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Abstract

Continuous space word embeddings
learned from large, unstructured corpora
have been shown to be effective at cap-
turing semantic regularities in language.
In this paper we replace LDA’s param-
eterization of “topics” as categorical
distributions over opaque word types with
multivariate Gaussian distributions on
the embedding space. This encourages
the model to group words that are a
priori known to be semantically related
into topics. To perform inference, we
introduce a fast collapsed Gibbs sampling
algorithm based on Cholesky decom-
positions of covariance matrices of the
posterior predictive distributions. We fur-
ther derive a scalable algorithm that draws
samples from stale posterior predictive
distributions and corrects them with a
Metropolis—Hastings step. Using vectors
learned from a domain-general corpus
(English Wikipedia), we report results on
two document collections (20-newsgroups
and NIPS). Qualitatively, Gaussian LDA
infers different (but still very sensible)
topics relative to standard LDA. Quantita-
tively, our technique outperforms existing
models at dealing with OOV words in
held-out documents.

1 Introduction

Latent Dirichlet Allocation (LDA) is a Bayesian
technique that is widely used for inferring the
topic structure in corpora of documents. It con-
ceives of a document as a mixture of a small num-
ber of topics, and topics as a (relatively sparse) dis-
tribution over word types (Blei et al., 2003). These
priors are remarkably effective at producing useful

*Both student authors had equal contribution.
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results. However, our intuitions tell us that while
documents may indeed be conceived of as a mix-
ture of topics, we should further expect topics to
be semantically coherent. Indeed, standard human
evaluations of topic modeling performance are de-
signed to elicit assessment of semantic coherence
(Chang et al., 2009; Newman et al., 2009). How-
ever, this prior preference for semantic coherence
is not encoded in the model, and any such obser-
vation of semantic coherence found in the inferred
topic distributions is, in some sense, accidental. In
this paper, we develop a variant of LDA that oper-
ates on continuous space embeddings of words—
rather than word types—to impose a prior expec-
tation for semantic coherence. Our approach re-
places the opaque word types usually modeled in
LDA with continuous space embeddings of these
words, which are generated as draws from a mul-
tivariate Gaussian.

How does this capture our preference for se-
mantic coherence? Word embeddings have been
shown to capture lexico-semantic regularities in
language: words with similar syntactic and seman-
tic properties are found to be close to each other in
the embedding space (Agirre et al., 2009; Mikolov
et al., 2013). Since Gaussian distributions capture
a notion of centrality in space, and semantically
related words are localized in space, our Gaussian
LDA model encodes a prior preference for seman-
tically coherent topics. Our model further has sev-
eral advantages. Traditional LDA assumes a fixed
vocabulary of word types. This modeling assump-
tion drawback as it cannot handle out of vocabu-
lary (OOV) words in “held out” documents. Zhai
and Boyd-Graber (2013) proposed an approach
to address this problem by drawing topics from
a Dirichlet Process with a base distribution over
all possible character strings (i.e., words). While
this model can in principle handle unseen words,
the only bias toward being included in a particular
topic comes from the topic assignments in the rest
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of the document. Our model can exploit the conti-
guity of semantically similar words in the embed-
ding space and can assign high topic probability to
a word which is similar to an existing topical word
even if it has never been seen before.

The main contributions of our paper are as fol-
lows: We propose a new technique for topic mod-
eling by treating the document as a collection of
word embeddings and topics itself as multivari-
ate Gaussian distributions in the embedding space
(83). We explore several strategies for collapsed
Gibbs sampling and derive scalable algorithms,
achieving asymptotic speed-up over the naive im-
plementation (§4). We qualitatively show that
our topics make intuitive sense and quantitatively
demonstrate that our model captures a better rep-
resentation of a document in the topic space by
outperforming other models in a classification task

(85).
2 Background

Before going to the details of our model we pro-
vide some background on two topics relevant to
our work: vector space word embeddings and
LDA.

