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Abstract

Latent variable topic models such as La-
tent Dirichlet Allocation (LDA) can dis-
cover topics from text in an unsupervised
fashion. However, scaling the models up
to the many distinct topics exhibited in
modern corpora is challenging. “Flat”
topic models like LDA have difficulty
modeling sparsely expressed topics, and
richer hierarchical models become compu-
tationally intractable as the number of top-
ics increases.

In this paper, we introduce efficient meth-
ods for inferring large topic hierarchies.
Our approach is built upon the Sparse
Backoff Tree (SBT), a new prior for la-
tent topic distributions that organizes the
latent topics as leaves in a tree. We show
how a document model based on SBTs
can effectively infer accurate topic spaces
of over a million topics. We introduce a
collapsed sampler for the model that ex-
ploits sparsity and the tree structure in or-
der to make inference efficient. In exper-
iments with multiple data sets, we show
that scaling to large topic spaces results in
much more accurate models, and that SBT
document models make use of large topic
spaces more effectively than flat LDA.

1 Introduction

Latent variable topic models, such as Latent
Dirichlet Allocation (Blei et al., 2003), are popu-
lar approaches for automatically discovering top-
ics in document collections. However, learning
models that capture the large numbers of distinct
topics expressed in today’s corpora is challenging.
While efficient methods for learning large topic
models have been developed (Li et al., 2014; Yao
et al., 2009; Porteous et al., 2008), these methods

have focused on “flat” topic models such as LDA.
Flat topic models over large topic spaces are prone
to overfitting: even in a Web-scale corpus, some
words are expressed rarely, and many documents
are brief. Inferring a large topic distribution for
each word and document given such sparse data
is challenging. As a result, LDA models in prac-
tice tend to consider a few thousand topics at most,
even when training on billions of words (Mimno et
al., 2012).

A promising alternative to flat topic models is
found in recent hierarchical topic models (Paisley
et al., 2015; Blei et al., 2010; Li and McCallum,
2006; Wang et al., 2013; Kim et al., 2013; Ahmed
et al., 2013). Topics of words and documents can
be naturally arranged into hierarchies. For exam-
ple, an article on the topic of the Chicago Bulls is
also relevant to the more general topics of NBA,
Basketball, and Sports. Hierarchies can combat
data sparsity: if data is too sparse to place the
term “Pau Gasol” within the Chicago Bulls topic,
perhaps it can be appropriately modeled at some-
what less precision within the Basketball topic. A
hierarchical model can make fine-grained distinc-
tions where data is plentiful, and back-off to more
coarse-grained distinctions where data is sparse.
However, current hierarchical models are hindered
by computational complexity. The existing infer-
ence methods for the models have runtimes that
increase at least linearly with the number of top-
ics, making them intractable on large corpora with
large numbers of topics.

In this paper, we present a hierarchical topic
model that can scale to large numbers of dis-
tinct topics. Our approach is built upon a new
prior for latent topic distributions called a Sparse
Backoff Tree (SBT). SBTs organize the latent top-
ics as leaves in a tree, and smooth the distribu-
tions for each topic with those of similar top-
ics nearby in the tree. SBT priors use absolute
discounting and learned backoff distributions for
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smoothing sparse observation counts, rather than
the fixed additive discounting utilized in Dirichlet
and Chinese Restaurant Process models. We show
how the SBT’s characteristics enable a novel col-
lapsed sampler that exploits the tree structure for
efficiency, allowing SBT-based document models
(SBTDMs) that scale to hierarchies of over a mil-
lion topics.

We perform experiments in text modeling and
hyperlink prediction, and find that SBTDM is
more accurate compared to LDA and the re-
cent nested Hierarchical Dirichlet Process (nHDP)
(Paisley et al., 2015). For example, SBTDMs
with a hundred thousand topics achieve perplex-
ities 28-52% lower when compared with a stan-
dard LDA configuration using 1,000 topics. We
verify that the empirical time complexity of in-
ference in SBTDM increases sub-linearly in the
number of topics, and show that for large topic
spaces SBTDM is more than an order of magni-
tude more efficient than the hierarchical Pachinko
Allocation Model (Mimno et al., 2007) and nHDP.
Lastly, we release an implementation of SBTDM
as open-source software.1

