Model-based Word Embeddings from Decompositions of Count Matrices

Karl Stratos

Michael Collins

Daniel Hsu

Columbia University, New York, NY 10027, USA
{stratos, mcollins, djhsu}@cs.columbia.edu

Abstract

This work develops a new statistical un-
derstanding of word embeddings induced
from transformed count data. Using the
class of hidden Markov models (HMMs)
underlying Brown clustering as a genera-
tive model, we demonstrate how canoni-
cal correlation analysis (CCA) and certain
count transformations permit efficient and
effective recovery of model parameters
with lexical semantics. We further show in
experiments that these techniques empir-
ically outperform existing spectral meth-
ods on word similarity and analogy tasks,
and are also competitive with other pop-
ular methods such as WORD2VEC and
GLOVE.

1 Introduction

The recent spike of interest in dense, low-
dimensional lexical representations—i.e., word
embeddings—is largely due to their ability to cap-
ture subtle syntactic and semantic patterns that
are useful in a variety of natural language tasks.
A successful method for deriving such embed-
dings is the negative sampling training of the
skip-gram model suggested by Mikolov et al.
(2013b) and implemented in the popular software
WORD2VEC. The form of its training objective
was motivated by efficiency considerations, but
has subsequently been interpreted by Levy and
Goldberg (2014b) as seeking a low-rank factor-
ization of a matrix whose entries are word-context
co-occurrence counts, scaled and transformed in
a certain way. This observation sheds new light
on WORD2VEC, yet also raises several new ques-
tions about word embeddings based on decompos-
ing count data. What is the right matrix to de-
compose? Are there rigorous justifications for the
choice of matrix and count transformations?

In this paper, we answer some of these ques-
tions by investigating the decomposition specified
by CCA (Hotelling, 1936), a powerful technique
for inducing generic representations whose com-
putation is efficiently and exactly reduced to that
of a matrix singular value decomposition (SVD).
We build on and strengthen the work of Stratos et
al. (2014) which uses CCA for learning the class
of HMMs underlying Brown clustering. We show
that certain count transformations enhance the ac-
curacy of the estimation method and significantly
improve the empirical performance of word rep-
resentations derived from these model parameters
(Table 1).

In addition to providing a rigorous justifica-
tion for CCA-based word embeddings, we also
supply a general template that encompasses a
range of spectral methods (algorithms employing
SVD) for inducing word embeddings in the lit-
erature, including the method of Levy and Gold-
berg (2014b). In experiments, we demonstrate that
CCA combined with the square-root transforma-
tion achieves the best result among spectral meth-
ods and performs competitively with other popu-
lar methods such as WORD2VEC and GLOVE on
word similarity and analogy tasks. We addition-
ally demonstrate that CCA embeddings provide
the most competitive improvement when used as
features in named-entity recognition (NER).

2 Notation

We use [n] to denote the set of integers {1,...,n}.
We denote the m x m diagonal matrix with values
v1...Un, along the diagonal by diag(v;...vp).
We write [a; . ..a;] to denote a matrix whose i-
th column is a;. The expected value of a random
variable X is denoted by E[X]. Given a matrix )
and an exponent a, we distinguish the entrywise
power operation Q% (i.e., Qf? = (€)% from
the matrix power operation Qe (defined only for
square ).
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3 Background in CCA

In this section, we review the variational charac-
terization of CCA. This provides a flexible frame-
work for a wide variety of tasks. CCA seeks to
maximize a statistical quantity known as the Pear-
son correlation coefficient between random vari-
ables L, R € R:

E[LR] — E[L|E[R]
VE[L?] - E[L]?\/E[R?] - E[R]?

Cor(L, R) :=

This is a value in [—1, 1] indicating the degree of
linear dependence between L and R.