2.1 Vector Space Semantics

According to the distributional hypothesis (Har-
ris, 1954), words occurring in similar contexts
tend to have similar meaning. This has given
rise to data-driven learning of word vectors that
capture lexical and semantic properties, which is
now a technique of central importance in natu-
ral language processing. These word vectors can
be used for identifying semantically related word
pairs (Turney, 2006; Agirre et al., 2009) or as fea-
tures in downstream text processing applications
(Turian et al., 2010; Guo et al., 2014). Word
vectors can either be constructed using low rank
approximations of cooccurrence statistics (Deer-
wester et al., 1990) or using internal represen-
tations from neural network models of word se-
quences (Collobert and Weston, 2008). We use a
recently popular and fast tool called word2vec!,
to generate skip-gram word embeddings from un-
labeled corpus. In this model, a word is used as
an input to a log-linear classifier with continuous
projection layer and words within a certain win-
dow before and after the words are predicted.

"https://code.google.com/p/word2vec/
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2.2 Latent Dirichlet Allocation (LDA)

LDA (Blei et al., 2003) is a probabilistic topic
model of corpora of documents which seeks to
represent the underlying thematic structure of the
document collection. They have emerged as a
powerful new technique of finding useful structure
in an unstructured collection as it learns distribu-
tions over words. The high probability words in
each distribution gives us a way of understanding
the contents of the corpus at a very high level. In
LDA, each document of the corpus is assumed to
have a distribution over K topics, where the dis-
crete topic distributions are drawn from a symmet-
ric dirichlet distribution. The generative process is
as follows.
1. fork=1to K
(a) Choose topic 3, ~ Dir(n)
2. for each document d in corpus D
(a) Choose a topic distribution 8, ~ Dir(cx)
(b) for each word index n from 1 to Ny
i. Choose a topic =z, ~
Categorical(6,)
ii. Choose word
Categorical(3,, )

As it follows from the definition above, a topic
is a discrete distribution over a fixed vocabulary
of word types. This modeling assumption pre-
cludes new words to be added to topics. However
modeling topics as a continuous distribution over
word embeddings gives us a way to address this
problem. In the next section we describe Gaus-
sian LDA, a straightforward extension of LDA that
replaces categorical distributions over word types
with multivariate Gaussian distributions over the
word embedding space.

Wy, ~

3 Gaussian LDA

As with multinomial LDA, we are interested in
modeling a collection of documents. However,
we assume that rather than consisting of sequences
of word types, documents consist of sequences of
word embeddings. We write v(w) € RM as the
embedding of word of type w or v ; when we are
indexing a vector in a document d at position .
Since our observations are no longer dis-
crete values but continuous vectors in an M-
dimensional space, we characterize each topic k as
a multivariate Gaussian distribution with mean g,
and covariance 3. The choice of a Gaussian pa-
rameterization is justified by both analytic conve-
nience and observations that Euclidean distances
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Figure 1: Sampling equation for the collapsed Gibbs sampler; refer to text for a description of the
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between embeddings correlate with semantic sim-
ilarity (Collobert and Weston, 2008; Turney and
Pantel, 2010; Hermann and Blunsom, 2014). We
place conjugate priors on these values: a Gaus-
sian centered at zero for the mean and an inverse
Wishart distribution for the covariance. As be-
fore, each document is seen as a mixture of top-
ics whose proportions are drawn from a symmetric
Dirichlet prior. The generative process can thus be
summarized as follows:
1. fork=1to K
(a) Draw topic
WL, v)
(b) Draw topic mean 1y, ~ N (p, 134)
2. for each document d in corpus D
(a) Draw topic distribution 84 ~ Dir(cx)
(b) for each word index n from 1 to N
i. Draw a topic z, ~ Categorical(8,)
ii. Draw vy, ~N(p, ,%2,)

This model has previously been proposed for
obtaining indexing representations for audio re-
trieval (Hu et al., 2012). They use variational/EM
method for posterior inference. Although we don’t
do any experiment to compare the running time of
both approaches, the per-iteration computational
complexity is same for both inference methods.
We propose a faster inference technique using
Cholesky decomposition of covariance matrices
which can be applied to both the Gibbs and varia-
tional/EM method. However we are not aware of
any straightforward way of applying the aliasing
trick proposed by (Li et al., 2014) on the varia-
tional/EM method which gave us huge improve-
ment on running time (see Figure 2). Another
work which combines embedding with topic mod-
elsis by (Wan et al., 2012) where they jointly learn
the parameters of a neural network and a topic
model to capture the topic distribution of low di-
mensional representation of images.

