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Abstract
Existing methods for Japanese predicate
argument structure (PAS) analysis identify
case arguments of each predicate without
considering interactions between the tar-
get PAS and others in a sentence. How-
ever, the argument structures of the pred-
icates in a sentence are semantically re-
lated to each other. This paper proposes
new methods for Japanese PAS analysis
to jointly identify case arguments of all
predicates in a sentence by (1) modeling
multiple PAS interactions with a bipar-
tite graph and (2) approximately search-
ing optimal PAS combinations. Perform-
ing experiments on the NAIST Text Cor-
pus, we demonstrate that our joint analysis
methods substantially outperform a strong
baseline and are comparable to previous
work.

1 Introduction

Predicate argument structure (PAS) analysis is a
shallow semantic parsing task that identifies ba-
sic semantic units of a sentence, such as who does
what to whom, which is similar to semantic role
labeling (SRL)1.

In Japanese PAS analysis, one of the most prob-
lematic issues is that arguments are often omitted
in the surface form, resulting in so-called zero-
pronouns. Consider the sentence of Figure 1.

1We use “PAS analysis” in this paper following previous
work on Japanese PAS analysis.

Figure 1: An example of Japanese PAS. The En-
glish translation is “Because ϕi caught a cold, Ii
skipped school.”. The upper edges are dependency
relations, and the under edges are case arguments.
“NOM” and “ACC” represents the nominative and
accusative arguments, respectively. “ϕi” is a zero-
pronoun, referring to the antecedent “watashii”.

The case role label “NOM” and “ACC” respec-
tively represents the nominative and accusative
roles, and ϕi represents a zero-pronoun. There
are two predicates “hiita (caught)” and “yasunda
(skipped)”. For the predicate “yasunda (skipped)”,
“watashii-wa (Ii)” is the “skipper”, and “gakko-wo
(school)” is the “entity skipped”. It is easy to iden-
tify these arguments, since syntactic dependency
between an argument and its predicate is a strong
clue. On the other hand, the nominative argument
of the predicate “hiita (caught)” is “watashii-wa
(Ii)”, and this identification is more difficult be-
cause of the lack of the direct syntactic depen-
dency with “hiita (caught)”. The original nomina-
tive argument appears as a zero-pronoun, so that
we have to explore the antecedent, an element re-
ferred to by a zero-pronoun, as the argument. As
the example sentence shows, we cannot use ef-
fective syntactic information for identifying such
arguments. This type of arguments is known as
implicit arguments, a very problematic language
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phenomenon for PAS analysis (Gerber and Chai,
2010; Laparra and Rigau, 2013).

Previous work on Japanese PAS analysis at-
tempted to solve this problem by identifying argu-
ments per predicate without considering interac-
tions between multiple predicates and arguments
(Taira et al., 2008; Imamura et al., 2009). How-
ever, implicit arguments are likely to be shared
by semantically-related predicates. In the above
example (Figure 1), the implicit argument of the
predicate “hiita (caught)” is shared by the other
predicate “yasunda (skipped)” as its nominative
argument “watashii (Ii)”.

Based on this intuition, we propose methods to
jointly identify optimal case arguments of all pred-
icates in a sentence taking their interactions into
account. We represent the interactions as a bipar-
tite graph that covers all predicates and candidate
arguments in a sentence, and factorize the whole
relation into the second-order relations. This in-
teraction modeling results in a hard combinatorial
problem because it is required to select the optimal
PAS combination from all possible PAS combina-
tions in a sentence. To solve this issue, we extend
the randomized hill-climbing algorithm (Zhang et
al., 2014) to search all possible PAS in the space
of bipartite graphs.

