence y. In the dynamic settings, oy
can be function of historically generated subse-
quence (yi1,--- ,Y:—1), input sequence x or their
latent representations, more details will be shown
later in Section 3.2.

We use Recurrent Neural Network (RNN) for
both encoder and decoder, for its natural ability
to summarize and generate word sequence of ar-
bitrary lengths (Mikolov et al., 2010; Sutskever et
al., 2014; Cho et al., 2014).

I/ yl ; y2 XX
SRR OE!

51 = 55 [oere—
R Y
Merl Mea e N e

Figure 3: The graphical model of RNN decoder.
The dashed lines denote the variables related to the
function g(+), and the solid lines denote the vari-
ables related to the function f(-).

3.1 The Computation in Decoder
Figure 3 gives the graphical model of the de-

coder, which is essentially a standard RNN lan-
guage model except conditioned on the context in-
put c. The generation probability of the ¢-th word
is calculated by

p(yt|yt717 o 7y17X) = g(ytfla St, Ct)a
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where y; is a one-hot word representation, g(-) is
a softmax activation function, and s; is the hidden
state of decoder at time ¢ calculated by

st = f(yi—1,5t-1, ¢t),

and f(-) is a non-linear activation function and
the transformation L is often assigned as pa-
rameters of f(-). Here f(-) can be a logistic
function, the sophisticated long short-term mem-
ory (LSTM) unit (Hochreiter and Schmidhuber,
1997), or the recently proposed gated recurrent
unit (GRU) (Chung et al., 2014; Cho et al., 2014).
Compared to “ungated” logistic function, LSTM
and GRU are specially designed for its long term
memory: it can store information over extended
time steps without too much decay. We use GRU
in this work, since it performs comparably to
LSTM on squence modeling (Chung et al., 2014;
Greff et al., 2015), but has less parameters and eas-
ier to train.

We adopt the notation of GRU from (Bahdanau
et al., 2014), the hidden state s; at time ¢ is a linear
combination of its previous hidden state s;_; and
a new candidate state 5;:

St — (]. —Zt)OSt_l +Zt0§t,

where o is point-wise multiplication, z; is the up-
date gate calculated by

2 =0 (W.e(yi—1) + Ussi—1 + Loc), (D)
and 3 is calculated by
Si=tanh (We(y—1) + U(rt o s¢—1) + Ler), (2)
where the reset gate r; is calculated by
re =0 (Wre(yi—1) + Upsi—1 + Lycr) . (3)

In Equation (1)-(2), and (3), e(y;—1) is word em-
bedding of the word y;—1, L = {L, L., L, } spec-
ifies the transformations to convert a hidden rep-
resentation from encoder to that of decoder. In
the STC task, L should have the ability to trans-
form one post (or its segments) to multiple differ-
ent words of appropriate responses.

3.2 The Computation in Encoder

We consider three types of encoding schemes,
namely 1) the global scheme, 2) the local scheme,
and the hybrid scheme which combines 1) and 2).

Global Scheme: Figure 4 shows the graphical
model of the RNN-encoder and related context
generator for a global encoding scheme. The
hidden state at time ¢ is calculated by h; =
f (x4, hy—1) (i.e. still GRU unit), and with a trivial
context generation operation, we essentially use
the final hidden state hr as the global represen-
tation of the sentence. The same strategy has been
taken in (Cho et al., 2014) and (Sutskever et al.,
2014) for building the intermediate representation
for machine translation. This scheme however has
its drawbacks: a vectorial summarization of the
entire post is often hard to obtain and may lose im-
portant details for response generation, especially
when the dimension of the hidden state is not big
enough*. In the reminder of this paper, a NRM
with this global encoding scheme is referred to as
NRM-glo.

Ct

Context Generator
Ct = hT

*—|
hi = ho {~{ hs| —|hr

A A boeee A

1 Z2 3 T

Figure 4: The graphical model of the encoder in
NRM-glo, where the last hidden state is used as
the context vector ¢; = hrp.

Local Scheme: Recently, Bahdanau et al.
(2014) and Graves (2013) introduced an attention
mechanism that allows the decoder to dynamically
select and linearly combine different parts of the
input sequence ¢; = 25:1 atjhj, where weight-
ing factors oy determine which part should be se-
lected to generate the new word g, which in turn
is a function of hidden states a;; = q(hj, s¢—1),
as pictorially shown in Figure 5. Basically, the at-
tention mechanism «;; models the alignment be-
tween the inputs around position j and the output
at position ¢, so it can be viewed as a local match-
ing model. This local scheme is devised in (Bah-
danau et al., 2014) for automatic alignment be-

“Sutskever et al. (2014) has to use 4,000 dimension for
satisfying performance on machine translation, while (Cho et
al., 2014) with a smaller dimension perform poorly on trans-
lating an entire sentence.