covariance X @~

4 Posterior Inference

In our application, we observe documents consist-
ing of word vectors and wish to infer the poste-
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rior distribution over the topic parameters, pro-
portions, and the topic assignments of individual
words. Since there is no analytic form of the poste-
rior, approximations are required. Because of our
choice of conjugate priors for topic parameters and
proportions, these variables can be analytically in-
tegrated out, and we can derive a collapsed Gibbs
sampler that resamples topic assignments to indi-
vidual word vectors, similar to the collapsed sam-
pling scheme proposed by Griffiths and Steyvers
(2004).

The conditional distribution we need for sam-
pling is shown in Figure 1. Here, z_4;) repre-
sents the topic assignments of all word embed-
dings, excluding the one at i position of docu-
ment d; V is the sequence of vectors for docu-
ment d; t,/(x | p', X) is the multivariate ¢ - distri-
bution with v/ degrees of freedom and parameters
p' and X'. The tuple ¢ = (u, k, X, V) represents
the parameters of the prior distribution.

It should be noted that the first part of the equa-
tion which expresses the probability of topic & in
document d is the same as that of LDA. This is
because the portion of the model which generates
a topic for each word (vector) from its document
topic distribution is still the same. The second
part of the equation which expresses the probabil-
ity of assignment of topic k to the word vector v ;
given the current topic assignments (aka posterior
predictive) is given by a multivariate ¢ distribution
with parameters (g, ki, Xk, Vi ). The parameters
of the posterior predictive distribution are given as
(Murphy, 2012):

K+ Nipv
Hk:H+Nk “k:%
v
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where v and Cy, are given by,
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Here v, is the sample mean and Cy, is the scaled
form of sample covariance of the vectors with
topic assignment k. NN represents the count of
words assigned to topic k across all documents.
Intuitively the parameters p;, and Xj represents
the posterior mean and covariance of the topic dis-
tribution and kg, v represents the strength of the
prior for mean and covariance respectively.

Analysis of running time complexity

As can be seen from (1), for computation of the
posterior predictive we need to evaluate the deter-
minant and inverse of the posterior covariance ma-
trix. Direct naive computation of these terms re-
quire O(M?) operations. Moreover, during sam-
pling as words get assigned to different topics,
the parameters (g, 5k, Wi, vk ) associated with a
topic changes and hence we have to recompute
the determinant and inverse matrix. Since these
step has to be recomputed several times (as many
times as number of words times number of topics
in one Gibbs sweep, in the worst case), it is criti-
cal to make the process as efficient as possible. We
speed up this process by employing a combination
of modern computational techniques and mathe-
matical (linear algebra) tricks, as described in the
following subsections.

4.1 Faster sampling using Cholesky
decomposition of covariance matrix

Having another look at the posterior equation for
W ., we can re-write the equation as:

KNk, _ _
T =W+ Cpt — (Vi — ) (Vi — )

k
=w+ Z Z VaiVi; — Kk

d i:zdyi:k

+ kpp (3)

During sampling when we are computing the
assignment probability of topic & to v4;, we need
to calculate the updated parameters of the topic.
Using (3) it can be shown that ¥, can be updated
from current value of Wy, after updating x.v and
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Wi, as follows:

by — Vd,i) (kg — Vd,i>T
¢

This equation has the form of a rank 1 update,
hinting towards use of Cholesky decomposition. If
we have the Cholesky decomposition of ¥ com-
puted, then we have tools to update ¥, cheaply.
Since ¥, and X, are off by only a scalar fac-
tor, we can equivalently talk about ;. Equation
(4) can also be understood in the following way.
During sampling, when a word embedding v, ;
gets a new assignment to a topic, say k, then the
new value of the topic covariance can be computed
from the current one using just a rank 1 update.”
We next describe how to exploit the Cholesky de-
composition representation to speed up computa-
tions.

For sake of completeness, any symmetric M X
M real matrix Xy, is said to be positive definite if
vz € RM . z"¥,z > 0. The Cholesky decom-
position of such a symmetric positive definite ma-
trix Xy, is nothing but its decomposition into the
product of some lower triangular matrix L and its
transpose, i.e.

