
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 785–794,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Trans-dimensional Random Fields for Language Modeling

Bin Wang1, Zhijian Ou1, Zhiqiang Tan2

1Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
2Department of Statistics, Rutgers University, Piscataway, NJ 08854, USA

wangbin12@mails.tsinghua.edu.cn, ozj@tsinghua.edu.cn,
ztan@stat.rutgers.edu

Abstract

Language modeling (LM) involves
determining the joint probability of
words in a sentence. The conditional
approach is dominant, representing the
joint probability in terms of conditionals.
Examples include n-gram LMs and neural
network LMs. An alternative approach,
called the random field (RF) approach, is
used in whole-sentence maximum entropy
(WSME) LMs. Although the RF approach
has potential benefits, the empirical
results of previous WSME models are
not satisfactory. In this paper, we revisit
the RF approach for language modeling,
with a number of innovations. We
propose a trans-dimensional RF (TDRF)
model and develop a training algorithm
using joint stochastic approximation and
trans-dimensional mixture sampling. We
perform speech recognition experiments
on Wall Street Journal data, and find that
our TDRF models lead to performances as
good as the recurrent neural network LMs
but are computationally more efficient in
computing sentence probability.

1 Introduction

Language modeling is crucial for a variety
of computational linguistic applications, such
as speech recognition, machine translation,
handwriting recognition, information retrieval and
so on. It involves determining the joint probability
p(x) of a sentence x, which can be denoted as
a pair x = (l, xl), where l is the length and
xl = (x1, . . . , xl) is a sequence of l words.

Currently, the dominant approach is conditional
modeling, which decomposes the joint probability
of xl into a product of conditional probabilities 1

1And the joint probability of x is modeled as p(x) =

by using the chain rule,

p(x1, . . . , xl) =
l∏

i=1

p(xi|x1, . . . , xi−1). (1)

To avoid degenerate representation of the con-
ditionals, the history of xi, denoted as hi =
(x1, · · · , xi−1), is reduced to equivalence classes
through a mapping φ(hi) with the assumption

p(xi|hi) ≈ p(xi|φ(hi)). (2)

Language modeling in this conditional
approach consists of finding suitable mappings
φ(hi) and effective methods to estimate
p(xi|φ(hi)). A classic example is the traditional
n-gram LMs with φ(hi) = (xi−n+1, . . . , xi−1).
Various smoothing techniques are used for
parameter estimation (Chen and Goodman, 1999).
Recently, neural network LMs, which have begun
to surpass the traditional n-gram LMs, also follow
the conditional modeling approach, with φ(hi)
determined by a neural network (NN), which can
be either a feedforward NN (Schwenk, 2007) or a
recurrent NN (Mikolov et al., 2011).

Remarkably, an alternative approach is used in
whole-sentence maximum entropy (WSME) lan-
guage modeling (Rosenfeld et al., 2001). Specifi-
cally, a WSME model has the form:

p(x;λ) =
1
Z

exp{λT f(x)} (3)

Here f(x) is a vector of features, which can be
arbitrary computable functions of x, λ is the cor-
responding parameter vector, and Z is the global
normalization constant. Although WSME mod-
els have the potential benefits of being able to
naturally express sentence-level phenomena and
integrate features from a variety of knowledge

p(xl)p(〈EOS〉|xl), where 〈EOS〉 is a special token placed
at the end of every sentence. Thus the distribution of the
sentence length is implicitly modeled.

785

sources, their performance results ever reported
are not satisfactory (Rosenfeld et al., 2001; Amaya
and Benedı́, 2001; Ruokolainen et al., 2010).

The WSME model defined in (3) is basically a
Markov random field (MRF). A substantial chal-
lenge in fitting MRFs is that evaluating the gradi-
ent of the log likelihood requires high-dimensional
integration and hence is difficult even for mod-
erately sized models (Younes, 1989), let alone
the language model (3). The sampling methods
previously tried for approximating the gradient are
the Gibbs sampling, the Independence Metropolis-
Hasting sampling and the importance sampling
(Rosenfeld et al., 2001). Simple applications of
these methods are hardly able to work efficient-
ly for the complex, high-dimensional distribution
such as (3), and hence the WSME models are in
fact poorly fitted to the data. This is one of the
reasons for the unsatisfactory results of previous
WSME models.

In this paper, we propose a new language
model, called the trans-dimensional random
field (TDRF) model, by explicitly taking
account of the empirical distributions of lengths.
This formulation subsequently enables us to
develop a powerful Markov chain Monte Carlo
(MCMC) technique, called trans-dimensional
mixture sampling and then propose an effective
training algorithm in the framework of stochastic
approximation (SA) (Benveniste et al., 1990;
Chen, 2002). The SA algorithm involves jointly
updating the model parameters and normalization
constants, in conjunction with trans-dimensional
MCMC sampling. Section 2 and 3 present the
model definition and estimation respectively.

Furthermore, we make several additional in-
novations, as detailed in Section 4, to enable
successful training of TDRF models. First, the
diagonal elements of hessian matrix are estimat-
ed during SA iterations to rescale the gradient,
which significantly improves the convergence of
the SA algorithm. Second, word classing is in-
troduced to accelerate the sampling operation and
also improve the smoothing behavior of the mod-
els through sharing statistical strength between
similar words. Finally, multiple CPUs are used to
parallelize the training of our RF models.