2 Previous Work

The intuition in SBTDM that topics are naturally
arranged in hierarchies also underlies several other
models from previous work. Paisley et al. (2015)
introduce the nested Hierarchical Dirichlet Pro-
cess (nHDP), which is a tree-structured generative
model of text that generalizes the nested Chinese
Restaurant Process (nCRP) (Blei et al., 2010).
Both the nCRP and nHDP model the tree struc-
ture as a random variable, defined over a flexi-
ble (potentially infinite in number) topic space.
However, in practice the infinite models are trun-
cated to a maximal size. We show in our experi-
ments that SBTDM can scale to larger topic spaces
and achieve greater accuracy than nHDP. To our
knowledge, our work is the first to demonstrate a
hierarchical topic model that scales to more than
one million topics, and to show that the larger
models are often much more accurate than smaller
models. Similarly, compared to other recent hi-
erarchical models of text and other data (Petinot
et al., 2011; Wang et al., 2013; Kim et al., 2013;
Ahmed et al., 2013; Ho et al., 2010), our focus is
on scaling to larger data sets and topic spaces.

1http://websail.cs.northwestern.edu/
projects/sbts/

The Pachinko Allocation Model (PAM) intro-
duced by Li & McCallum (Li and McCallum,
2006) is a general approach for modeling corre-
lations among topic variables in latent variable
models. Hierarchical organizations of topics, as
in SBT, can be considered as a special case of a
PAM, in which inference is particularly efficient.
We show that our model is much more efficient
than an existing PAM topic modeling implemen-
tation in Section 5.

Hu and Boyd-Graber (2012) present a method
for augmenting a topic model with known hier-
archical correlations between words (taken from
e.g. WordNet synsets). By contrast, our focus
is on automatically learning a hierarchical orga-
nization of topics from data, and we demonstrate
that this technique improves accuracy over LDA.
Lastly, SparseLDA (Yao et al., 2009) is a method
that improves the efficiency of inference in LDA
by only generating portions of the sampling distri-
bution when necessary. Our collapsed sampler for
SBTDM utilizes a related intuition at each level of
the tree in order to enable fast inference.

3 Sparse Backoff Trees

In this section, we introduce the Sparse Backoff
Tree, which is a prior for a multinomial distribu-
tion over a latent variable. We begin with an ex-
ample showing how an SBT transforms a set of
observation counts into a probability distribution.
Consider a latent variable topic model of text doc-
uments, similar to LDA (Blei et al., 2003) or pLSI
(Hofmann, 1999). In the model, each token in a
document is generated by first sampling a discrete
latent topic variable Z from a document-specific
topic distribution, and then sampling the token’s
word type from a multinomial conditioned on Z.

We will focus on the document’s distribution
over topics, ignoring the details of the word types
for illustration. We consider a model with 12
latent topics, denoted as integers from the set
{1, . . . , 12}. Assume we have assigned latent
topic values to five tokens in the document, specif-
ically the topics {1, 4, 4, 5, 12}. We indicate the
number of times topic value z has been selected as
nz (Figure 1).

Given the five observations, the key question
faced by the model is: what is the topic distribu-
tion over a sixth topic variable from the same doc-
ument? In the case of the Dirichlet prior utilized
for the topic distribution in LDA, the probability
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Figure 1: An example Sparse Backoff Tree over 12 latent variable values.

that the sixth topic variable has value z is propor-
tional to nz + α, where α is a hyperparameter of
the model.

SBT differs from LDA in that it organizes the
topics into a tree structure in which the topics are
leaves (see Figure 1). In this paper, we assume
the tree structure, like the number of latent top-
ics, is manually selected in advance. With an SBT
prior, the estimate of the probability of a topic z
is increased when nearby topics in the tree have
positive counts. Each interior node a of the SBT
has a discount δa associated with it. The SBT
transforms the observation counts nz into pseudo-
counts (shown in the last row in the figure) by
subtracting δa from each non-zero descendent of
each interior node a, and re-distributing the sub-
tracted value uniformly among the descendants of
a. For example, the first state has a total of 0.90
subtracted from its initial count n1 = 1, and then
receives 0.30/3 from its parent, 1.08/6 from its
grandparent, and 0.96/12 from the root node for
a total pseudo-count of 0.46. The document’s dis-
tribution over a sixth topic variable is then propor-
tional to these pseudo-counts.

When each document tends to discuss a set of
related topics, the SBT prior will assign a higher
likelihood to the data when related topics are lo-
cated nearby in the tree. Thus, by inferring latent
variable values to maximize likelihood, nearby
leaves in the tree will come to represent related
topics. SBT, unlike LDA, encodes the intuition
that a topic becomes more likely in a document
that also discusses other, related topics. In the
example, the pseudo-count the SBT produces for
topic six (which is related to other topics that oc-
cur in the document) is almost three times larger
than that of topic eight, even though the observa-

tion counts are zero in each case. In LDA, top-
ics six and eight would have equal pseudo-counts
(proportional to α).