We perform experiments on the NAIST Text
Corpus (Iida et al., 2007), a standard bench-
mark for Japanese PAS analysis. Experimental
results show that compared with a strong base-
line, our methods achieve an improvement of
1.0-1.2 points in F-measure for total case argu-
ment identification, and especially improve per-
formance for implicit argument identification by
2.0-2.5 points. In addition, although we exploit no
external resources, we get comparable results to
previous work exploiting large-scale external re-
sources (Taira et al., 2008; Imamura et al., 2009;
Sasano and Kurohashi, 2011). These results sug-
gest that there is potential for more improvement
by adding external resources.

The main contributions of this work are: (1) We
present new methods to jointly identify case ar-
guments of all predicates in a sentence. (2) We
propose global feature templates that capture inter-
actions over multiple PAS. (3) Performing experi-
ments on the NAIST Text Corpus, we demonstrate
our methods are superior to a strong baseline and
comparable to the methods of representative pre-
vious work.

2 Japanese Predicate Argument
Structure Analysis

2.1 Task Overview
In Japanese PAS analysis, we identify arguments
taking part in the three major case roles, nomina-
tive (NOM), accusative (ACC) and dative (DAT)
cases, for each predicate. Case arguments can be
divided into three categories according to the posi-
tions relative to their predicates (Hayashibe et al.,
2011):

Dep: The arguments that have direct syntactic de-
pendency with the predicate.

Zero: The implicit arguments whose antecedents
appear in the same sentence and have no di-
rect syntactic dependency with the predicate.

Inter-Zero: The implicit arguments whose an-
tecedents do not appear in the same sentence.

For example, in Figure 1, the accusative argu-
ment “gakko-wo (school)” of the predicate “ya-
sunda (skipped)” is regarded as Dep, and the
nominative argument “watashii-wa (I)” (the an-
tecedent of zero-pronoun “ϕi”) of the predicate
“hiita (caught)” is Zero.

In this paper, we focus on the analysis for intra-
sentential arguments (Dep and Zero). In order to
identify inter-sentential arguments (Inter-Zero), it
is required to search a much broader space, such
as the whole document, resulting in a much harder
analysis than intra-sentential arguments.2 There-
fore, we believe that quite different approaches are
necessary to realize an inter-sentential PAS analy-
sis with high accuracy, and leave it for future work.

2.2 Related Work
For Japanese PAS analysis research, the NAIST
Text Corpus has been used as a standard bench-
mark (Iida et al., 2007). One of the representa-
tive researches using the NAIST Text Corpus is
Imamura et al. (2009). They built three distinct
models corresponding to the three case roles by
extracting features defined on each pair of a predi-
cate and a candidate argument. Using each model,
they select the best candidate argument for each
case per predicate. Their models are based on
maximum entropy model and can easily incorpo-
rate various features, resulting in high accuracy.

2Around 10-20% in F measure has been achieved in pre-
vious work (Taira et al., 2008; Imamura et al., 2009; Sasano
and Kurohashi, 2011).
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Figure 2: Intuitive image of a predicate-argument
graph. This graph is factorized into the local and
global features. The different line color/style indi-
cate different cases.

While in Imamura et al. (2009) one case ar-
gument is identified at a time per predicate, the
method proposed by Sasano and Kurohashi (2011)
simultaneously determines all the three case argu-
ments per predicate by exploiting large-scale case
frames obtained from large raw texts. They fo-
cus on identification of implicit arguments (Zero
and Inter-Zero), and achieves comparable results
to Imamura et al. (2009).

In these approaches, case arguments were iden-
tified per predicate without considering interac-
tions between multiple predicates and candidate
arguments in a sentence. In the semantic role la-
beling (SRL) task, Yang and Zong (2014) pointed
out that information of different predicates and
their candidate arguments could help each other
for identifying arguments taking part in semantic
roles. They exploited a reranking method to cap-
ture the interactions between multiple predicates
and candidate arguments, and jointly determine ar-
gument structures of all predicates in a sentence
(Yang and Zong, 2014). In this paper, we propose
new joint analysis methods for identifying case ar-
guments of all predicates in a sentence capturing
interactions between multiple predicates and can-
didate arguments.