1580



tween the source sentence and the partial target
sentence in machine translation. This scheme en-
joys the advantage of adaptively focusing on some
important words of the input text according to the
generated words of response. A NRM with this
local encoding scheme is referred to as NRM-loc.

Attention Signal
_ Ct
aj =q(hj,st_1)

Context Generator

T
Ct = 2_7‘:1 ough;

hi =
A A [T A
X1 o I3 xrTr

Figure 5: The graphical model of the encoder in
NRM-loc, where the weighted sum of hidden sates
is used as the context vector ¢; = erzl agih;.

3.3 Extensions: Local and Global Model

In the task of STC, NRM-glo has the summariza-
tion of the entire post, while NRM-loc can adap-
tively select the important words in post for vari-
ous suitable responses. Since post-response pairs
in STC are not strictly parallel and a word in differ-
ent context can have different meanings, we con-
jecture that the global representation in NRM-glo
may provide useful context for extracting the local
context, therefore complementary to the scheme
in NRM-loc. It is therefore a natural extension
to combine the two models by concatenating their
encoded hidden states to form an extended hid-
den representation for each time stamp, as illus-
trated in Figure 6. We can see the summarization
hf. is incorporated into ¢; and oy to provide a
global context for local matching. With this hy-
brid method, we hope both the local and global in-
formation can be introduced into the generation of
response. The model with this context generation
mechanism is denoted as NRM-hyb.

It should be noticed that the context generator
in NRM-hyb will evoke different encoding mecha-
nisms in the global encoder and the local encoder,
although they will be combined later in forming
a unified representation. More specifically, the
last hidden state of NRM-glo plays a role differ-
ent from that of the last state of NRM-loc, since
it has the responsibility to encode the entire input

sentence. This role of NRM-glo, however, tends
to be not adequately emphasized in training the
hybrid encoder when the parameters of the two
encoding RNNs are learned jointly from scratch.
For this we use the following trick: we first ini-
tialize NRM-hyb with the parameters of NRM-loc
and NRM-glo trained separately, then fine tune the
parameters in encoder along with training the pa-
rameters of decoder.

n - ng] —
) b

1 T2

global encoder

(o]
o
=1
=4
o
x
-+
(1]
o
3
[}
S
[
=
(=]
=

T ...

Attention Signal

ay; = q([hkshd], se—1)

local encoder

Figure 6: The graphical model for the encoder
in NRM-hyb, while context generator function is
ct = Z?zl azj[hl; b, here [hk; hf] denotes the
concatenation of vectors hé- and h,

To learn the parameters of the model, we max-
imize the likelihood of observing the original re-
sponse conditioned on the post in the training set.
For a new post, NRMs generate their responses by
using a left-to-right beam search with beam size =
10.

4 Experiments

We evaluate three different settings of NRM de-
scribed in Section 3, namely NRM-glo, NRM-
loc, and NRM-hyb, and compare them to retrieval-
based and SMT-based methods.

4.1 Implementation Details

We use Stanford Chinese word segmenter > to split
the posts and responses into sequences of words.
Although both posts and responses are written in
the same language, the distributions on words for
the two are different: the number of unique words
in post text is 125,237, and that of response text is
679,958. We therefore construct two separate vo-
cabularies for posts and responses by using 40,000
most frequent words on each side, covering 97.8%

Shttp://nlp.stanford.edu/software/segmenter.shtml
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usage of words for post and 96.2% for response
respectively. All the remaining words are replaced
by a special token “UNK”. The dimensions of the
hidden states of encoder and decoder are both
1,000. Model parameters are initialized by ran-
domly sampling from a uniform distribution be-
tween -0.1 and 0.1. All our models were trained on
a NVIDIA Tesla K40 GPU using stochastic gra-
dient descent (SGD) algorithm with mini-batch.
The training stage of each model took about two
weeks.

4.2 Competitor Models

Retrieval-based: with retrieval-based models,
for any given post p*, the response 7* is retrieved
from a big post-response pairs (p,r) repository.
Such models rely on three key components: a big
repository, sets of feature functions ®;(p*, (p, 7)),
and a machine learning model to combine these
features. In this work, the whole 4.4 million
Weibo pairs are used as the repository, 14 fea-
tures, ranging from simple cosine similarity to
some deep matching models (Ji et al., 2014) are
used to determine the suitability of a post to a
given post p* through the following linear model

SCO’I"G(p*, (pv T‘)) = Zwiq)i(p*a (p7 T)) (4)

Following the ranking strategy in (Ji et al., 2014),
we pick 225 posts and about 30 retrieved re-
sponses for each of them given by a baseline re-
triever® from the 4.4M repository, and manually
label them to obtain labeled 6,017 post-response
pairs. We use ranking SVM model (Joachims,
20006) for the parameters w; based on the labeled
dataset. In comparison to NRM, only the top one
response is considered in the evaluation process.