3.1 Definitions
LetZ be a discrete random variable that takes inte-
ger values in the set {1, . . . , L}. Z is drawn from a
multinomial parameterized by a vector θ of length
L.

Definition 1 A Sparse Backoff Tree
SBT (T , δθ, Q(z)) for the discrete random
variable Z consists of a rooted tree T containing
L leaves, one for each value of Z; a coefficient
δa > 0 for each interior node a of T ; and a
backoff distribution Q(z).

Figure 1 shows an example SBT. The example
includes simplifications we also utilize in our ex-
periments, namely that all nodes at a given depth
in the tree have the same number of children and
the same δ value. However, the inference tech-
niques we present in Section 4 are applicable to
any tree T and set of coefficients {δa}.

For a given SBT S, let ∆S(z) indicate the sum
of all δa values for all ancestors a of leaf node z
(i.e., all interior nodes on the path from the root to
z). For example, in the figure, ∆S(z) = 0.90 for
all z. This amount is the total absolute discount
that the SBT applies to the random variable value
z.

We define the SBT prior implicitly in terms of
the posterior distribution it induces on a random
variable Z drawn from a multinomial θ with an
SBT prior, after θ is integrated out. Let the vector
n = [n1, . . . , nL] denote the sufficient statistics
for any given observations drawn from θ, where nz
is the number of times value z has been observed.
Then, the distribution over a subsequent draw of Z
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given SBT prior S and observations n is defined
as:

P (Z = z|S,n) ≡ (1)
max(nz −∆S(z), 0) +B(S, z,n)Q(z)

K(S,
∑

i ni)

where K(S,
∑

i ni) is a normalizing constant that
ensures the distribution sums to one for any fixed
number of observations

∑
i ni, andB(S, z,n) and

Q(z) are defined as below.
The quantity B(S, z,n) expresses how much of

the discounts from all other leaves z′ contribute to
the probability of z. For an interior node a, let
desc(a) indicate the number of leaves that are de-
scendants of a, and let desc+(a) indicate the num-
ber of leaf descendants z of a that have non-zero
values nz . Then the contribution of the discount
δa of node a to each of its descendent leaves is
b(a,n) = δadesc

+(a)/desc(a). We then define
B(S, z,n) to be the sum of b(a,n) over all inte-
rior nodes a on the path from the root to z.

The function Q(z) is a backoff distribution. It
allows the portion of the discount probability mass
that is allocated to z to vary with a proposed dis-
tribution Q(z). This is useful because in practice
the SBT is used as a prior for a conditional distri-
bution, for example the distribution P (Z|w) over
topic Z given a word w in a topic model of text. In
that case, an estimate of P (Z|w) for a rare word
w may be improved by “mixing in” the marginal
topic distribution Q(z) = P (Z = z), analogous
to backoff techniques in language modeling. Our
document model described in the following sec-
tion utilizes two different Q functions, one uni-
form (Q(z) = 1/T ) and another related to the
marginal topic distribution P (z).

4 The SBT Document Model

We now present the SBT document model, a prob-
abilistic latent variable model of text documents
that utilizes SBT priors. We then provide a col-
lapsed sampler for the model that exploits the tree
structure to make inference more efficient.

Our document model follows the Latent Dirich-
let Allocation (LDA) Model (Blei et al., 2003), il-
lustrated graphically in Figure 2 (left). In LDA,
a corpus of documents is generated by sampling
a topic distribution θd for each document d, and
also a distribution over words φz for each topic.
Then, in document d each token w is generated
by first sampling a topic z from the multinomial

P (Z|θd), and then sampling w from the multino-
mial P (W |Z, φz).