3 Graph-Based Joint Models

3.1 A Predicate-Argument Graph

We define predicate argument relations by exploit-
ing a bipartite graph, illustrated in Figure 2. The
nodes of the graph consist of two disjoint sets: the
left one is a set of candidate arguments and the
right one is a set of predicates. In this paper, we
call it a predicate-argument (PA) graph.

Each predicate node has three distinct edges
corresponding to nominative (NOM), accusative
(ACC), and dative (DAT) cases. Each edge with
a case role label joins a candidate argument node
with a predicate node, which represents a case ar-
gument of a predicate. For instance, in Figure 2
a1 is the nominative argument of p1, and a3 is the
accusative argument of p2.

Formally, a PA graph is a bipartite graph
⟨A,P,E⟩, where A is the node set consisting of
candidate arguments, P the node set consisting of
predicates, and E the set of edges subject to that
there is exactly one edge e with a case role label c
outgoing from each of the predicate nodes p to a
candidate argument node a. A PA graph is defined
as follows:

A = {a1, ..., an, an+1 = NULL}
P = {p1, ..., pm}
E = {⟨a, p, c⟩ | deg(p, c) = 1,

∀a ∈ A, ∀p ∈ P, ∀c ∈ C }
where deg(p, c) is the number of edges with a case
role c outgoing from p, and C is the case role label
set. We add a dummy node an+1, which is defined
for the cases where the predicate requires no case
argument or the required case argument does not
appear in the sentence. An edge e ∈ E is repre-
sented by a tuple ⟨a, p, c⟩, indicating the edge with
a case role c joining a candidate argument node a
and a predicate node p. An admissible PA graph
satisfies the constraint deg(p, c) = 1, representing
that each predicate node p has only one edge with
a case role c.

To identify the whole PAS for a sentence x, we
predict the PA graph with an edge set correspond-
ing to the correct PAS from the admissible PA
graph set G(x) based on a score associated with
a PA graph y as follows:

ỹ = argmax
y∈G(x)

Score(x, y)

A scoring function Score(x, y) receives a sen-
tence x and a candidate graph y as its input, and
returns a scalar value.

In this paper, we propose two scoring functions
as analysis models based on different assumptions:
(1) Per-Case Joint Model assumes the interac-
tion between multiple predicates (predicate inter-
action) and the independence between case roles,
and (2) All-Cases Joint Model assumes the in-
teraction between case roles (case interaction) as
well as the predicate interaction.
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3.2 Per-Case Joint Model

Per-Case Joint Model assumes that different case
roles are independent from each other. However,
for each case, interactions between multiple pred-
icates are considered jointly.

We define the score of a PA graph y to be the
sum of the scores for each case role c of the set of
the case roles C:

Scoreper(x, y) =
∑
c∈C

Scorec(x, y) (1)

The scores for each case role are defined as the dot
products between a weight vector θc and a feature
vector ϕc(x,E(y, c)):

Scorec(x, y) = θc · ϕc(x, E(y, c)) (2)

where E(y, c) is the edge set associated with a
case role c in the candidate graph y, and the feature
vector is defined on the edge set.

The edge set E(y, c) in the equation (2) is uti-
lized for the two types of features, the local fea-
tures and global features, inspired by (Huang,
2008), defined as follows:

θc · ϕc(x,E(y, c)) =∑
e∈E(y,c)

θc ϕl(x, e) + θc ϕg(x, E(y, c)) (3)

where ϕl(x, e) denotes the local feature vector,
and ϕg(x,E(y, c)) the global feature vector. The
local feature vector ϕl(x, e) is defined on each
edge e in the edge set E(y, c) and a sentence x,
which captures a predicate-argument pair. Con-
sider the example of Figure 2. For Per-Case Joint
Model, we use edges, ea1p1 , ea1p2 , and ea2p3 , as
local features to compute the score of the edge set
with the nominative case.