In Section 5, speech recognition experiments
are conducted to evaluate our TDRF LMs, com-
pared with the traditional 4-gram LMs and the re-
current neural network LMs (RNNLMs) (Mikolov

et al., 2011) which have emerged as a new state-
of-art of language modeling. We explore the use
of a variety of features based on word and class
information in TDRF LMs. In terms of word error
rates (WERs) for speech recognition, our TDRF
LMs alone can outperform the KN-smoothing 4-
gram LM with 9.1% relative reduction, and per-
form comparably to the RNNLM with a slight
0.5% relative reduction. To our knowledge, this
result represents the first strong empirical evidence
supporting the power of using the whole-sentence
language modeling approach. Our open-source
TDRF toolkit is released publicly 2.

2 Model Definition

Throughout, we denote 3 by xl = (x1, . . . , xl) a
sentence (i.e., word sequence) of length l ranging
from 1 to m. Each element of xl corresponds to
a single word. For l = 1, . . . ,m, we assume
that sentences of length l are distributed from an
exponential family model:

pl(xl;λ) =
1

Zl(λ)
eλ

T f(xl), (4)

where f(xl) = (f1(xl), f2(xl), . . . , fd(xl))T is
the feature vector and λ = (λ1, λ2, . . . , λd)T is
the corresponding parameter vector, and Zl(λ) is
the normalization constant:

Zl(λ) =
∑
xl

eλ
T f(xl) (5)

Moreover, we assume that length l is associated
with probability πl for l = 1, . . . ,m. Therefore,
the pair (l, xl) is jointly distributed as

p(l, xl;λ) = πl pl(xl;λ). (6)

We provide several comments on the above
model definition. First, by making explicit the
role of lengths in model definition, it is clear that
the model in (6) is a mixture of random fields
on sentences of different lengths (namely on sub-
spaces of different dimensions), and hence will be
called a trans-dimensional random field (TDRF).
Different from the WSME model (3), a crucial
aspect of the TDRF model (6) is that the mixture
weights πl can be set to the empirical length
probabilities in the training data. The WSME

2http://oa.ee.tsinghua.edu.cn/
˜ouzhijian/software.htm

3We add sup or subscript l, e.g. in xl, pl(), to make clear
that the variables and distributions depend on length l.

786

model (3) is essentially also a mixture of RFs, but
the mixture weights implied are proportional to the
normalizing constants Zl(λ):

p(l, xl;λ) =
Zl(λ)
Z(λ)

1
Zl(λ)

eλ
T f(xl), (7)

where Z(λ) =
∑m

l=1 Zl(λ).
A motivation for proposing (6) is that it is

very difficult to sample from (3), namely (7),
as a mixture distribution with unknown weights
which typically differ from each other by orders of
magnitudes, e.g. 1040 or more in our experiments.
Setting mixture weights to the known, empirical
length probabilities enables us to develop a very
effective learning algorithm, as introduced in Sec-
tion 3. Basically, the empirical weights serve as a
control device to improve sampling from multiple
distributions (Liang et al., 2007; Tan, 2015) .

Second, it can be shown that if we incorporate
the length features 4 in the vector of features f(x)
in (3), then the distribution p(x;λ) in (3) under
the maximum entropy (ME) principle will take the
form of (6) and the probabilities (π1, . . . , πm) in
(6) implied by the parameters for the length fea-
tures are exactly the empirical length probabilities.

Third, a feature fi(xl), 1 ≤ i ≤ d, can be any
computable function of the sentence xl, such as
n-grams. In our current experiments, the features
fi(xl) and their corresponding parameters λi are
defined to be position-independent and length-
independent. For example, fi(xl) =

∑
k fi(x

l, k),
where fi(xl, k) is a binary function of xl evaluated
at position k. As a result, the feature fi(xl) takes
values in the non-negative integers.

3 Model Estimation

We develop a stochastic approximation algorith-
m using Markov chain Monte Carlo to estimate
the parameters λ and the normalization constants
Z1(λ), ..., Zm(λ) (Benveniste et al., 1990; Chen,
2002). The core algorithms newly designed in
this paper are the joint SA for simultaneously
estimating parameters and normalizing constants
(Section 3.2) and trans-dimensional mixture sam-
pling (Section 3.3) which is used as Step I of the
joint SA. The most relevant previous works that
we borrowed from are (Gu and Zhu, 2001) on SA
for fitting a single RF, (Tan, 2015) on sampling and

4The length feature corresponding to length l is a binary
feature that takes one if the sentence x is of length l, and
otherwise takes zero.

estimating normalizing constants from multiple
RFs of the same dimension, and (Green, 1995) on
trans-dimensional MCMC.

3.1 Maximum likelihood estimation
Suppose that the training dataset consists of nl
sentences of length l for l = 1, . . . ,m. First,
the maximum likelihood estimate of the length
probability πl is easily shown to be nl/n, where
n =

∑m
l=1 nl. By abuse of notation, we set

πl = nl/n hereafter. Next, the log-likelihood of
λ given the empirical length probabilities is

L(λ) =
1
n

m∑
l=1

∑
xl∈Dl

log pl(xl;λ), (8)

where Dl is the collection of sentences of length l
in the training set. By setting to 0 the derivative of
(8) with respect to λ, we obtain that the maximum
likelihood estimate of λ is determined by the
following equation:

∂L(λ)
∂λ

= p̃[f]− pλ[f] = 0, (9)

where p̃[f] is the expectation of the feature vector
f with respect to the empirical distribution:

p̃[f] =
1
n

m∑
l=1

∑
xl∈Dl

f(xl), (10)

and pλ[f] is the expectation of f with respect to
the joint distribution (6) with πl = nl/n:

pλ[f] =
m∑
l=1

nl
n
pλ,l[f], (11)

and pλ,l[f] =
∑

xl f(xl)pl(xl;λ). Eq.(9) has
the form of equating empirical expectations p̃[f]
with theoretical expectations pλ[f], as similarly
found in maximum likelihood estimation of single
random field models.