/ﬁ;k—l

>, =LL".

Finding this factorization also take cubic opera-
tion. However given Cholesky decomposition of
3k, after a rank 1 update (or downdate), i.e. the
operation:

D — X +ZZ—r

we can find the factorization of new 3 in just
quadratic time (Stewart, 1998). We will use this
trick to speed up the computations®. Basically, in-
stead of computing determinant and inverse again
in cubic time, we will use such rank 1 update
(downdate) to find new determinant and inverse in
an efficient manner as explained in details below.

To compute the density of the posterior predic-
tive t—distibution, we need to compute the de-
terminant || and the term of the form (vg; —
pi) "= (va; — py,). The Cholesky decomposi-
tion of the covariance matrix can be used for ef-
ficient computation of these expression as shown
below.

2Similarly the covariance of the old topic assignment of
the word w can be computed using a rank 1 downdate

3For our experiments, we set the prior covariance to be
3*7, which is a positive definite matrix.



Computation of determinant: The determinant
of 3 can be computed from from its Cholesky
decomposition L as:

M

log(|Zkl) =2 x > log (Lis) .
=1

This takes linear time in the order of dimension
and is clearly a significant gain from cubic time
complexity.

Computation of (vy; — p;,) '3, ' (va; — p): Let
b = (va; — py)- Now b" =7'b can be written as

b'E'b=b"(LL")"'b
=b (L YH L b
= (L™ 'b) (L™ 'b)

Now (L~!b) is the solution of the equation Lx =
b. Also since L is a lower triangular matrix,
this equation can be solved easily using forward
substitution. Lastly we will have to take an in-
ner product of x and x' to get the value of
(Vai— i) "E7 (Vai— ). This step again takes
quadratic time and is again a savings from the cu-
bic time complexity.

4.2 Further reduction of sampling
complexity using Alias Sampling
Although Cholesky trick helps us to reduce
the sampling complexity of a embedding to
O(KM?), it can still be impractical.ln Gaus-
sian LDA, the Gibbs sampling equation (1) can
be split into two terms. The first term ng g X

typ—M+1 (Vd’l' ‘ [T rtl 2k> denotes the docu-

K
ment contribution and the second term ¢y X

uk,”’“HEk) denotes the lan-

Kk

751/1€—M—{-1 (Vd,i
guage model contribution. Empirically one can
make two observations about these terms. First,
ny,q is often a sparse vector, as a document most
likely contains only a few of the topics. Sec-
ondly, topic parameters (j, X)) captures global
phenomenon, and rather change relatively slowly
over the iterations. We can exploit these findings
to avoid the naive approach to draw a sample from
(1).

In particular, we compute the document-specific
sparse term exactly and for the remainder lan-
guage model term we borrow idea from (Li et al.,
2014). We use a slightly stale distribution for the
language model. Then Metropolis Hastings (MH)
algorithm allows us to convert the stale sample
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Figure 2: Plot comparing average log-likelihood
vs time (in sec) achieved after applying each trick
on the NIPS dataset. The shapes on each curve
denote end of each iteration.

into a fresh one, provided that we compute ra-
tios between successive states correctly. It is suf-
ficient to run MH for a few number of steps be-
cause the stale distribution acting as the proposal
is very similar to the target. This is because, as
pointed out earlier, the language model term does
not change too drastically whenever we resample a
single word. The number of words is huge, hence
the amount of change per word is concomitantly
small. (Only if one could convert stale bread into
fresh one, it would solve world’s food problem!)

The exercise of using stale distribution and MH
steps is advantageous because sampling from it
can be carried out in O(1) amortized time, thanks
to alias sampling technique (Vose, 1991). More-
over, the task of building the alias tables can be
outsourced to other cores.

With the combination of both Cholesky and
Alias tricks, the sampling complexity can thus be
brought down to O(KzM?) where K represents
the number of actually instantiated topics in the
document and K; < K. In particular, we plot
the sampling rate achieved naively, with Cholesky
(CH) trick and with Cholesky-+Alias (A+CH) trick
in figure 2 demonstrating better likelihood at much
less time. Also after initial few iterations, the time
per iteration of A+CH trick is 9.93 times less than
CH and 53.1 times less than naive method. This is
because initially we start with random initializa-
tion of words to topics, but after few iterations the
Ny, q Vector starts to become sparse.