In addition, the global feature vector
ϕg(x,E(y, c)) is defined on the edge set
E(y, c), and enables the model to utilize lin-
guistically richer information over multiple
predicate-argument pairs. In this paper, we
exploit second-order relations, similar to the
second-order edge factorization of dependency
trees (McDonald and Pereira, 2006). We make a
set of edge pairs Epair by combining two edges
ei, ej in the edge set E(y, c), as follows:

Epair = { {ei, ej} | ∀ei, ej ∈ E(y, c), ei ̸= ej }

For instance, in the PA graph in Figure 2, to com-
pute the score of the nominative arguments, we
make three edge pairs:

{{ea1p1 , ea1p2}, {ea1p1 , ea2p3}, {ea1p2 , ea2p3}}
Then, features are extracted from these edge pairs
and utilized for the score computation. For the
accusative and dative cases, their scores are com-
puted in the same manner. Then, we obtain the
resulting score of the PA graph by summing up
the scores of the local and global features. If we
do not consider the global features, the model re-
duces to a per-case local model similar to previous
work (Imamura et al., 2009).

3.3 All-Cases Joint Model
While Per-Case Joint Model assumes the predi-
cate interaction with the independence between
case roles, All-Cases Joint Model assumes the
case interaction together with the predicate inter-
action. Our graph-based formulation is very flex-
ible and easily enables the extension of Per-Case
Joint Model to All-Cases Joint Model. Therefore,
we extend Per-Case Joint Model to All-Cases Joint
Model to capture the interactions between predi-
cates and all case arguments in a sentence.

We define the score of a PA graph y based on
the local and global features as follows:

Scoreall(x, y) =∑
e∈E(y)

θ · ϕl(x, e) + θ · ϕg(x,E(y)) (4)

where E(y) is the edge set associated with all the
case roles on the candidate graph y, ϕl(x, e) is the
local feature vector defined on each edge e in the
edge set E(y), and ϕg(x,E(y)) is the global fea-
ture vector defined on the edge set E(y).

Consider the PA graph in Figure 2. The local
features are extracted from each edge:

Nominative : ea1p1 , ea1p2 , ea2p3

Accusative : ea2p1 , ea3p2 , ea3p3

Dative : ea3p1 , ea4p2 , ea4p3

For the global features, we make a set of edge
pairs Epair by combining two edges ei, ej in the
edge set E(y), like Per-Case Joint Model. How-
ever, in the All-Cases Joint Model, the global fea-
tures may involve different cases (i.e. mixing
edges with different case roles). For the PA graph
in Figure 2, we make the edge pairs {ea1p1 , ea2p1},
{ea3p1 , ea1p2}, {ea3p2 , ea4p3}, and so on. From
these edge pairs, we extract information as global
features to compute a graph score.
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Structure Name Description
Diff-Arg PAIR ⟨ pi.rf ◦ pj .rf ◦ pi.vo ◦ pj .vo ⟩,

⟨ ai.ax ◦ ai.rp ◦ pi.ax ◦ pi.vo ⟩, ⟨ aj .ax ◦ aj .rp ◦ pj .ax ◦ pj .vo ⟩
TRIANGLE ⟨ ai.ax ◦ ai.ax ◦ ai.rp ◦ aj .rp ◦ pi.ax ◦ pi.vo ⟩,

⟨ ai.ax ◦ aj .ax ◦ ai.rp ◦ aj .rp ◦ pj .ax ◦ pj .vo ⟩,
QUAD ⟨ ai.ax ◦ aj .ax ◦ ai.rp ◦ aj .rp ◦ pi.vo ◦ pj .vo ⟩

⟨ ai.ax ◦ aj .ax ◦ pi.ax ◦ pj .ax ◦ ai.rp ◦ aj .rp ◦ pi.vo ◦ pj .vo ⟩
⟨ ai.ax ◦ aj .ax ◦ pi.rf ◦ pj .rf ◦ ai.rp ◦ ai.rp ◦ pi.vo ◦ pi.vo ⟩