3.2 Joint stochastic approximation
Training random field models is challenging due
to numerical intractability of the normalizing con-
stants Zl(λ) and expectations pλ,l[f]. We propose
a novel SA algorithm for estimating the parame-
ters λ by (9) and, simultaneously, estimating the
log ratios of normalization constants:

ζ∗l (λ) = log
Zl(λ)
Z1(λ)

, l = 1, . . . ,m (12)

787

Algorithm 1 Joint stochastic approximation
Input: training set

1: set initial values λ(0) = (0, . . . , 0)T and
ζ(0) = ζ∗(λ(0))− ζ∗1 (λ(0))

2: for t = 1, 2, . . . , tmax do
3: set B(t) = ∅
4: set (L(t,0), X(t,0)) = (L(t−1,K), X(t−1,K))

Step I: MCMC sampling
5: for k = 1→ K do
6: sampling (See Algorithm 3)

(L(t,k), X(t,k)) = SAMPLE(L(t,k−1), X(t,k−1))

7: set B(t) = B(t) ∪ {(L(t,k), X(t,k))}
8: end for

Step II: SA updating
9: Compute λ(t) based on (14)

10: Compute ζ(t) based on (15) and (16)
11: end for

where Z1(λ) is chosen as the reference value and
can be calculated exactly. The algorithm can be
obtained by combining the standard SA algorithm
for training single random fields (Gu and Zhu,
2001) and a trans-dimensional extension of the
self-adjusted mixture sampling algorithm (Tan,
2015).

Specifically, consider the following joint distri-
bution of the pair (l, xl):

p(l, xl;λ, ζ) ∝ πl
eζl
eλ

T f(xl), (13)

where πl is set to nl/n for l = 1, . . . ,m, but
ζ = (ζ1, . . . , ζm)T with ζ1 = 0 are hypothesized
values of the truth ζ∗(λ) = (ζ∗1 (λ), . . . , ζ∗m(λ))T

with ζ∗1 (λ) = 0. The distribution p(l, xl;λ, ζ)
reduces to p(l, xl;λ) in (6) if ζ were identical
to ζ∗(λ). In general, p(l, xl;λ, ζ) differs from
p(l, xl;λ) in that the marginal probability of
length l is not necessarily πl.

The joint SA algorithm, whose pseudo-code is
shown in Algorithm 1, consists of two steps at
each time t as follows.

Step I: MCMC sampling. Generate a sample
set B(t) with p(l, xl;λ(t−1), ζ(t−1)) as the station-
ary distribution (see Section 3.3).

Step II: SA updating. Compute

λ(t) = λ(t−1) + γλ

{
p̃[f]−

∑
(l,xl)∈B(t) f(xl)

K

}
(14)

where γλ is a learning rate of λ; compute

ζ(t− 1
2) = ζ(t) + γζ

{
δ1(B(t))

π1
, . . . ,

δm(B(t))

πm

}
(15)

ζ(t) = ζ(t− 1
2) − ζ(t− 1

2)

1 (16)

where γζ is a learning rate of ζ, and δl(B(t)) is the
relative frequency of length l appearing in B(t):

δl(B(t)) =

∑
(j,xj)∈B(t) 1(j = l)

K
. (17)

The rationale in (15) is to adjust ζ based on
how the relative frequencies of lengths δl(B(t))
are compared with the desired length probabili-
ties πl. Intuitively, if the relative frequency of
some length l in the sample set B(t) is greater
(or respectively smaller) than the desired length
probability πl, then the hypothesized value ζ(t−1)

l

is an underestimate (or overestimate) of ζ∗l (λ(t−1))
and hence should be increased (or decreased).

Following Gu & Zhu (2001) and Tan (2015), we
set the learning rates in two stages:

γλ =

{
t−βλ if t ≤ t0

1

t−t0+t
βλ
0

if t > t0
(18)

γζ =

{
(0.1t)−βζ if t ≤ t0

1

0.1(t−t0)+(0.1t0)
βζ

if t > t0
(19)

where 0.5 < βλ, βζ < 1. In the first stage (t ≤ t0),
a slow-decaying rate of t−β is used to introduce
large adjustments. This forces the estimates λ(t)

and ζ(t) to fall reasonably fast into the true values.
In the second stage (t > t0), a fast-decaying
rate of t−1 is used. The iteration number t is
multiplied by 0.1 in (19), to make the the learning
rate of ζ decay more slowly than λ. Commonly,
t0 is selected to ensure there is no more significant
adjustment observed in the first stage.

3.3 Trans-dimensional mixture sampling
We describe a trans-dimensional mixture sam-
pling algorithm to simulate from the joint distri-
bution p(l, xl;λ, ζ), which is used with (λ, ζ) =
(λ(t−1), ζ(t−1)) at time t for MCMC sampling in
the joint SA algorithm. The name “mixture sam-
pling” reflects the fact that p(l, xl;λ, ζ) represents
a labeled mixture, because l is a label indicating
that xl is associated with the distribution pl(xl; ζ).
With fixed (λ, ζ), this sampling algorithm can
be seen as formally equivalent to reversible jump
MCMC (Green, 1995), which was originally pro-
posed for Bayes model determination.