3.1 CCA objective

Let X € R” and Y € R™ be two random vectors.
Without loss of generality, we will assume that X
and Y have zero mean.! Let m < min(n,n’).
CCA can be cast as finding a set of projection vec-
tors (called canonical directions) aj ... a,, € R"
and by ... by, € R™ such that fori =1...m:

(a;,b;) = argmax Cor(a'X,0'Y) (1)
a€R™, beR™

Cor(a'X,a] X) =0 Vj<i

Cor(b'Y,b]Y)=0 Vj<i
That is, at each ¢ we simultaneously optimize vec-
tors a,b so that the projected random variables
a'X,b"Y € R are maximally correlated, subject
to the constraint that the projections are uncorre-
lated to all previous projections.

Let A := [a1...an] and B = [by...by)].
Then we can think of the joint projections

X=ATX Y=B'Y 2)
as new m-dimensional representations of the orig-
inal variables that are transformed to be as corre-
lated as possible with each other. Furthermore, of-
ten m < min(n,n’), leading to a dramatic reduc-
tion in dimensionality.

3.2 Exact solution via SVD

Eq. (1) is non-convex due to the terms a and b that
interact with each other, so it cannot be solved
exactly using a standard optimization technique.
However, a method based on SVD provides an
efficient and exact solution. See Hardoon et al.
(2004) for a detailed discussion.

IThis can be always achieved through data preprocessing
(“centering”).

Lemma 3.1 (Hotelling (1936)). Assume X and
Y have zero mean. The solution (A, B) to (1)
is given by A = E[XX"]7Y2U and B =
E[YY |72V where the i-th column of U €
R™X™M (V€ RYX™M) js the left (right) singular
vector of

Q:=EXX"|"V2EXYTIE[YYT]|7Y2 (3)

corresponding to the i-th largest singular value o;.
Furthermore, o; = Cor(a; X,b] Y).

3.3 Using CCA for word representations

As presented in Section 3.1, CCA is a general
framework that operates on a pair of random vari-
ables. Adapting CCA specifically to inducing
word representations results in a simple recipe for
calculating (3).

A natural approach is to set X to represent a
word and Y to represent the relevant “context”
information about a word. We can use CCA to
project X and Y to a low-dimensional space in
which they are maximally correlated: see Eq. (2).
The projected X can be considered as a new word
representation.

Denote the set of distinct word types by [n]. We
set X,Y € R" to be one-hot encodings of words
and their associated context words. We define a
context word to be a word occurring within p po-
sitions to the left and right (excluding the current
word). For example, with p = 1, the following
snippet of text where the current word is “souls”:

Whatever our souls are made of

will generate two samples of X x Y: a pair of
indicator vectors for “souls” and “our”, and a pair
of indicator vectors for “souls” and “are”.

CCA requires performing SVD on the following
matrix 2 € R™*™:

2
I
=
>
S
=
|
=
2
=
>
_
|
S

(E[YT] - E[YJE[Y]T) "/

At a quick glance, this expression looks daunting:
we need to perform matrix inversion and multipli-
cation on potentially large dense matrices. How-
ever, {2 is easily computable with the following
observations:

Observation 1. We can ignore the centering oper-
ation when the sample size is large (Dhillon et al.,
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2011). To see why, let {(z®, y@)}¥ | be N sam-
ples of X and Y. Consider the sample estimate of
the term E[XY "] — E[X]E[Y]":

1N 1 N oo N oo i
LY a0 - (Z xm) (Z y<z>>
=1 1=1 i=1

The first term dominates the expression when N is
large. This is indeed the setting in this task where
the number of samples (word-context pairs in a
corpus) easily tends to billions.

Observation 2. The (uncentered) covariance
matrices E[XX ] and E[YY ] are diagonal.
This follows from our definition of the word
and context variables as one-hot encodings since
E[X,X,] = 0forw # w and E[Y.Y,] = 0 for
c#c.

With these observations and the binary definition
of (X,Y), each entry in 2 now has a simple
closed-form solution:

o, _ PXu=1Y=1

T PRe=DPO=T)

which can be readily estimated from a corpus.

4 Using CCA for parameter estimation

In a less well-known interpretation of Eq. (4),
CCA is seen as a parameter estimation algorithm
for a language model (Stratos et al., 2014). This
model is a restricted class of HMMs introduced by
Brown et al. (1992), henceforth called the Brown
model. In this section, we extend the result of
Stratos et al. (2014) and show that its correctness
is preserved under certain element-wise data trans-
formations.