S Experiments

In this section we evaluate our Word Vector Topic
Model on various experimental tasks. Specifically
we wish to determine:

e Is our model is able to find coherent and
meaningful topics?

e Is our model able to infer the topic distribu-
tion of a held-out document even when the
document contains words which were previ-
ously unseen?

We run our experiments* on two datasets 20-
NEWSGROUP® and NIPSS. All the datasets were
tokenized and lowercased with cdec (Dyer et al.,
2010).

5.1 Topic Coherence

Quantitative Analysis Typically topic models
are evaluated based on the likelihood of held-out
documents. But in this case, it is not correct to
compare perplexities with models which do topic
modeling on words. Since our topics are contin-
uous distributions, the probability of a word vec-
tor is given by its density w.r.t the normal distri-
bution based on its topic assignment, instead of
a probability mass from a discrete topic distribu-
tion. Moreover, (Chang et al., 2009) showed that
higher likelihood of held-out documents doesn’t
necessarily correspond to human perception of
topic coherence. Instead to measure topic coher-
ence we follow (Newman et al., 2009) to compute
the Pointwise Mutual Information (PMI) of topic
words w.r.t wikipedia articles. We extract the doc-
ument co-occurrence statistics of topic words from
Wikipedia and compute the score of a topic by av-
eraging the score of the top 15 words of the topic.
A higher PMI score implies a more coherent topic
as it means the topic words usually co-occur in the
same document. In the last line of Table 1, we
present the PMI score for some of the topics for
both Gaussian LDA and traditional multinomial

“Our implementation is available at
//github.com/rajarshd/Gaussian_LDA

A collection of newsgroup documents partitioned into
20 news groups. After pre-processing we had 18768 docu-
ments. We randomly selected 2000 documents as our test set.
This dataset is publicly available at http: //gqwone.com/
~jason/20Newsgroups/

A collection of 1740 papers from the proceedings of
Neural Information Processing System. The dataset is avail-

able at http://www.cs.nyu.edu/~-roweis/data.
html

https:
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LDA. It can be seen that Gaussian LDA is a clear
winner, achieving an average 275% higher score
on average.

However, we are using embeddings trained on
Wikipedia corpus itself, and the PMI measure is
computed from co-occurrence in the Wikipedia
corpus. As a result, our model is definitely bi-
ased towards producing higher PMI. Nevertheless
Wikipedia PMI is a believed to be a good measure
of semantic coherence.

Qualitative Analysis Table 1 shows some top
words from topics from Gaussian-LDA and LDA
on the 20-news dataset for K = 50. The words
in Gaussian-LDA are ranked based on their den-
sity assigned to them by the posterior predictive
distribution in the final sample. As shown, Gaus-
sian LDA is able to capture several intuitive top-
ics in the corpus such as sports, government, ‘re-
ligion’, ’universities’, ‘tech’, ‘finance’ etc. One
interesting topic discovered by our model (on both
20-news and NIPS dataset) is the collection of hu-
man names, which was not captured by classic
LDA. While one might imagine that names associ-
ated with particular topics might be preferable to a
‘names-in-general’ topic, this ultimately is a mat-
ter of user preference. More substantively, classic
LDA failed to identify the ‘finance’ topics. We
also noticed that there were certain words (‘don’,
‘writes’, etc) which often came as a top word in
many topics in classic LDA. However our model
was not able to capture the ‘space’ topics which
LDA was able to identify.

Also we visualize a part of the continuous space
where the word embedding is performed. For this
task we performed the Principal Component Anal-
ysis (PCA) over all the word vectors and plot the
first two components as shown in Figure 3. We can
see clear separations between some of the clusters
of topics as depicted. The other topics would be
separated in other dimensions.