Co-Arg BI-PREDS ⟨ ai.rp ◦ pi.rf ◦ pj .rf ⟩,
⟨ ai.ax ◦ ai.rp ◦ pi.rf ◦ pj .rf ⟩

DEP-REL ⟨ ai.ax ◦ ai.rp ◦ pi.ax ◦ pj .ax ◦ pi.vo ◦ pj .vo ◦ (x, y).dep ⟩
if x depends on y for x,y in (pi,pj), (ai,pi), (ai,pj), (pi,ai), (pj ,ai)

Table 1: Global feature templates. pi, pj is a predicate, ai is the argument connected with pi, and
aj is the argument connected with pj . Feature conjunction is indicated by ◦; ax=auxiliary, rp=relative
position, vo=voice, rf=regular form, dep=dependency. All the features are conjoined with the relative
position and the case role labels of the two predicates.

4 Global Features

Features are extracted based on feature tem-
plates, which are functions that draw information
from the given entity. For instance, one feature
template ϕ100 = a.ax ◦ p.vo is a conjunction of
two atomic features a.ax and p.vo, representing an
auxiliary word attached to a candidate argument
(a.ax) and the voice of a predicate (p.vo). We
design several feature templates for characterizing
each specific PA graph. Consider the PA graph
constructed from the sentence in Figure 1, and a
candidate argument “kaze-wo (a cold)” and a pred-
icate “hiita (caught)” are connected with an edge.
To characterize the graph, we draw some linguis-
tic information associated with the edge. Since the
auxiliary word attached to the candidate argument
is “wo” and the voice of the predicate is “active”,
the above feature template ϕ100 will generate a
feature instance as follows.

(a.ax = wo) ◦ (p.vo = active)
Such features are utilized for the local and global
features in the joint models.

We propose the global feature templates that
capture multiple PAS interactions based on the
Diff-Arg and Co-Arg structures, depicted in the
right part of Figure 1. The Diff-Arg structure rep-
resents that the two predicates have different can-
didate arguments, and the Co-Arg structure repre-
sents that the two predicates share the same can-
didate argument. Based on these structures, we
define the global feature templates that receive a
pair of edges in a PA graph as input and return a
feature vector, shown in Table 1.

4.1 Diff-Arg Features

The feature templates based on the Diff-Arg struc-
ture are three types: PAIR (a pair of predicate-
argument relation), TRIANGLE (a predicate and
its two arguments relation), and QUAD (two
predicate-argument relations).

PAIR These feature templates denote where the
target argument is located relative to another argu-
ment and the two predicates in the Diff-Arg struc-
ture. We combine the relative position information
(rp) with the auxiliary words (ax) and the voice of
the two predicates (vo).

TRIANGLE This type of feature templates cap-
tures the interactions between three elements: two
candidate arguments and a predicate. Like the
PAIR feature templates, we encode the relative po-
sition information of two candidate arguments and
a predicate with the auxiliary words and voice.

QUAD When we judge if a candidate argu-
ment takes part in a case role of a predicate, it
would be beneficial to grasp information of an-
other predicate-argument pair. The QUAD fea-
ture templates capture the mutual relation between
four elements: two candidate arguments and pred-
icates. We encode the relative position informa-
tion, the auxiliary words, and the voice.

4.2 Co-Arg Features

To identify predicates that take implicit (Zero) ar-
guments, we set two feature types, BI-PREDS and
DEP-REL, based on the Co-Arg structure.