4.1 Clustering under a Brown model

A Brown model is a 5-tuple (n,m,w,t,0) for
n,m € N and functions 7, ¢, 0 where

e [n] is a set of word types.
e [m)] is a set of hidden states.

e 7(h) is the probability of generating i € [m]
in the first position of a sequence.

e {(R'|h) is the probability of generating h’ €
[m] given h € [m].

e o(w]h) is the probability of generating w €
[n] given h € [m].

Importantly, the model makes the following addi-
tional assumption:

Assumption 4.1 (Brown assumption). For each
word type w € [n], there is a unique hidden state
H(w) € [m] such that o(w|H(w)) > 0 and
o(wlh) = 0 for all h # H(w).

In other words, this model is an HMM in which
observation states are partitioned by hidden states.
Thus a sequence of N words wy ... wy € [n]V
has probability 7(H (w1)) % Hf\il o(w;|H(w;)) x
LS t(H (wi) [H (i)

An equivalent definition of a Brown model is
given by organizing the parameters in matrix form.
Under this definition, a Brown model has param-
eters (m,7,0) where 7 € R™ is a vector and
T € R™*™ O € R™™ are matrices whose en-
tries are set to:

7y, = m(h) h € [m]
Th’,h = t(h/|h) h, 4 S [m]
O, = o(wlh) h € [m],w € [n]

Our main interest is in obtaining some represen-
tations of word types that allow us to identify their
associated hidden states under the model. For this
purpose, representing a word by the correspond-
ing row of O is sufficient. To see this, note that
each row of O must have a single nonzero entry
by Assumption 4.1. Let v(w) € R™ be the w-
th row of O normalized to have unit 2-norm: then
v(w) = v(w') iff H(w) = H(w’). See Figure 1(a)
for illustration.

A crucial aspect of this representational scheme
is that its correctness is invariant to scaling and
rotation. In particular, clustering the normalized
rows of diag(s)O(®diag(s2)Q" where O@ is
any element-wise power of O with any a # 0,
@ € R™*™ is any orthogonal transformation, and
s1 € R™ and sp € R™ are any positive vectors
yields the correct clusters under the model. See
Figure 1(b) for illustration.

4.2 Spectral estimation

Thus we would like to estimate O and use its rows
for representing word types. But the likelihood
function under the Brown model is non-convex,
making an MLE estimation of the model param-
eters difficult. However, the hard-clustering as-
sumption (Assumption 4.1) allows for a simple
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Figure 1: Visualization of the representational scheme under a Brown model with 2 hidden states. (a)
Normalizing the original rows of O. (b) Normalizing the scaled and rotated rows of O.

spectral method for consistent parameter estima-
tion of O.

To state the theorem, we define an additional
quantity. Let p be the number of left/right context
words to consider in CCA. Let (Hi,...,Hy) €
[m]¥ be a random sequence of hidden states
drawn from the Brown model where N > 2p + 1.
Independently, pick a position I € [p+ 1, N — p]
uniformly at random. Define 7 € R™ where
7y, := P(Hy = h) for each h € [m].

Theorem 4.1. Assume © > 0 and rank(O) =
rank(T) = m. Assume that a Brown model
(m,T,0) generates a sequence of words. Let
X, Y € R" be one-hot encodings of words and
their associated context words. Let U € R"*™
be the matrix of m left singular vectors of Q(®

R™ "™ corresponding to nonzero singular values

where () is defined in Eq. (4) and a # 0:
) _ P(Xy,=1Y.=1)°
¢ VP(Xy=1)P(Y, = 1)

Then there exists an orthogonal matrix () €
R™>™ and a positive s € R™ such that U =
0'/2 diag(5)Q.

This theorem states that the CCA projection of
words in Section 3.3 is the rows of O up to scaling
and rotation even if we raise each element of € in
Eq. (4) to an arbitrary (nonzero) power. The proof
is a variant of the proof in Stratos et al. (2014) and
is given in Appendix A.