5.2 Performance on document containing
new words

In this experiment we evaluate the performance
of our model on documents which contains pre-
viously unseen words. It should be noted that tra-
ditional topic modeling algorithms will typically
ignore such words while inferring the topic distri-
bution and hence might miss out important words.
The continuous topic distributions of the Word
Vector Topic Model on the other hand, will be able
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hostile play government people university hardware scott market gun
murder round state god program interface stevens buying rocket
violence win group jews public mode graham sector military
victim players initiative israel law devices walker purchases  force
testifying games board christians  institute rendering  tom payments  machine
provoking goal legal christian high renderer russell purchase  attack
legal challenge bill great research user baker company  operation
citizens final general jesus college computers  barry owners enemy
conflict playing policy muslims center monitor adams paying fire
victims hitting favor religion study static jones corporate  flying
rape match office armenian  reading encryption  joe limited defense
laws ball political armenians  technology = emulation  palmer loans warning
violent advance commission church programs reverse cooper credit soldiers
trial participants  private muslim level device robinson financing  guns
intervention  scores federal bible press target smith fees operations
0.8302 0.9302 0.4943 2.0306 0.5216 2.3615 2.7660 1.4999 1.1847
Multinomial LDA topics
turkish year people god university window space ken gun
armenian writes president jesus information  image nasa stuff people
people game mr people national color gov serve law
armenians good don bible research file earth line guns
armenia team money christian center windows launch attempt don
turks article government church april program writes den state
turkey baseball stephanopoulos  christ san display orbit due crime
don don time christians ~ number jpeg moon peaceful weapons
greek games make life year problem satellite  article firearms
soviet season clinton time conference  screen article served police
time runs work don washington  bit shuttle warrant control
genocide players tax faith california files lunar lotsa writes
government  hit years good page graphics henry occurred rights
told time 1 man state gif data writes article
killed apr ve law states writes flight process laws
0.3394 0.2036 0.1578 0.7561 0.0039 1.3767 1.5747 -0.0721 0.2443

Table 1: Top words of some topics from Gaussian-LDA and multinomial LDA on 20-newsgroups for
K = 50. Words in Gaussian LDA are ranked based on density assigned to them by the posterior predic-
tive distribution. The last row for each method indicates the PMI score (w.r.t. Wikipedia co-occurence)

of the topics fifteen highest ranked words.

to assign topics to an unseen word, if we have the
vector representation of the word. Given the re-
cent development of fast and scalable methods of
estimating word embeddings, it is possible to train
them on huge text corpora and hence it makes our
model a viable alternative for topic inference on
documents with new words.

Experimental Setup: Since we want to capture
the strength of our model on documents containing
unseen words, we select a subset of documents and
replace words of those documents by its synonyms
if they haven’t occurred in the corpus before. We
obtain the synonym of a word using two existing
resources and hence we create two such datasets.
For the first set, we use the Paraphrase Database
(Ganitkevitch et al., 2013) to get the lexical para-
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phrase of a word. The paraphrase database’ is a
semantic lexicon containing around 169 million
paraphrase pairs of which 7.6 million are lexical
(one word to one word) paraphrases. The dataset
comes in varying size ranges starting from S to
XXXL in increasing order of size and decreasing
order of paraphrasing confidence. For our exper-
iments we selected the L size of the paraphrase
database.

The second set was obtained using WordNet
(Miller, 1995), a large human annotated lexicon
for English that groups words into sets of syn-
onyms called synsets. To obtain the synonym of
a word, we first label the words with their part-of-
speech using the Stanford POS tagger (Toutanova
et al., 2003). Then we use the WordNet database

"nttp://www.cis.upenn.edu/~ccb/ppdb/
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Figure 3: The first two principal components for
the word embeddings of the top words of top-
ics shown in Table 1 have been visualized. Each
blob represents a word color coded according to
its topic in the Table 1.

to get the synonym from its sysnset.® We select
the first synonym from the synset which hasn’t
occurred in the corpus before. On the 20-news
dataset (vocab size = 18,179 words, test corpus
size = 188,694 words), a total of 21,919 words
(2,741 distinct words) were replaced by synonyms
from PPDB and 38,687 words (2,037 distinct
words) were replaced by synonyms from Wordnet.