The SBTDM is the same as LDA, with one
significant difference. In LDA, the parameters θ
and φ are sampled from two Dirichlet priors, with
separate hyperparameters α and β. In SBTDM,
the parameters are instead sampled from particu-
lar SBT priors. Specifically, the generative model
is:

θ ∼ SBT (T , δθ, Qθ(z) = 1/T )
φ′ ∼ SBT (T , δφ, Qφ(z) = P ∗(z))
λ ∼ Dirichlet(α′)

Z|θ ∼ Discrete(θ)
W |z, φ′, λ ∼ Discrete(λφ′.,z/P (z|φ′))
The variable φ′ represents the distribution of

topics given words, P (Z|W ). The SBTDM sam-
ples a distribution φ′w over topics for each word
type w in the vocabulary (of size V ). In SBTDM,
the random variable φ′w has dimension L, rather
than V for φz as in LDA. We also draw a prior
word frequency distribution, λ = {λw} for each
word w. 2 We then apply Bayes Rule to obtain
the conditional distributions P (W |Z, φ′) required
for inference. The expression λφ′.,z/P (z|φ′) de-
notes the normalized element-wise product of two
vectors of length V : the prior distribution λ over
words, and the vector of probabilities P (z|w) =
φ′w,z over words w for the given topic z.

The SBT priors for φ′ and θ share the same tree
structure T , which is fixed in advance. The SBTs
have different discount factors, denoted by the hy-
perparameters δθ and δφ. Finally, the backoff dis-
tribution for θ is uniform, whereas φ’s backoff dis-
tribution P ∗ is defined below.

4.1 Backoff distribution P ∗(z)
SBTDM requires choosing a backoff distribution
P ∗(z) for φ′. As we now show, it is possible to
select a natural backoff distribution P ∗(z) that en-
ables scalable inference.

Given a set of observations n, we will set P ∗(z)
proportional to P (z|Sφ,n). This is a recursive
definition, because P (z|Sφ,n) depends on P ∗(z).
Thus, we define:

P ∗(z) ≡
∑

w max(nwz −∆S(z), 0)
C −∑

w Bw(Sφ, z,n)
(2)

2The word frequency distribution does not impact the in-
ferred topics (because words are always observed), and in our
experiments we simply use maximum likelihood estimates
for λw (i.e., setting α′ to be negligibly small). Exploring
other word frequency distributions is an item of future work.
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Figure 2: The Latent Dirichlet Allocation Model (left) and our SBT Document Model (right).

where C >
∑

w Bw(Sφ, z,n) is a hyperparame-
ter, nwz is the number of observations of topic z
for word w in n, and Bw indicates the function
B(Sφ, z,n) defined in Section 3.1, for the partic-
ular wordw. That is,

∑
w Bw(Sφ, z,n) is the total

quantity of smoothing distributed to topic z across
all words, before the backoff distribution P ∗(z) is
applied.

The form of P ∗(z) has two key advantages.
The first is that setting P ∗(z) proportional to
the marginal topic probability allows SBTDM to
back-off toward marginal estimates, a success-
ful technique in language modeling (Katz, 1987)
(where it has been utilized for word probabilities,
rather than topic probabilities). Secondly, setting
the backoff distribution in this way allows us to
simplify inference, as described below.

4.2 Inference with Collapsed Sampling
Given a corpus of documents D, we infer the val-
ues of the hidden variables Z using the collapsed
Gibbs sampler popular in Latent Dirichlet Alloca-
tion models (Griffiths and Steyvers, 2004). Each
variable Zi is sampled given the settings of all
other variables (denoted as n−i):

P (Zi = z|n−i, D) ∝ P (z|n−i, T , δθ)·
P (wi|z,n−i, T , δφ) (3)

The first term on the right-hand side is given by
Equation 1. The second can be rewritten as:

P (wi|z,n−i, T , δφ) =
P (z, wi|n−i, T , δφ)
P (z|n−i, T , δφ)

(4)

4.3 Efficient Inference Implementation
The primary computational cost when scaling to
large topic spaces involves constructing the sam-
pling distribution. Both LDA with collapsed sam-
pling and SBTDM share an advantage in space

Algorithm 1 Compute the sampling distribution
for a product of two multinomials with SBT priors
with Q(z) = 1

function INTERSECT(SBT Node ar , SBT Node al)
if ar, al are leaves then

τ(i)← τ(ar)τ(al)
return i

end if
i.r ← ar

r(i)← b(al) ∗ τ(ar)
i.l← al ; b(i.l)← 0
l(i)← b(ar) ∗ τ(al)− b(ar)b(al)desc(ar)
τ(i)+ = r(i) + l(i)
for all child c non-zero for ar and al do

ic ← INTERSECT(ar.c, al.c)
i.children += ic
τ(i) += τ(ic)

end for
return i

end function

complexity: the model parameters are specified by
a sparse set of non-zero counts denoting how of-
ten tokens of each word or document are assigned
to each topic. However, in general the sampling
distribution for SBTDM has non-uniform proba-
bilities for each of L different latent variable val-
ues. Thus, even if many parameters are zero, a
naive approach that computes the complete sam-
pling distribution will still take time linear in L.