Q(l

w,

4.3 Choice of data transformation
Given a corpus, the sample estimate of Q(® is
given by:
ap), = 0
#(w) 2 (c)®

where # (w, ¢) denotes the co-occurrence count of
word w and context ¢ in the corpus, #(w) :=

(&)

Yoo #(w,c), and #(c) = >, #(w,c). What
choice of a is beneficial and why? Weuse @ = 1/2
for the following reason: it stabilizes the variance
of the term and thereby gives a more statistically
stable solution.

4.3.1 Variance stabilization for word counts

The square-root transformation is a variance-
stabilizing transformation for Poisson random
variables (Bartlett, 1936; Anscombe, 1948). In
particular, the square-root of a Poisson variable
has variance close to 1/4, independent of its mean.

Lemma 4.1 (Bartlett (1936)). Let X be a random
variable with distribution Poisson(n X p) for any
p € (0,1) and positive integer n. Define Y :=
V' X. Then the variance of Y approaches 1 /4 as
n — oQ.

This transformation is relevant for word counts
because they can be naturally modeled as Pois-
son variables. Indeed, if word counts in a corpus
of length N are drawn from a multinomial distri-
bution over [n] with N observations, then these
counts have the same distribution as n indepen-
dent Poisson variables (whose rate parameters are
related to the multinomial probabilities), condi-
tioned on their sum equaling N (Steel, 1953). Em-
pirically, the peaky concentration of a Poisson dis-
tribution is well-suited for modeling word occur-
rences.

4.3.2 Variance-weighted squared-error
minimization

At the heart of CCA is computing the SVD of the

Q%) matrix: this can be interpreted as solving the

following (non-convex) squared-error minimiza-

tion problem:

2
. ay T
Uy ,Vc ER™ Z (Qw,c uwvc>

min
w,c
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But we note that minimizing unweighted squared-
error objectives is generally suboptimal when the
target values are heteroscedastic. For instance, in
linear regression, it is well-known that a weighted
least squares estimator dominates ordinary least
squares in terms of statistical efficiency (Aitken,
1936; Lehmann and Casella, 1998). For our set-
ting, the analogous weighted least squares opti-
mization is:

. 1 ( T 2
min — (0l — uwvc> (6)
U Ve ER™ wz,c Var (Qu?}c) ’

where Var(X) := E[X?] — E[X]?. This optimiza-
tion is, unfortunately, generally intractable (Sre-
bro et al., 2003). The square-root transformation,
nevertheless, obviates the variance-based weight-
ing since the target values have approximately the
same variance of 1/4.

5 A template for spectral methods

Figure 2 gives a generic template that encom-
passes a range of spectral methods for deriving
word embeddings. All of them operate on co-
occurrence counts #(w, ¢) and share the low-rank
SVD step, but they can differ in the data transfor-
mation method (¢) and the definition of the matrix
of scaled counts for SVD (s).

We introduce two additional parameters «;, 3 <
1 to account for the following details. Mikolov et
al. (2013b) proposed smoothing the empirical con-
text distribution as P, (c) = #(c)*/ > . #(c)”
and found o = 0.75 to work well in practice. We
also found that setting o = 0.75 gave a small but
consistent improvement over setting & = 1. Note
that the choice of o only affects methods that make
use of the context distribution (s € {ppmi, cca}).

The parameter 3 controls the role of singular
values in word embeddings. This is always 0
for CCA as it does not require singular values.
But for other methods, one can consider setting
B > 0 since the best-fit subspace for the rows
of Q is given by UX. For example, Deerwester
et al. (1990) use B = 1 and Levy and Goldberg
(2014b) use B = 0.5. However, it has been found
by many (including ourselves) that setting § = 1
yields substantially worse representations than set-
ting 5 € {0,0.5} (Levy et al., 2015).