Evaluation Benchmark: As mentioned before
traditional topic model algorithms cannot handle
OOV words. So comparing the performance of
our document with those models would be unfair.
Recently (Zhai and Boyd-Graber, 2013) proposed
an extension of LDA (infvoc) which can incorpo-
rate new words. They have shown better perfor-
mances in a document classification task which
uses the topic distribution of a document as fea-
tures on the 20-news group dataset as compared to
other fixed vocabulary algorithms. Even though,
the infvoc model can handle OOV words, it will
most likely not assign high probability to a new
topical word when it encounters it for the first time
since it is directly proportional to the number of
times the word has been observed On the other
hand, our model could assign high probability to
the word if its corresponding embedding gets a
high probability from one of the topic gaussians.
With the experimental setup mentioned before, we
want to evaluate performance of this property of

8We use the JWI toolkit (Finlayson, 2014)

our model. Using the topic distribution of a docu-
ment as features, we try to classify the document
into one of the 20 news groups it belongs to. If the
document topic distribution is modeled well, then
our model should be able to do a better job in the
classification task.

To infer the topic distribution of a document
we follow the usual strategy of fixing the learnt
topics during the training phase and then running
Gibbs sampling on the test set (G-LDA (fix) in ta-
ble 2). However infvoc is an online algorithm, so it
would be unfair to compare our model which ob-
serves the entire set of documents during test time.
Therefore we implement the online version of our
algorithm using Gibbs sampling following (Yao et
al., 2009). We input the test documents in batches
and do inference on those batches independently
also sampling for the topic parameter, along the
lines of infvoc. The batch size for our experiments
are mentioned in parentheses in table 2. We clas-
sify using the multi class logistic regression clas-
sifier available in Weka (Hall et al., 2009).

It is clear from table 2 that we outperform in-
fvoc in all settings of our experiments. This im-
plies that even if new documents have significant
amount of new words, our model would still do
a better job in modeling it. We also conduct an
experiment to check the actual difference between
the topic distribution of the original and synthetic
documents. Let h and h’ denote the topic vectors
of the original and synthetic documents. Table 3
shows the average 1, l2 and [, norm of (b — 1)
of the test documents in the NIPS dataset. A low
value of these metrics indicates higher similarity.
As shown in the table, Gaussian LDA performs
better here too.

6 Conclusion and Future Work

While word embeddings have been incorporated
to produce state-of-the-art results in numerous su-
pervised natural language processing tasks from
the word level to document level ; however, they
have played a more minor role in unsupervised
learning problems. This work shows some of the
promise that they hold in this domain. Our model
can be extended in a number of potentially useful,
but straightforward ways. First, DPMM models of
word emissions would better model the fact that
identical vectors will be generated multiple times,
and perhaps add flexibility to the topic distribu-
tions that can be captured, without sacrificing our
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Model Accuracy
PPDB | WordNet
infvoc 28.00% | 19.30%
G-LDA (fix) | 44.51% | 43.53%
G-LDA (1) 44.66% | 43.47%
G-LDA (100) | 43.63% | 43.11%
G-LDA (1932) | 44.72% | 42.90%

Table 2: Accuracy of our model and infvoc on the
synthetic datasets. In Gaussian LDA fix, the topic
distributions learnt during training were fixed; G-
LDA(I, 100, 1932) is the online implementation
of our model where the documents comes in mini-
batches. The number in parenthesis denote the
size of the batch. The full size of the test corpus is
1932.

Model PPDB (Mean Deviation)
Ly Lo Lo
infvoc 9495 | 7.98 1.72
G-LDA (fix) 15.13 | 1.81 0.66
G-LDA (1) 15.71 | 1.90 0.66
G-LDA (10) 15.76 | 1.97 0.66
G-LDA (I74) | 14.58 | 1.66 0.66

Table 3: This table shows the Average L, Devia-
tion, Average Lo Deviation, Average L., Devia-
tion for the difference of the topic distribution of
the actual document and the synthetic document
on the NIPS corpus. Compared to infvoc, G-LDA
achieves a lower deviation of topic distribution in-
ferred on the synthetic documents with respect to
actual document. The full size of the test corpus is
174.

preference for topical coherence. More broadly
still, running LDA on documents consisting of dif-
ferent modalities than just text is facilitated by us-
ing the lingua franca of vector space representa-
tions, so we expect numerous interesting appli-
cations in this area. An interesting extension to
our work would be the ability to handle polyse-
mous words based on multi-prototype vector space
models (Neelakantan et al., 2014; Reisinger and
Mooney, 2010) and we keep this as an avenue for
future research.
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