The trans-dimensional mixture sampling algo-
rithm consists of two steps at each time t: local
jump between lengths and Markov move of sen-
tences for a given length. In the following, we de-
note byL(t−1) andX(t−1) the length and sequence

788

before sampling, but use the short notation (λ, ζ)
for (λ(t−1), ζ(t−1)).

Step I: Local jump. The Metropolis-Hastings
method is used in this step to sample the length.
Assuming L(t−1) = k, first we draw a new length
j ∼ Γ(k, ·). The jump distribution Γ(k, l) is
defined to be uniform at the neighborhood of k :

Γ(k, l) =


1

3
, if k ∈ [2,m− 1], l ∈ [k − 1, k + 1]

1

2
, if k = 1, l ∈ [1, 2] or k = m, l ∈ [m− 1,m]

0, otherwise
(20)

where m is the maximum length. Eq.(20) restricts
the difference between j and k to be no more than
one. If j = k, we retain the sequence and perform
the next step directly, i.e. set L(t) = k and X(t) =
X(t−1). If j = k + 1 or j = k − 1, the two cases
are processed differently.

If j = k + 1, we first draw an element
(i.e., word) Y from a proposal distribution:
Y ∼ gk+1(y|X(t−1)). Then we set
L(t) = j (= k + 1) and X(t) = {X(t−1), Y } with
probability

min

{
1,

Γ(j, k)

Γ(k, j)

p(j, {X(t−1), Y };λ, ζ)
p(k,X(t−1);λ, ζ)gk+1(Y |X(t−1))

}
(21)

where {X(t−1), Y } denotes a sequence of length
k + 1 whose first k elements are X(t−1) and the
last element is Y .

If j = k − 1, we set L(t) = j (= k − 1) and
X(t) = X

(t−1)
1:j with probability

min

{
1,

Γ(j, k)

Γ(k, j)

p(j,X
(t−1)
1:j ;λ, ζ)gk(X

(t−1)
k |X(t−1)

1:j)

p(k,X(t−1);λ, ζ)

}
(22)

where X(t−1)
1:j is the first j elements of X(t−1) and

X
(t−1)
k is the kth element of X(t−1).
In (21) and (22), gk+1(y|xk) can be flexibly

specified as a proper density function in y. In our
application, we find the following choice works
reasonably well:

gk+1(y|xk) =
p(k + 1, {xk, y};λ, ζ)∑
w p(k + 1, {xk, w};λ, ζ) . (23)

Step II: Markov move. After the step of local
jump, we obtain

X(t) =


X(t−1) if L(t) = k

{X(t−1), Y } if L(t) = k + 1
X

(t−1)
1:k−1 if L(t) = k − 1

(24)

Then we perform Gibbs sampling on X(t), from
the first element to the last element (Algorithm 2)

Algorithm 2 Markov Move
1: for i = 1→ L(t) do
2: draw W ∼ p(L(t), {X(t)

1:i−1, w,X
(t)

i+1:L(t)};λ, ζ)
3: set X(t)

i = W
4: end for

4 Algorithm Optimization and
Acceleration

The joint SA algorithm may still suffer from
slow convergence, especially when λ is high-
dimensional. We introduce several techniques for
improving the convergence of the algorithm and
reducing computational cost.

4.1 Improving SA recursion

We propose two techniques to effectively improve
the convergence of SA recursion.

The first technique is to incorporate Hessian
information, similarly as in related works on s-
tochastic approximation (Gu and Zhu, 2001) and
stochastic gradient descent algorithms (Byrd et al.,
2014). But we only use the diagonal elements of
the Hessian matrix to re-scale the gradient, due to
high-dimensionality of λ.

Taking the second derivatives of L(λ) yields

Hi = −d
2L(λ)
dλ2

i

= p[f2
i]−

m∑
l=1

πl(pl[fi])2 (25)

where Hi denotes the ith diagonal element of
Hessian matrix. At time t, before updating the
parameter λ (Step II in Section 3.2), we compute

H
(t− 1

2
)

i =
1
K

∑
(l,xl)∈B(t)

fi(xl)2 −
m∑
l=1

πl(p̄l[fi])2,

(26)

H
(t)
i = H

(t−1)
i + γH(H

(t− 1
2
)

i −H(t−1)
i), (27)

where p̄l[fi] = |B(t)
l |−1

∑
(l,xl)∈B(t)

l

fi(xl), and

B
(t)
l is the subset, of size |B(t)

l |, containing all
sentences of length l in B(t).

The second technique is to introduce the “mini-
batch” on the training set. At each iteration, a
subset D(t) of K sentences are randomly selected
from the training set. Then the gradient is approx-
imated with the overall empirical expectation p̃[f]
being replaced by the empirical expectation over
the subset D(t). This technique is reminiscent of
stochastic gradient descent using a random sub-
sample of training data to achieve fast convergence

789

0 20 40 60 80 100
120

140

160

180

200

t/10

−
 lo

g−
lik

el
ih

oo
d

without hessian
with hessian

(a)

0 500 1000 1500 2000
50

100

150

200

t/10

ne
ga

tiv
e

lo
g−

lik
el

ih
oo

d

Hessian+mini−batch
Hessian

(b)

Figure 1: Examples of convergence curves on
training set after introducing hessian and training
set mini-batching.

of optimization algorithms (Bousquet and Bottou,
2008).