Different combinations of these aspects repro-
duce various spectral embeddings explored in the
literature. We enumerate some meaningful combi-
nations:

SPECTRAL-TEMPLATE

Input: word-context co-occurrence counts #(w, ¢), dimen-
sion m, transformation method ¢, scaling method s, context
smoothing exponent o < 1, singular value exponent § < 1
Output: vector v(w) € R™ for each word w € [n]
Definitions: #(w) := Y #(w,c), #(c) .= >, #(w,¢),
N(a) = 3, #(0)°

1. Transform all #(w, ¢), #(w), and #(c):

#() ift=—
log(1+ #(-)) ift = log
#(-) #( )2/3 if t = two-thirds

if t = sqrt

2. Scale statistics to construct a matrix £ € R™*"™:

#(w7 C) ifs=—
##E‘;;) if s = reg

Qw,c — max (log %, 0) if s = ppml
\/% %(((1‘)) if s = cca

3. Perform rank-m SVD on Q ~ UXV T where & =
diag(o1,...,om) is a diagonal matrix of ordered sin-
gular values o1 > - -+ > gy, > 0.

4. Define v(w) € R™ to be the w-th row of U%” normal-
ized to have unit 2-norm.

Figure 2: A template for spectral word embedding
methods.

No scaling [t € {—, log, sqrt}, s = —]|. Thisis
a commonly considered setting (e.g., in Penning-
ton et al. (2014)) where no scaling is applied to the
co-occurrence counts. It is however typically ac-
companied with some kind of data transformation.

Positive point-wise mutual information (PPMI)
[t = —, s = ppmi]. Mutual information is a pop-
ular metric in many natural language tasks (Brown
et al., 1992; Pantel and Lin, 2002). In this setting,
each term in the matrix for SVD is set as the point-
wise mutual information between word w and con-
text c:

g L0 #(w.0) T, #(0)°
P(w)pa(c) ##(w)#(c)
Typically negative values are thresholded to O to
keep (2 sparse. Levy and Goldberg (2014b) ob-
served that the negative sampling objective of the
skip-gram model of Mikolov et al. (2013b) is im-
plicitly factorizing a shifted version of this ma-
trix.?

This is not equivalent to applying SVD on this matrix,
however, since the loss function is different.
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Regression [t € {—, sqrt}, s = reg]. An-
other novelty of our work is considering a low-
rank approximation of a linear regressor that pre-
dicts the context from words. Denoting the word
sample matrix by X € RM*" and the context
sample matrix by J € RVX" we seek U* =
arg mingcgnxn || — XU||> whose closed-from
solution is given by:

Ur=x"x)taty (7)

Thus we aim to compute a low-rank approxima-
tion of U* with SVD. This is inspired by other pre-
dictive models in the representation learning lit-
erature (Ando and Zhang, 2005; Mikolov et al.,
2013a). We consider applying the square-root
transformation for the same variance stabilizing
effect discussed in Section 4.3.

CCA [t € {—,two-thirds, sqrt}, s = cca].
This is the focus of our work. As shown in The-
orem 4.1, we can take the element-wise power
transformation on counts (such as the power of
1,2/3,1/2 in this template) while preserving the
representational meaning of word embeddings un-
der the Brown model interpretation. If there is no
data transformation (¢ = —), then we recover the
original spectral algorithm of Stratos et al. (2014).

6 Related work

We make a few remarks on related works not al-
ready discussed earlier. Dhillon et al. (2011) and
(2012) propose novel modifications of CCA (LR-
MVL and two-step CCA) to derive word embed-
dings, but do not establish any explicit connection
to learning HMM parameters or justify the square-
root transformation. Pennington et al. (2014) pro-
pose a weighted factorization of log-transformed
co-occurrence counts, which is generally an in-
tractable problem (Srebro et al., 2003). In contrast,
our method requires only efficiently computable
matrix decompositions. Finally, word embeddings
have also been used as features to improve per-
formance in a variety of supervised tasks such as
sequence labeling (Dhillon et al., 2011; Collobert
et al., 2011) and dependency parsing (Lei et al.,
2014; Chen and Manning, 2014). Here, we focus
on understanding word embeddings in the context
of a generative word class model, as well as in em-
pirical tasks that directly evaluate the word embed-
dings themselves.