SMT-based: In SMT-based models, the post-
response pairs are directly used as parallel data
for training a translation model. We use the most
widely used open-source phrase-based translation
model-Moses (Koehn et al., 2007). Another par-
allel data consisting of 3000 post-response pairs is
used to tune the system. In (Ritter et al., 2011),
the authors used a modified SMT model to obtain
the “Response” of Twitter “Stimulus”. The main
modification is in replacing the standard GIZA++
word alignment model (Och and Ney, 2003) with a
new phrase-pair selection method, in which all the

Swe use the default similarity function of Lucene ’

possible phrase-pairs in the training data are con-
sidered and their associated probabilities are es-
timated by the Fisher’s Exact Test, which yields
performance slightly better than default setting®.
Compared to retrieval-based methods, the gener-
ated responses by SMT-based methods often have
fluency or even grammatical problems. In this
work, we choose the Moses with default settings
as our SMT model.

5 Results and Analysis

Automatic evaluation of response generation is
still an open problem. The widely accepted evalu-
ation methods in translation (e.g. BLEU score (Pa-
pineni et al., 2002)) do not apply, since the range
of the suitable responses is so large that it is prac-
tically impossible to give reference with adequate
coverage. It is also not reasonable to evaluate with
Perplexity, a generally used measurement in statis-
tical language modeling, because the naturalness
of response and the relatedness to the post can not
be well evaluated. We therefore resort to human
judgement, similar to that taken in (Ritter et al.,
2011) but with an important difference.

5.1 Evaluation Methods

We adopt human annotation to compare the per-
formance of different models. Five labelers with
at least three-year experience of Sina Weibo are in-
vited to do human evaluation. Responses obtained
from the five evaluated models are pooled and ran-
domly permuted for each labeler. The labelers are
instructed to imagine that they were the authors
of the original posts and judge whether a response
(generated or retrieved) is appropriate and natural
to a input post. Three levels are assigned to a re-
sponse with scores from 0 to 2:

o Suitable (+2): the response is evidently an ap-

propriate and natural response to the post;

e Neutral (+1): the response can be a suitable
response in a specific scenario;

e Unsuitable (0): it is hard or impossible to find
a scenario where response is suitable.

To make the annotation task operable, the suit-
ability of generated responses is judged from the
following five criteria:

(a) Grammar and Fluency: Responses should
be natural language and free of any fluency or
grammatical errors;

8Reported results showed that the new model outper-
formed the baseline SMT model 57.7% of the time.
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Post ﬁl:;j iff iviﬁ}f f}gl\eé;r/s\ at ih%ciltz}zlgir;f restricted area. Unbelievable! Related Criterion Labels
Responsel I%:l:jf j:— bii’\gj?ilflj\:? tllltxiz’lly&fe?n?iﬁjg ofor the football game to start Logic Consistency | Unsuitable
Response2 Ii l}iJ; jllfi{lﬁ}iihafsi:igf delicious. Semantic Relevance | Unsuitable
Response3 Ij}n?)\ji{ejaﬁ;! Generality Neutral
Responsed ;/';; %ﬁgjﬁf&nﬁ 00: Oﬁfgfju:f;if Scenario Dependence [ Neutral
ResponseS ﬁfs_f f;:cijj iﬁgﬁtjiifﬁecfending style football game. o Suitable

Figure 7: An example post and its five candidate responses with human annotation. The content of the
post implies that the football match is already started, while the author of Responsel is still waiting for
the match to start. Response?2 talks about the food of Italy. Response3 is a widely used response, but it
is suitable to this post. Response4 states that the current score is still 0:0, it is a suitable response only in
this specific scenario.

Models Mean Score | Suitable (+2) | Neutral (+1) | Unsuitable (0) | Agreement
NRM-glo 0.969 34.0% 28.9% 37.1% 0.397
NRM-loc 1.065 36.0% 34.5% 29.5% 0.247
NRM-hyb 1.156 39.3% 37.1% 23.6% 0.309
| Rir-based | 0984 | 298% | 387% | 315% | 0346 |
| SMT-based [ 0313 [ 56% | 200% | 744% | 0448 |

Table 2: The results of evaluated methods. Mean score is the average value of annotated scores over all
annotations. (Rtr.-based means the retrieval-based method)

m, KAksH%

!