By combining the two techniques, we revise the
updating equation (14) of λ to

λ
(t)
i = λ

(t−1)
i +

γλ

max(H
(t)
i , h)

×{∑
(l,xl)∈D(t) fi(x

l)

K
−
∑

(l,xl)∈B(t) fi(x
l)

K

} (28)

where 0 < h < 1 is a threshold to avoid H
(t)
i

being too small or even zero. Moreover, a constant
tc is added to the denominator of (18), to avoid too
large adjustment of λ, i.e.

γλ =

{ 1
tc+tβλ

if t ≤ t0,
1

tc+t−t0+t
βλ
0

if t > t0.
(29)

Fig.1(a) shows the result after introducing hessian
estimation, and Fig.1(b) shows the effect of train-
ing set mini-batching.

4.2 Sampling acceleration
For MCMC sampling in Section 3.3, the Gibbs
sampling operation of drawing X(t)

i (Step 2 in Al-
gorithms 2) involves calculating the probabilities
of all the possible elements in position i. This
is computationally costly, because the vocabulary
size |V| is usually 10 thousands or more in prac-
tice. As a result, the Gibbs sampling operation
presents a bottleneck limiting the efficiency of
sampling algorithms.

We propose a novel method of using class in-
formation to effectively reduce the computational
cost of Gibbs sampling. Suppose that each word
in vocabulary V is assigned to a single class.
If the total class number is |C|, then there are,
on average, |V|/|C| words in each class. With
the class information, we can first draw the class
of X(t)

i , denoted by c
(t)
i , and then draw a word

Algorithm 3 Class-based MCMC sampling
1: function SAMPLE((L(t−1), X(t−1)))
2: set k = L(t−1)

3: init (L(t), X(t)) = (k,X(t−1))
Step I: Local jump

4: generate j ∼ Γ(k, ·) (Eq.(20))
5: if j = k + 1 then
6: generate C ∼ Qk+1(c)

7: generate Y ∼ ğk+1(y|X(t−1), C) (Eq.31)
8: set L(t) = j and X(t) = {X(t−1), Y } with

probability (Eq.21) and (Eq.32)
9: end if

10: if j = k − 1 then
11: set L(t) = j and X(t) = X

(t−1)
1:k−1 with probabil-

ity Eq.(22) and (Eq.32)
12: end if

Step II: Markov move
13: for i = 1→ L(t) do
14: draw C ∼ Qi(c)
15: set c(t)i = C with probability (Eq.30)
16: draw W ∈ V

c
(t)
i

17: set X(t)
i = W

18: end for
19: return (L(t), X(t))
20: end function

belonging to class c(t)i . The computational cost is
reduced from |V| to |C|+ |V|/|C| on average.

The idea of using class information to accel-
erate training has been proposed in various con-
texts of language modeling, such as maximum
entropy models (Goodman, 2001b) and RNN LMs
(Mikolov et al., 2011). However, the realization of
this idea is different for training our models.

The pseudo-code of the new sampling method is
shown in Algorithm 3. Denote by Vc the subset of
V containing all the words belonging to class c. In
the Markov move step (Step 13 to 18 in Algorithm
3), at each position i, we first generate a class C
from a proposal distributionQi(c) and then accept
C as the new c

(t)
i with probability

min

{
1,
Qi(c

(t)
i)

Qi(C)

pi(C)

pi(c
(t)
i)

}
(30)

where

pi(c) =
∑
w∈Vc

p(L(t), {X(t)
1:i−1, w,X

(t)

i+1:L(t)};λ, ζ).

The probabilities Qi(c) and pi(c) depend on
{X(t)

1:i−1, X
(t)

i+1:L(t)}, but this is suppressed in the
notation. Then we normalize the probabilities of
words belonging to class c(t)i and draw a word as
the new X

(t)
i from the class c(t)i .

Similarly, in the local jump step with k =
L(t−1), if the proposal j = k + 1 (Step 5 to 9

790

in Algorithm 3), we first generate C ∼ Qk+1(c)
and then generate Y from class C by

ğk+1(y|xk, C) =
p(k + 1, {xk, y};λ, ζ)∑

w∈VC
p(k + 1, {xk, w};λ, ζ) (31)

with xk = X(t−1). Then we set L(t) = j and
X(t) = {X(t−1), Y } with probability as defined
in (21), by setting

gk+1(y|xk) = Qk+1(C)ğk+1(y|xk, C). (32)

If the proposal j = k − 1, similarly we use
acceptance probability (22) with (32).

In our application, we construct Qi(c) dynami-
cally as follows. Write xl for {X(t−1), Y } in Step
8 or for X(t) in Step 11 of Algorithm 3. First,
we construct a reduced model pcl (x

l), by including
only the features that depend on xli through its
class and retaining the corresponding parameters
in pl(xl;λ, ζ). Then we define the distribution

Qi(c) = pcl ({xl1:i−1, c, x
l
i+1:l}),

which can be directly calculated without knowing
the value of xli.

4.3 Parallelization of sampling
The sampling operation can be easily parallelized
in SA Algorithm 1. At each time t, both the
parameters λ and log normalization constants ζ
are fixed at λ(t−1) and ζ(t−1). Instead of simu-
lating one Markov Chain, we simulate J Markov
Chains on J CPU cores separately. As a result, to
generate a sample set B(t) of size K, only K/J
sampling steps need to be performed on each CPU
core. By parallelization, the sampling operation is
completed J times faster than before.