BI-PREDS For identifying an implicit argu-
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Input: the set of cases to be analyzed C,
parameter θc, sentence x

Output: a locally optimal PA graph ỹ

1: Sample a PA graph y(0) from G(x)
2: t← 0
3: for each case c ∈ C do
4: repeat
5: Yc ← NeighborG(y(t), c) ∪ y(t)

6: y(t+1) ← argmax
y∈Yc

θc · ϕc(x,E(y, c))

7: t← t + 1
8: until y(t) = y(t+1)

9: end for
10: return ỹ ← y(t)

Figure 3: Hill-Climbing for Per-Case Joint Model

Input: the set of cases to be analyzed C,
parameter θ, sentence x

Output: a locally optimal PA graph ỹ

1: Sample a PA graph y(0) from G(x)
2: t← 0
3: repeat
4: Y ← NeighborG(y(t)) ∪ y(t)

5: y(t+1) ← argmax
y∈Y

θ · ϕ(x,E(y))

6: t← t + 1
7: until y(t) = y(t+1)

8: return ỹ ← y(t)

Figure 4: Hill-Climbing for All-Cases Joint Model

ment of a predicate, information of another
semantically-related predicate in the sentence
could be effective. We utilize bi-grams of the reg-
ular forms (rf) of the two predicates in the Co-Arg
structure to capture the predicates that are likely to
share the same argument in the sentence.

DEP-REL We set five distinct feature templates
to capture dependency relations (dep) between the
shared argument and the two predicates. If two
elements have a direct dependency relation, we
encode its dependency relation with the auxiliary
words and the voice.

5 Inference and Training

5.1 Inference for the Joint Models

Global features make the inference of finding the
maximum scoring PA graph more difficult. For
searching the graph with the highest score, we pro-

pose two greedy search algorithms by extending
the randomized hill-climbing algorithm proposed
in (Zhang et al., 2014), which has been shown to
achieve the state-of-the-art performance in depen-
dency parsing.

Figure 3 describes the pseudo code of our pro-
posed algorithm for Per-Case Joint Model. Firstly,
we set an initial PA graph y(0) sampled uniformly
from the set of admissible PA graphs G(x) (line 1
in Figure 3). Then, the union Yc is constructed
from the set of neighboring graphs with a case
NeighborG(y(t), c), which is a set of admissible
graphs obtained by changing one edge with the
case c in y(t), and the current graph y(t) (line 5).
The current graph y(t) is updated to a higher scor-
ing graph y(t+1) selected from the union Yc (line
6). The algorithm continues until no more score
improvement is possible by changing an edge with
the case c in y(t) (line 8). This repetition is exe-
cuted for other case roles in the same manner. As
a result, we can get a locally optimal graph ỹ.

Figure 4 describes the pseudo code of the algo-
rithm for All-Cases Joint Model. The large part of
the algorithm is the same as that for Per-Case Joint
Model. The difference is that the union Y consists
of the current graph y(t) and the neighboring graph
set obtained by changing one edge in y(t) regard-
less of case roles (line 4 in Figure 4), and that the
iteration process for each case role (line 3 in Fig-
ure 3) is removed. The algorithm also continues
until no more score improvement is possible by
changing an edge in y(t), resulting in a locally op-
timal graph ỹ.

Following Zhang et al. (2014), for a given sen-
tence x, we repeatedly run these algorithms with
K consecutive restarts. Each run starts with initial
graphs randomly sampled from the set of admis-
sible PA graphs G(x), so that we obtain K local
optimal graphs by K restarts. Then the highest
scoring one of K graphs is selected for the sen-
tence x as the result. Each run of the algorithms is
independent from each other, so that multiple runs
are easily executable in parallel.

5.2 Training

Given a training data set D = {(x̂, ŷ)}Ni , the
weight vectors θ (θc) in the scoring functions of
the joint models are estimated by using machine
learning techniques. We adopt averaged percep-
tron (Collins, 2002) with a max-margin technique:
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∀i ∈ {1, ..., N}, y ∈ G(xi),
Score(x̂i, ŷi) ≥ Score(x̂i, y) + ∥ŷi − y∥1 − ξi

where ξi ≥ 0 is the slack variable and ∥ŷi− y∥1 is
the Hamming distance between the gold PA graph
ŷi and a candidate PA graph y of the admissible
PA graphs G(xi). Following Zhang et al. (2014),
we select the highest scoring graph ỹ as follows:

TRAIN : ỹ = argmax
y∈G(x̂i)

{Score(x̂i, y)+∥ŷi−y∥1}
TEST : ỹ = argmax

y∈G(x)
{Score(x, y)}

Using the weight vector tuned by the training, we
perform analysis on a sentence x in the test set.