7 Experiments

7.1 Word similarity and analogy

We first consider word similarity and analogy
tasks for evaluating the quality of word embed-
dings. Word similarity measures the Spearman’s
correlation coefficient between the human scores
and the embeddings’ cosine similarities for word
pairs. Word analogy measures the accuracy on
syntactic and semantic analogy questions. We re-
fer to Levy and Goldberg (2014a) for a detailed
description of these tasks. We use the multiplica-
tive technique of Levy and Goldberg (2014a) for
answering analogy questions.

For the choice of corpus, we use a pre-
processed English Wikipedia dump (http://
dumps.wikimedia.org/). The corpus con-
tains around 1.4 billion words. We only preserve
word types that appear more than 100 times and
replace all others with a special symbol, resulting
in a vocabulary of size around 188k. We define
context words to be 5 words to the left/right for all
considered methods.

We use three word similarity datasets each con-
taining 353, 3000, and 2034 word pairs.> We
report the average similarity score across these
datasets under the label AVG-SIM. We use two
word analogy datasets that we call SYN (8000
syntactic analogy questions) and MIXED (19544
syntactic and semantic analogy questions).*

We implemented the template in Figure 2 in
C++.° We compared against the public implemen-
tation of WORD2VEC by Mikolov et al. (2013b)
and GLOVE by Pennington et al. (2014). These
external implementations have numerous hyperpa-
rameters that are not part of the core algorithm,
such as random subsampling in WORD2VEC and
the word-context averaging in GLOVE. We refer
to Levy et al. (2015) for a discussion of the effect
of these features. In our experiments, we enable
all these features with the recommended default
settings.

We reserve a half of each dataset (by category)

3WordSim-353: http://www.cs.technion.ac.
il/~gabr/resources/data/wordsim353/; MEN:
http://clic.cimec.unitn.it/~elia.bruni/
MEN.html; Stanford Rare Word: http://www-nlp.
stanford.edu/~1lmthang/morphoNLM/.

*http://research.microsoft.com/en—-us/
um/people/gzweig/Pubs/myz_naacll3_
test_set.tgz; http://www.fit.vutbr.cz/
~imikolov/rnnlm/word-test.vl.txt

5The code is available at https://github.com/
karlstratos/singular.
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Configuration 500 dimensions 1000 dimensions
Transform (¢) | Scale (s) || AVG-SIM SYN MIXED | AVG-SIM SYN MIXED

— — 0.514 31.58  28.39 0.522 29.84 3215
sqrt — 0.656 60.77  65.84 0.646 5746  64.97
log — 0.669 59.28  66.86 0.672 55.66  68.62
— reg 0.530 29.61  36.90 0.562 3278  37.65
sqrt reg 0.625 6397 67.30 0.638 6598 70.04
— ppmi 0.638 41.62  58.80 0.665 47.11  65.34
sqrt cca 0.678 66.40 74.73 0.690 65.14  77.70

Table 2: Performance of various spectral methods on the development portion of data.

Transform (¢) | AVG-SIM SYN MIXED
— 0.572 39.68 57.64
log 0.675 55.61 69.26
two-thirds 0.650 60.52  74.00
sqrt 0.690 65.14 77.70

Table 1: Performance of CCA (1000 dimensions)
on the development portion of data with different
data transformation methods (o = 0.75, 3 = 0).

as a held-out portion for development and use the
other half for final evaluation.

7.1.1 Effect of data transformation for CCA

We first look at the effect of different data trans-
formations on the performance of CCA. Table 1
shows the result on the development portion with
1000-dimensional embeddings. We see that with-
out any transformation, the performance can be
quite bad—especially in word analogy. But there
is a marked improvement upon transforming the
data. Moreover, the square-root transformation
gives the best result, improving the accuracy on
the two analogy datasets by 25.46% and 20.06%
in absolute magnitude. This aligns with the dis-
cussion in Section 4.3.