5 Experiments

5.1 PTB perplexity results
In this section, we evaluate the performance of
LMs by perplexity (PPL). We use the Wall Street
Journal (WSJ) portion of Penn Treebank (PTB).
Sections 0-20 are used as the training data (about
930K words), sections 21-22 as the development
data (74K) and section 23-24 as the test data
(82K). The vocabulary is limited to 10K words,
with one special token 〈UNK〉 denoting words
not in the vocabulary. This setting is the same as
that used in other studies (Mikolov et al., 2011).

The baseline is a 4-gram LM with modified
Kneser-Ney smoothing (Chen and Goodman,

Type Features
w (w−3w−2w−1w0)(w−2w−1w0)(w−1w0)(w0)
c (c−3c−2c−1c0)(c−2c−1c0)(c−1c0)(c0)

ws (w−3w0)(w−3w−2w0)(w−3w−1w0)(w−2w0)
cs (c−3c0)(c−3c−2c0)(c−3c−1c0)(c−2c0)

wsh (w−4w0) (w−5w0)
csh (c−4c0) (c−5c0)
cpw (c−3c−2c−1w0) (c−2c−1w0)(c−1w0)

Table 1: Feature definition in TDRF LMs

1999), denoted by KN4. We use the RNNLM
toolkit5 to train a RNNLM (Mikolov et al., 2011).
The number of hidden units is 250 and other
configurations are set by default6.

Word classing has been shown to be useful in
conditional ME models (Chen, 2009). For our
TDRF models, we consider a variety of features
as shown in Table 1, mainly based on word and
class information. Each word is deterministically
assigned to a single class, by running the automat-
ic clustering algorithm proposed in (Martin et al.,
1998) on the training data.

In Table 1, wi, ci, i = 0,−1, . . . ,−5 denote the
word and its class at different position offset i,
e.g. w0, c0 denotes the current word and its class.
We first introduce the classic word/class n-gram
features (denoted by “w”/“c”) and the word/class
skipping n-gram features (denoted by “ws”/“cs”)
(Goodman, 2001a). Second, to demonstrate that
long-span features can be naturally integrated in
TDRFs, we introduce higher-order features “w-
sh”/“csh”, by considering two words/classes sep-
arated with longer distance. Third, as an example
of supporting heterogenous features that combine
different information, the crossing features “cp-
w” (meaning class-predict-word) are introduced.
Note that for all the feature types in Table 1, only
the features observed in the training data are used.

The joint SA (Algorithm 1) is used to train the
TDRF models, with all the acceleration methods
described in Section 4 applied. The minibatch
size K = 300. The learning rates γλ and γζ
are configured as (29) and (19) respectively with
βλ = βζ = 0.6 and tc = 3000. For t0, it is first
initialized to be 104. During iterations, we monitor
the smoothed log-likelihood (moving average of
1000 iterations) on the PTB development data.

5http://rnnlm.org/
6Minibatch size=10, learning rate=0.1, BPTT steps=5. 17

sweeps are performed before stopping, which takes about 25
hours. No word classing is used, since classing in RNNLMs
reduces computation but at cost of accuracy. RNNLMs were
experimented with varying numbers of hidden units (100-
500). The best result from using 250 hidden units is reported.

791

models PPL (± std. dev.)
KN4 142.72
RNN 128.81

TDRF w+c 130.69±1.64

Table 2: The PPLs on the PTB test data. The class
number is 200.

We set t0 to the current iteration number once the
rising percentage of the smoothed log-likelihoods
within 100 iterations is below 20%, and then
continue 5000 further iterations before stopping.
The configuration of hessian estimation (Section
4.1) is γH = γλ and h = 10−4. L2 regularization
with constant 10−5 is used to avoid over-fitting. 8
CPU cores are used to parallelize the algorithm, as
described in Section 4.3, and the training of each
TDRF model takes less than 20 hours.

The perplexity results on the PTB test data are
given in Table 2. As the normalization constants
of TDRF models are estimated stochastically, we
report the Monte Carlo mean and standard devi-
ation from the last 1000 iterations for each PPL.
The TDRF model using the basic “w+c” features
performs close to the RNNLM in perplexity. To be
compact, results with more features are presented
in the following WSJ experiment.

5.2 WSJ speech recognition results

In this section, we continue to use the LMs ob-
tained above (using PTB training and develop-
ment data), and evaluate their performance mea-
sured by WERs in speech recognition, by re-
scoring 1000-best lists from WSJ’92 test data (330
sentences). The oracle WER of the 1000-best lists
is 3.4%, which are generated from using the Kaldi
toolkit7 with a DNN-based acoustic model.

TDRF LMs using a variety of features and
different number of classes are tested. The results
are shown in Table 3. Different types of features,
like the skipping features, the higher-order fea-
tures and the crossing features can all be easily
supported in TDRF LMs, and the performance
is improved to varying degrees. Particularly, the
TDRF using the “w+c+ws+cs+cpw” features with
class number 200 performs comparable to the
RNNLM in both perplexity and WER. Numerical-
ly, the relative reduction is 9.1% compared with
the KN4 LMs, and 0.5% compared with the RNN
LM.