6 Experiment

6.1 Experimental Settings
Data Set We evaluate our proposed methods on
the NAIST Text Corpus 1.5, which consists of
40,000 sentences of Japanese newspaper text (Iida
et al., 2007). While previous work has adopted
the version 1.4 beta, we adopt the latest version.
The major difference between version 1.4 beta and
1.5 is revision of dative case (corresponding to
Japanese case particle “ni”). In 1.4 beta, most of
adjunct usages of “ni” are mixed up with the argu-
ment usages of “ni”, making the identification of
dative cases seemingly easy. Therefore, our results
are not directly comparable with previous work.

We adopt standard train/dev/test split (Taira et
al., 2008) as follows:

Train Articles: Jan 1-11, Editorials: Jan-Aug
Dev Articles: Jan 12-13, Editorials: Sept
Test Articles: Jan 14-17, Editorials: Oct-Dec

We exclude inter-sentential arguments (Inter-
Zero) in our experiments. Our features make use
of the annotated POS tags, phrase boundaries, and
dependency relations annotated in the NAIST Text
Corpus. We do not use any external resources.

Baseline We adopt the pointwise method (using
only local features) proposed by Imamura et al.
(2009) as the baseline. They built three distinct
models corresponding to the three case roles. By
using each model, they estimate the likelihood that
each candidate argument plays a case role of the
target predicate as a score, and independently se-
lect the highest scoring one per predicate.

feature Dep Zero Total
PC Joint local 84.59 42.55 77.89

+ global 85.51 44.54 78.85
AC Joint local 84.17 41.33 77.43

+ global 85.92 44.45 79.17

Table 2: Global vs Local features on the develop-
ment sets in F-measures. “PC Joint” denotes the
Per-Case Joint Model, and “AC Joint” denotes the
All-Cases Joint Model.

Features The baseline utilizes the Baseline Fea-
tures used in Imamura et al. (2009) and Grammat-
ical features used in Hayashibe et al. (2009), as
the “Local Features”. In addition, the joint models
utilize the “Global Features” in Table 1.

Implementation Details For our joint models
with hill-climbing, we report the average per-
formance across ten independent runs with 10
restarts, which almost reaches convergence 3. We
train the baseline and our joint models for 20 iter-
ations with averaged perceptron.

6.2 Results

Local Features vs Global Features
Table 2 shows the effectiveness of the global fea-
tures on the development sets. We incrementally
add the global features to the both models that uti-
lize only the local features. The results show that
the global features improve the performance by
about 1.0 point in F-measures in total. For and
are particularly beneficial to the implicit (Zero)
argument identification (an improvement of 1.99
points in Per-Case Joint Model and 3.12 points in
All-Cases Joint Model).

Pointwise Methods vs Joint Methods
Table 3 presents the F-measures of the baseline
and our joint methods on the test set of the NAIST
Text Corpus. We used the bootstrap resampling
method as the significance test. In most of the met-
rics, our proposed joint methods outperform the
baseline pointwise method. Note that since Per-
Case Joint Model yields better results compared
with the baseline, capturing the predicate inter-
action is beneficial to Japanese PAS analysis. In
addition, the joint methods achieve a considerable
improvement of 2.0-2.5 points in F-measure for

3Performance did not change when increasing the number
of restarts
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Case Type # of Args. Baseline PC Joint AC Joint
NOM Dep 14055 86.50 87.54 † 88.13 † ‡

Zero 4935 45.56 47.62 48.11
Total 18990 77.31 78.39 † 79.03 † ‡

ACC Dep 9473 92.84 ⋆ 93.09 † ⋆ 92.74
Zero 833 21.38 22.73 24.43
Total 10306 88.86 ⋆ 89.00 † ⋆ 88.47