B
17?7"6 '

ID Post NRM-glo NRM-loc NRM-hyb Rtr.-based
BE LR SR ZkE, WREBN N FFALEHRLERE ﬁ?ﬂ/ﬁig, G | Bk
1 A !
High fever attacks me Rest more to boost Go to see a doctor Get well soon and stay | High fever...
every New Year’s Day | your immune system. |every New Year’s Day | healthy!
RET—%, BMEMN |[E£BRAR! RELH [£ARR! KZFE | 2TET, FARR |[RRZLT—F

AT

some cute guys to enjoy
a great outing in such a
nice weather.

beautiful!

I am in a great mood.

2 | I gain one more year. Happy birthday! Will | Happy birthday! Wish | Getting old now. Time | I just gain only one
Grateful to my group, so | stand by you forever! | you always stay young | has no mercy. more year.
happy and pretty!
RS R, BHE, [LARELE! o] | BEHAE, BRTE. | HRBEAFREIE | BHE!
R,
3 [ First day of being a I come to offer my Hold on, keep it up. I have been being a Hold on!
vegetarian. Hold on, support. Keep it up! vegetarian everyday
CuiDuoLa
AR AR IZEAI | ZATIU? AE!D [ [BARE, SHF| I RAAERREZN | LT L3 FF
it EF T R R
4 We should go out with [ Where is it? It is so Such a nice sunny day! [ It is indeed a very nice | WenShan, let’s go out

weather.

to get some
inspiration. Ha! Ha!

Figure 8: Some responses generated by different models (originally in Chinese with their literal English
translation), where the words in boldfaces are entity names.
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(b) Logic Consistency: Responses should be log-
ically consistent with the test post;

(c) Semantic Relevance: Responses should be
semantically relevant to the test post;

(d) Scenario Dependence: Responses can de-
pend on a specific scenario but should not con-
tradict the first three criteria;

(e) Generality: Responses can be general but

should not contradict the first three criteria;
If any of the first three criteria (a), (b), and (c)
is contradicted, the generated response should be
labeled as “Unsuitable”. The responses that are
general or suitable to post in a specific scenario
should be labeled as “Neutral”. Figure 7 shows
an example of the labeling results of a post and its
responses. The first two responses are labeled as
“Unsuitable” because of the logic consistency and
semantic relevance errors. Response4 depends on
the scenario (i.e., the current score is 0:0), and is
therefore annotated as “Neutral”.

Model A |Model B Aver.a 8¢ p value
rankings
NRM-loc |NRM-glo |[(1.463,1.537)| 2.01%
NRM-hyb |[NRM-glo |[(1.434,1.566)| 0.01%
NRM-hyb |NRM-loc |(1.465, 1.535)| 3.09%
Rtr.-based |[NRM-glo |[(1.512, 1.488)| 48.1%
Rtr.-based |NRM-loc |[(1.533,1.467)| 6.20%
Rtr.-based | NRM-hyb |(1.552, 1.448)| 0.32%
SMT NRM-hyb |(1.785, 1.215)| 0.00 %
SMT Rtr.-based | (1.738, 1.262) | 0.00 %

Table 3: p-values and average rankings of Fried-
man test for pairwise model comparison. (Rtr.-
based means the retrieval-based method)

5.2 Results

Our test set consists of 110 posts that do not ap-
pear in the training set, with length between 6 to
22 Chinese words and 12.5 words on average. The
experimental results based on human annotation
are summarized in Table 2, consisting of the ra-
tio of three categories and the agreement among
the five labelers for each model. The agreement is
evaluated by Fleiss’ kappa (Fleiss, 1971), as a sta-
tistical measure of inter-rater consistency. Except
the SMT-based model, the value of agreement is
in a range from 0.2 to 0.4 for all the other mod-
els, which should be interpreted as “Fair agree-
ment”. The SMT-based model has a relatively

higher kappa value 0.448, which is larger than 0.4
and considered as “Moderate agreement”, since
the responses generated by the SMT often have the
fluency and grammatical errors, making it easy to
reach an agreement on such unsuitable cases.