7http://kaldi.sourceforge.net/

model WER PPL (± std. dev.) #feat
KN4 8.71 295.41 1.6M
RNN 7.96 256.15 5.1M
WSMEs (200c)
w+c+ws+cs 8.87 ≈ 2.8× 1012 5.2M
w+c+ws+cs+cpw 8.82 ≈ 6.7× 1012 6.4M
TDRFs (100c)
w+c 8.56 268.25±3.52 2.2M
w+c+ws+cs 8.16 265.81±4.30 4.5M
w+c+ws+cs+cpw 8.05 265.63±7.93 5.6M
w+c+ws+cs+wsh+csh 8.03 276.90±5.00 5.2M
TDRFs (200c)
w+c 8.46 257.78±3.13 2.5M
w+c+ws+cs 8.05 257.80±4.29 5.2M
w+c+ws+cs+cpw 7.92 264.86±8.55 6.4M
w+c+ws+cs+wsh+csh 7.94 266.42±7.48 5.9M
TDRFs (500c)
w+c 8.72 261.02±2.94 2.8M
w+c+ws+cs 8.29 266.34±6.13 5.9M

Table 3: The WERs and PPLs on the WSJ’92 test
data. “#feat” denotes the feature number. Differ-
ent TDRF models with class number 100/200/500
are reported (denoted by “100c”/“200c”/“500c”)

5.3 Comparison and discussion

TDRF vs WSME. For comparison, Table 3 also
presents the results from our implementation of
the WSME model (3), using the same features as
in Table 1. This WSME model is the same as in
(Rosenfeld, 1997), but different from (Rosenfeld
et al., 2001), which uses the traditional n-gram
LM as the priori distribution p0.

For the WSME model (3), we can still use a
SA training algorithm, similar to that developed in
Section 3.2, to estimate the parameters λ. But in
this case, there is no need to introduce ζl, because
the normalizing constants Zl(λ) are canceled out
as seen from (7). Specifically, the learning rate γλ
and the L2 regularization are configured the same
as in TDRF training. A fixed number of iterations
with t0 = 5000 is performed. The total iteration
number is 10000, which is similar to the iteration
number used in TDRF training.

In order to calculate perplexity, we need to
estimate the global normalizing constant Z(λ) =∑m

l=1 Zl(λ) for the WSME model. Similarly
as in (Tan, 2015), we apply the SA algorithm
in Section 3.2 to estimate the log normalizing
constants ζ, while fixing the parameters λ to be
those already estimated from the WSME model
and using uniform probabilities πl ≡ m−1.

The resulting PPLs of these WSME models are
extremely poor. The average test log-likelihoods
per sentence for these two WSME models are

792

−494 and −509 respectively. However, the W-
ERs from using the trained WSME models in
hypothesis re-ranking are not as poor as would be
expected from their PPLs. This appears to indicate
that the estimated WSME parameters are not so
bad for relative ranking. Moreover, when the
estimated λ and ζ are substituted into our TDRF
model (6) with the empirical length probabilities
πl, the “corrected” average test log-likelihoods
per sentence for these two sets of parameters are
improved to be −152 and −119 respectively. The
average test log-likelihoods are both −96 for the
two corresponding TDRF models in Table 3. This
is some evidence for the model deficiency of the
WSME distribution as defined in (3), and intro-
ducing the empirical length probabilities gives a
more reasonable model assumption.

TDRF vs conditional ME. After training, TDRF
models are computationally more efficient in com-
puting sentence probability, simply summing up
weights for the activated features in the sentence.
The conditional ME models (Khudanpur and Wu,
2000; Roark et al., 2004) suffer from the expen-
sive computation of local normalization factors.
This computational bottleneck hinders their use
in practice (Goodman, 2001b; Rosenfeld et al.,
2001). Partly for this reason, although building
conditional ME models with sophisticated features
as in Table 1 is theoretically possible, such work
has not been pursued so far.

TDRF vs RNN. The RNN models suffer from
the expensive softmax computation in the output
layer 8. Empirically in our experiments, the aver-
age time costs for re-ranking of the 1000-best list
for a sentence are 0.16 sec vs 40 sec, based on
TDRF and RNN respectively (no GPU used).

6 Related Work

While there has been extensive research on con-
ditional LMs, there has been little work on the
whole-sentence LMs, mainly in (Rosenfeld et al.,
2001; Amaya and Benedı́, 2001; Ruokolainen et
al., 2010). Although the whole-sentence approach
has potential benefits, the empirical results of pre-
vious WSME models are not satisfactory, almost
the same as traditional n-gram models. After
incorporating lexical and syntactic information,
a mere relative improvement of 1% and 0.4%

8This deficiency could be partly alleviated with
some speed-up methods, e.g. using word clustering
(Mikolov, 2012) or noise contrastive estimation (Mnih and
Kavukcuoglu, 2013).

respectively in perplexity and in WER is reported
for the resulting WSEM (Rosenfeld et al., 2001).
Subsequent studies of using WSEMs with gram-
matical features, as in (Amaya and Benedı́, 2001)
and (Ruokolainen et al., 2010), report perplexity
improvement above 10% but no WER improve-
ment when using WSEMs alone.

Most RF modeling has been restricted to fixed-
dimensional spaces 9. Despite recent progress,
fitting RFs of moderate or large dimensions re-
mains to be challenging (Koller and Friedman,
2009; Mizrahi et al., 2013). In particular, the
work of (Pietra et al., 1997) is inspiring to us,
but the improved iterative scaling (IIS) method
for parameter estimation and the Gibbs sampler
are not suitable for even moderately sized models.
Our TDRF model, together with the joint SA al-
gorithm and trans-dimensional mixture sampling,
are brand new and lead to encouraging results for
language modeling.

7 Conclusion

In summary, we have made the following contri-
butions, which enable us to successfully train T-
DRF models and obtain encouraging performance
improvement.
• The new TDRF model and the joint SA train-

ing algorithm, which simultaneously updates
the model parameters and normalizing con-
stants while using trans-dimensional mixture
sampling.
• Several additional innovations including ac-

celerating SA iterations by using Hessian
information, introducing word classing to ac-
celerate the sampling operation and improve
the smoothing behavior of the models, and
parallelization of sampling.