7.1.2 Comparison among different spectral
embeddings

Next, we look at the performance of various com-
binations in the template in Figure 2. We smooth
the context distribution with o = 0.75 for PPMI
and CCA. We use 8 = 0.5 for PPMI (which has
a minor improvement over = (0) and § = 0 for
all other methods. We generally find that using
B = 0 is critical to obtaining good performance
for s € {—,reg}.

Table 2 shows the result on the development
portion for both 500 and 1000 dimensions. Even

without any scaling, SVD performs reasonably
well with the square-root and log transformations.
The regression scaling performs very poorly with-
out data transformation, but once the square-root
transformation is applied it performs quite well
(especially in analogy questions). The PPMI scal-
ing achieves good performance in word similarity
but not in word analogy. The CCA scaling, com-
bined with the square-root transformation, gives
the best overall performance. In particular, it per-
forms better than all other methods in mixed anal-
ogy questions by a significant margin.

7.1.3 Comparison with other embedding
methods

We compare spectral embedding methods against
WORD2VEC and GLOVE on the test portion. We
use the following combinations based on their per-
formance on the development portion:

e LOG: log transform, — scaling

o REG: sqrt transform, reg scaling
o PPMI: — transform, ppmi scaling
o CCA: sqrt transform, cca scaling

For WORD2VEC, there are two model options:
continuous bag-of-words (CBOW) and skip-gram
(SKIP). Table 3 shows the result for both 500 and
1000 dimensions.

In word similarity, spectral methods generally
excel, with CCA consistently performing the best.
SKIP is the only external package that performs
comparably, with GLOVE and CBOW falling be-
hind. In word analogy, REG and CCA are signifi-
cantly better than other spectral methods. They are
also competitive to GLOVE and CBOW, but SKIP
does perform the best among all compared meth-
ods on (especially syntactic) analogy questions.
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Method 500 dimensions 1000 dimensions
AVG-SIM SYN MIXED | AVG-SIM SYN MIXED
Spectral LOG 0.652 59.52  67.27 0.635 56.53  68.67
REG 0.602 65.51 67.88 0.609 66.47 7048
PPMI 0.628 43.81 58.38 0.637 48.99  63.82
CCA 0.655 68.38 74.17 0.650 66.08  76.38
Others GLOVE 0.576 68.30  78.08 0.586 67.40 78.73
CBOW 0.597 75.79  73.60 0.509 70.97  60.12
SKIP 0.642 81.08 78.73 0.641 7998 83.35

Table 3: Performance of different word embedding methods on the test portion of data. See the main text

for the configuration details of spectral methods.

7.2 As features in a supervised task

Finally, we use word embeddings as features in
NER and compare the subsequent improvements
between various embedding methods. The ex-
perimental setting is identical to that of Stratos
et al. (2014). We use the Reuters RCV1 cor-
pus which contains 205 million words. With fre-
quency thresholding, we end up with a vocabu-
lary of size around 301k. We derive LOG, REG,
PPMI, and CCA embeddings as described in Sec-
tion 7.1.3, and GLOVE, CBOW, and SKIP em-
beddings again with the recommended default set-
tings. The number of left/right contexts is 2 for all
methods. For comparison, we also derived 1000
Brown clusters (BROWN) on the same vocabu-
lary and used the resulting bit strings as features
(Brown et al., 1992).

Table 4 shows the result for both 30 and 50 di-
mensions. In general, using any of these lexical
features provides substantial improvements over
the baseline.® In particular, the 30-dimensional
CCA embeddings improve the F1 score by 2.84
on the development portion and by 4.88 on the
test portion. All spectral methods perform com-
petitively with external packages, with CCA and
SKIP consistently delivering the biggest improve-
ments on the development portion.

8 Conclusion

In this work, we revisited SVD-based methods
for inducing word embeddings. We examined
a framework provided by CCA and showed that
the resulting word embeddings can be viewed as
cluster-revealing parameters of a certain model
and that this result is robust to data transformation.

5We mention that the well-known dev/test discrepancy in

the CoNLL 2003 dataset makes the results on the test portion
less reliable.