From Table 2, we can see the SMT method per-
forms significantly worse than the retrieval-based
and NRM models and 74.4% of the generated re-
sponses were labeled as unsuitable mainly due to
fluency and relevance errors. This observation
confirms with our intuition that the STC dataset,
with one post potentially corresponding to many
responses, can not be simply taken as parallel cor-
pus in a SMT model. Surprisingly, more than 60%
of responses generated by all the three NRM are
labeled as “Suitable” or “Neutral”, which means
that most generated responses are fluent and se-
mantically relevant to post. Among all the NRM
variants

e NRM-loc outperforms NRM-glo, suggesting
that a dynamically generated context might
be more effective than a “static” fixed-length
vector for the entire post, which is consistent
with the observation made in (Bahdanau et al.,
2014) for machine translation;

o NRM-hyp outperforms NRM-loc and NRM-
glo, suggesting that a global representation of
post is complementary to dynamically gener-
ated local context.

The retrieval-based model has the similar mean
score as NRM-glo, and its ratio on neutral cases
outperforms all the other methods. This is be-
cause 1) the responses retrieved by retrieval-based
method are actually written by human, so they
do not suffer from grammatical and fluency prob-
lems, and 2) the combination of various feature
functions potentially makes sure the picked re-
sponses are semantically relevant to test posts.
However the picked responses are not customized
for new test posts, so the ratio of suitable cases is
lower than the three neural generation models.

To test statistical significance, we use the
Friedman test (Howell, 2010), which is a non-
parametric test on the differences of several re-
lated samples, based on ranking. Table 3 shows
the average rankings over all annotations and the
corresponding p-values for comparisons between
different pairs of methods. The comparison be-
tween retrieval-based and NRM-glo is not signif-
icant and their difference in ranking is tiny. This
indicates that the retrieval-based method is com-
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parable to the NRM-glo method. The NRM-hyb
outperforms all the other methods, and the differ-
ence is statistically significant (p < 0.05). The
difference between NRM-loc and retrieval-based
method is marginal (p = 0.062). SMT is signif-
icantly worse than retrieval-based and NRM-hyb
methods.

5.3 Case Study

Figure 8 shows some example responses gener-
ated by our NRMs (only the one with biggest
likelihood is given) and the comparable retrieval-
based model. It is intriguing to notice that three
NRM variants give suitable but quite distinct re-
sponses, with different perspectives and choices
of words. This, as we conjecture, is caused by
both the architecture variations among models as
well as the variations from random effects like
the initialization of parameters. Another interest-
ing observation is on the fourth example, where
the retrieval-based method returns a response with
the mismatched entity name “WenShan”, which
is actually a quite common problem for retrieval-
based model, where the inconsistency details (e.g.,
dates, named entities), which often render the re-
sponse unsuitable, cannot be adequately consid-
ered in the matching function employed in retriev-
ing the responses. In contrast, we observe that
NRMs tend to make general response and barely
generate those details.

R B—R, B&HE, ERi
First day of being a vegetarian. Hold on, CuiDuoLa

B, BHER!

Hold on, Keep up your vegetarian diet.

BREED? BEKED? AKX ERGUEC,
R2 | Would you like to be healthy? Would you like to live
long? If so, follow me on Weibo.

KA 6L ED?

This is the so-called vegetarian diet ?

VAT A A ) ARIE

R4 | Eat up so that you will have enough energy to go for
a diet!

ARAFGFHERR, TEEE!
RS |Health is the essence for winning your future battles.
No rush!

Post

R1

Figure 9: Multiple responses generated by the
NRM-hyb.

We also use the NRM-hyb as an example to in-
vestigate the ability of NRM to generate multi-
ple responses. Figure 9 lists 5 responses to the

same post, which are gotten with beam search with
beam size = 500, among which we keep only the
best one (biggest likelihood) for each first word.
It can be seen that the responses are fluent, rele-
vant to the post, and still vastly different from each
other, validating our initial conjecture that NRM,
when fueled with large and rich training corpus,
could work as a generator that can cover a lot of
modes in its density estimation.

It is worth mentioning that automatic evaluation
metrics, such as BLEU (Papineni et al., 2002) as
adopted by machine translation and recently SM'T-
based responding models (Sordoni et al., 2015), do
not work very well on this task, especially when
the reference responses are few. Our results show
that the average BLEU values are less than 2 for
all models discussed in this paper, including SMT-
based ones, on instances with single reference.
Probably more importantly, the ranking given by
the BLEU value diverges greatly from the human
judgment of response quality.

6 Conclusions and Future Work

In this paper, we explored using encoder-decoder-
based neural network system, with coined name
Neural Responding Machine, to generate re-
sponses to a post. Empirical studies confirm that
the newly proposed NRMs, especially the hybrid
encoding scheme, can outperform state-of-the-art
retrieval-based and SMT-based methods. Our pre-
liminary study also shows that NRM can generate
multiple responses with great variety to a given
post. In future work, we would consider adding
the intention (or sentiment) of users as an external
signal of decoder to generate responses with spe-
cific goals.
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