In this work, we mainly explore the use of fea-
tures based on word and class information. Future
work with other knowledge sources and larger-
scale experiments is needed to fully exploit the
advantage of TDRFs to integrate richer features.

8 Acknowledgments

This work is supported by Toshiba Corporation,
National Natural Science Foundation of China
(NSFC) via grant 61473168, and Tsinghua Ini-
tiative. We thank the anonymous reviewers for
helpful comments on this paper.

9Using local fixed-dimensional RFs in sequential models
was once explored, e.g. temporal restricted Boltzmann
machine (TRBM) (Sutskever and Hinton, 2007).

793

References
Fredy Amaya and José Miguel Benedı́. 2001. Im-

provement of a whole sentence maximum entropy
language model using grammatical features. In
Association for Computational Linguistics (ACL).

Albert Benveniste, Michel Métivier, and Pierre
Priouret. 1990. Adaptive algorithms and stochastic
approximations. New York: Springer.

Olivier Bousquet and Leon Bottou. 2008. The
tradeoffs of large scale learning. In NIPS, pages
161–168.

Richard H Byrd, SL Hansen, Jorge Nocedal, and
Yoram Singer. 2014. A stochastic quasi-newton
method for large-scale optimization. arXiv preprint
arXiv:1401.7020.

Stanley F. Chen and Joshua Goodman. 1999. An em-
pirical study of smoothing techniques for language
modeling. Computer Speech & Language, 13:359–
394.

Hanfu Chen. 2002. Stochastic approximation and its
applications. Springer Science & Business Media.

Stanley F. Chen. 2009. Shrinking exponential lan-
guage models. In Proc. of Human Language Tech-
nologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics.

Joshua Goodman. 2001a. A bit of progress in language
modeling. Computer Speech & Language, 15:403–
434.

Joshua Goodman. 2001b. Classes for fast maximum
entropy training. In Proc. of International Confer-
ence on Acoustics, Speech, and Signal Processing
(ICASSP).

Peter J. Green. 1995. Reversible jump markov
chain monte carlo computation and bayesian model
determination. Biometrika, 82:711–732.

Ming Gao Gu and Hong-Tu Zhu. 2001. Maxi-
mum likelihood estimation for spatial models by
markov chain monte carlo stochastic approximation.
Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 63:339–355.

Sanjeev Khudanpur and Jun Wu. 2000. Maximum en-
tropy techniques for exploiting syntactic, semantic
and collocational dependencies in language model-
ing. Computer Speech & Language, 14:355–372.

Daphne Koller and Nir Friedman. 2009. Probabilistic
graphical models: principles and techniques. MIT
press.

Faming Liang, Chuanhai Liu, and Raymond J Carroll.
2007. Stochastic approximation in monte carlo
computation. Journal of the American Statistical
Association, 102(477):305–320.

Sven Martin, Jörg Liermann, and Hermann Ney. 1998.
Algorithms for bigram and trigram word clustering.
Speech Communication, 24:19–37.

Tomas Mikolov, Stefan Kombrink, Lukas Burget,
Jan H Cernocky, and Sanjeev Khudanpur. 2011.
Extensions of recurrent neural network language
model. In Proc. of International Conference on
Acoustics, Speech and Signal Processing (ICASSP).

Tomáš Mikolov. 2012. Statistical language models
based on neural networks. Ph.D. thesis, Brno
University of Technology.

Yariv Dror Mizrahi, Misha Denil, and Nando de Fre-
itas. 2013. Linear and parallel learning of markov
random fields. arXiv preprint arXiv:1308.6342.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive
estimation. In Neural Information Processing Sys-
tems (NIPS).

Stephen Della Pietra, Vincent Della Pietra, and John
Lafferty. 1997. Inducing features of random fields.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19:380–393.

Brian Roark, Murat Saraclar, Michael Collins, and
Mark Johnson. 2004. Discriminative language
modeling with conditional random fields and the
perceptron algorithm. In Proceedings of the 42nd
Annual Meeting on Association for Computational
Linguistics (ACL), page 47.

Ronald Rosenfeld, Stanley F. Chen, and Xiaojin Zhu.
2001. Whole-sentence exponential language mod-
els: a vehicle for linguistic-statistical integration.
Computer Speech & Language, 15:55–73.

Ronald Rosenfeld. 1997. A whole sentence maximum
entropy language model. In Proc. of Automatic
Speech Recognition and Understanding (ASRU).

Teemu Ruokolainen, Tanel Alumäe, and Marcus Do-
brinkat. 2010. Using dependency grammar features
in whole sentence maximum entropy language mod-
el for speech recognition. In Baltic HLT.

Holger Schwenk. 2007. Continuous space language
models. Computer Speech & Language, 21:492–
518.

Ilya Sutskever and Geoffrey E Hinton. 2007. Learn-
ing multilevel distributed representations for high-
dimensional sequences. In International Confer-
ence on Artificial Intelligence and Statistics (AIS-
TATS).

Zhiqiang Tan. 2015. Optimally adjusted mixture sam-
pling and locally weighted histogram. In Technical
Report, Department of Statistics, Rutgers University.

Laurent Younes. 1989. Parametric inference for
imperfectly observed gibbsian fields. Probability
theory and related fields, 82:625–645.

794