Features || 30 dimensions | 50 dimensions
Dev Test Dev Test
— 90.04 84.40 | 90.04 84.40
BROWN || 9249 88.75 | 92.49 88.75
LOG 9227 88.87 | 92.91 89.67
REG 92.51 88.08 | 92.73 88.88
PPMI 92.25 89.27 | 92.53 89.37
CCA 92.88 89.28 | 92.94 89.01
GLOVE || 9149 87.16 | 91.58 86.80
CBOW || 9244 88.34 | 92.83 89.21
SKIP 92.63 88.78 | 93.11 89.32

Table 4: NER F1 scores when word embeddings
are added as features to the baseline (—).

Our proposed method gives the best result among
spectral methods and is competitive to other pop-
ular word embedding techniques.

This work suggests many directions for fu-
ture work. Past spectral methods that involved
CCA without data transformation (e.g., Cohen et
al. (2013)) may be revisited with the square-root
transformation. Using CCA to induce representa-
tions other than word embeddings is another im-
portant future work. It would also be interesting
to formally investigate the theoretical merits and
algorithmic possibility of solving the variance-
weighted objective in Eq. (6). Even though the
objective is hard to optimize in the worst case, it
may be tractable under natural conditions.
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A Proof of Theorem 4.1

We first define some random variables. Let p be
the number of left/right context words to consider
in CCA. Let (W1, ..., Wy) € [n]" be a random
sequence of words drawn from the Brown model
where N > 2p + 1, along with the correspond-
ing sequence of hidden states (Hi,...,Hy) €
[m]". Independently, pick a position I € [p +
1, N — p]| uniformly at random; pick an integer
J € [=p,p]\{0} uniformly at random. Define
B e R y,v € R", # € R”, and T € R™*™
as follows:

Bye:=PW;=w,Wryy=c¢) Yw,cé€ [n]
Uy = P(Wr = w) Yw € [n]
Ve = P(Wiryy =c) Ve € [n]
7y := P(Hy = h) Vh € [m]
T := P(Hyyy = W|Hr =h) Yh,h € [m]

First, we show that Q{® has a particular structure
under the Brown assumption. For the choice of
positive vector s € R™ in the theorem, we define
sp= (02, o(w|h)™) ™12 for all h € [m)].
Lemma A.1. Q%) = A©T where © € R"*™ has
rank m and A € R™™ is defined as:

A := diag(O7)~Y20' diag(7)**diag(s)

Proof. Let O := OT. Tt can be algebraically
verified that B = Odiag(7)O", u = O, and
v = O7. By Assumption 4.1, each entry of B{®
has the form

a

E Ow,h X Tp X Oc,h

he[m]
= (Ow,H(w) X 'ﬁ-'H(w) X Oc,'H(w))

= O H(w) X T(w) X O m(w)
= Z Ogpp X Ty X Og,h

he[m)|

Thus B{* = 0@ diag(7)*(O'®)T. Therefore,

Qi = (diag(u)_l/QBdiag(v)_1/2)<a>
= diag(u) "2 B diag(v) /2
= diag(O7)~ %20 diag(7)*/*diag(s)
diag(s)~ 'diag(7)¥2(0'*) " diag(O7)~*/?

This gives the desired result. O

Next, we show that the left component of Q{®
is in fact the emission matrix O up to (nonzero)
scaling and is furthermore orthonormal.

Lemma A.2. The matrix A in Lemma A.1 has the
expression A = 0'%?)diag(s) and has orthonor-
mal columns.

Proof. By Assumption 4.1, each entry of A is sim-
plified as follows:

o(w|h)® x 7 x s,
o(w|H(w))¥/2 x 7/

H(w)
= o(w|h)*? x s,

Aw,h =

This proves the first part of the lemma. Note that:

2 a : /
T I X Y polwlh)® ifh=h
(A" Alpe = { 0 otherwise

Imxm- [

Proof of Theorem 4.1. With Lemma A.1 and A.2,
the proof is similar to the proof of Theorem 5.1 in
Stratos et al. (2014). ]

Thus our choice of s gives AT A =
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