DAT Dep 2518 30.97 34.29 † 38.39 † ‡
Zero 239 0.83 0.83 4.80
Total 2757 29.02 32.20 † 36.35 † ‡

ALL Dep 26046 85.06 85.79 † 86.07 † ‡
Zero 6007 41.65 43.60 44.09
Total 32053 78.15 78.91 † 79.23 † ‡

Table 3: F-measures of the three methods in the test sets. The bold values denote the highest F-measures
among all the three methods. Statistical significance with p < 0.05 is marked with † compared with
Baseline, ‡ compared with PC Joint, and ⋆ compared with AC Joint.

Dep Zero
NOM ACC DAT NOM ACC DAT

TA08 75.53 88.20 89.51 30.15 11.41 3.66
IM09 87.0 93.9 80.8 50.0 30.8 0.0

S&K11 - - - 39.5 17.5 8.9
PC Joint 87.54 93.09 34.19 47.62 22.73 0.83
AC Joint 88.13 92.74 38.39 48.11 24.44 4.80

Table 4: Comparison with previous work using the NAIST Text Corpus in F-measure. TA08 is Taira et
al. (2008), IM09 is Imamura et al. (2009), and S&K11 is Sasano & Kurohashi (2011). Their results are
not directly comparable to ours since they use external resources and the NAIST Text Corpus 1.4 beta.

the implicit arguments (Zero), one of the problem-
atic issues in Japanese PAS analysis.

Comparing the joint methods, each of our two
joint methods is effective for a different case role.
Per-Case Joint Model is better at the ACC case,
and All-Cases Joint Model is better at the NOM
and DAT cases. One of the possible explanations is
that the distribution of ACC cases is different from
NOM cases. While the ratio of Dep and Zero argu-
ments for ACC cases is 90:10, the ratio for NOM
cases is 75:25. This might have some negative
effects on the ACC case identification with All-
Cases Joint Model. However, in total, All-Cases
Joint Model achieves significantly better results.
This suggests that capturing case interactions im-
proves performance of Japanese PAS analysis.

Existing Methods vs Joint Methods
To compare our proposed methods with previous
work, we pick the three pieces of representative
previous work exploiting the NAIST Text Cor-

pus: Taira et al. (2008) (TA08), Imamura et al.
(2009) (IM09), and Sasano and Kurohashi (2011)
(S&K11). Sasano and Kurohashi (2011) focus on
the analysis for the Zero and Inter-Zero arguments,
and do not report the results on the Dep arguments.
With respect to the Dep arguments, the All-Cases
Joint Model achieves the best result for the NOM
cases, Imamura et al. (2009) the best for the ACC
cases, and Taira et al. (2008) the best for the DAT
cases. In terms of the Zero arguments, Imamura
et al. (2009) is the best for the NOM and ACC
cases, and Sasano and Kurohashi (2011) the best
for the DAT cases. Our joint methods achieve high
performance comparable to Imamura et al. (2009).

However, because they used additional exter-
nal resources and a different version of the NAIST
Text Corpus, the results of previous work are not
directly comparable to ours. Our research direc-
tion and contributions are orthogonal to theirs, and
adding their external resources could potentially
leads to much better results.
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7 Conclusion

We have presented joint methods for Japanese PAS
analysis, which model interactions between mul-
tiple predicates and arguments using a bipartite
graph and greedily search the optimal PAS combi-
nation in a sentence. Experimental results shows
that capturing the predicate interaction and case
interaction is effective for Japanese PAS analy-
sis. In particular, implicit (Zero) argument identi-
fication, one of the problematic issues in Japanese
PAS analysis, is improved by taking such interac-
tions into account. Since this framework is appli-
cable to the argument classification in SRL, apply-
ing our methods to that task is an interesting line
of the future research. In addition, the final results
of our joint methods are comparable to represen-
tative existing methods despite using no external
resources. For future work, we plan to incorporate
external resources for our joint methods.
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