However, in SBTs the sampling distribution can
be constructed efficiently using a simple recursive
algorithm that exploits the structure of the tree.
The result is an inference algorithm that often re-
quires far less than linear time in L, as we verify
in our experiments.

First, we note that P (z, wi|n−i, T , δφ) is pro-
portional to the sum of two quantities: the dis-
counted count max(nz −∆S , 0) and the smooth-
ing probability mass B(S, z,n)Q(z). By choos-
ing Q(z) = P ∗(z), we can be ensured that P ∗(z)
normalizes this sum. Thus, the backoff distri-
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bution cancels through the normalization. This
means we can normalize the SBT for φ′ in ad-
vance by scaling the non-zero counts by a factor of
1/P ∗(z), and then at inference time we need only
multiply pointwise two multinomials with SBT
priors and uniform backoff distributions.

The intersection of two multinomials drawn
from SBT priors with uniform backoff distribu-
tions can be performed efficiently for sparse trees.
The algorithm relies on two quantities defined for
each node of each tree. The first, b(a,n), was de-
fined in Section 3. It denotes the smoothing that
the interior node a distributes (uniformly) to each
of its descendent leaves. We denote b(a,n) as b(a)
in this section for brevity. The second quantity,
τ(a), expresses the total count mass of all leaf de-
scendants of a, excluding the smoothing from an-
cestors of a.

With the quantities b(a) and τ(a) for all a, we
can efficiently compute the sampling distribution
of the product of two SBT-governed multinomi-
als (which we refer to as an SBTI). The method
is shown in Algorithm 1. It takes two SBT nodes
as arguments; these are corresponding nodes from
two SBT priors that share the same tree structure
T . It returns an SBTI, a data structure representing
the sampling distribution.

The efficiency of Algorithm 1 is reflected in
the fact that the algorithm only recurses for child
nodes c with non-zero τ(c) for both of the SBT
node arguments. Because such cases will be rare
for sparse trees, often Algorithm 1 only needs to
traverse a small portion of the original SBTs in or-
der to compute the sampling distribution exactly.
Our experiments illustrate the efficiency of this al-
gorithm in practice.

Finally, we can efficiently sample from either
an SBTI or a single SBT-governed multinomial.
The sampling methods are straightforward recur-
sive methods, supplied in Algorithms 2 and 3.

Algorithm 2 Sample(SBT Node a)
procedure SAMPLE(SBT Node a)

if a is a leaf then return a
end if
Sample from {b(a)desc(a), τ(a)− b(a)desc(a)}.
if back-off distribution b(a)desc(a) selected then

return Uniform[a’s descendents]
else

Sample a’s child c ∼ τ(c)
return SAMPLE(c)

end if
end procedure

Algorithm 3 Sampling from an SBTI
function SAMPLE(SBTI Node i)

if i is a leaf then return i
end if
Sample from {r(i), l(i), τ(i)− r(i)− l(i)}
if right distribution r(i) selected then

return SAMPLE(i.r)
else

if left distribution l(i) selected then
return SAMPLE(i.l)

else
Sample i’s child c ∼ τ(c)
return SAMPLE(c)

end if
end if

end function

4.4 Expansion

Much of the computational expense encountered
in inference with SBTDM occurs shortly after ini-
tialization. After a slow first several sampling
passes, the conditional distributions over topics
for each word and document become concentrated
on a sparse set of paths through the SBT. From
that point forward, sampling is faster and requires
much less memory.

We utilize the hierarchical organization of the
topic space in SBTs to side-step this computa-
tional complexity by adding new leaves to the
SBTs of a trained SBTDM. This is a “coarse-
to-fine” (Petrov and Charniak, 2011) training ap-
proach that we refer to as expansion. Using ex-
pansion, the initial sampling passes of the larger
model can be much more time and space efficient,
because they leverage the already-sparse structure
of the smaller trained SBTDM.

Our expansion method takes as input an inferred
sampling distribution n for a given tree T . The
algorithm adds k new branches to each leaf of T
to obtain a larger tree T ′. We then transform the
sampling state by replacing each ni ∈ n with one
of its children in T ′. For example, in Figure 1,
expanding with k = 3 would result in a new tree
containing 36 topics, and the single observation of
topic 4 in T would be re-assigned randomly to one
of the topics {10, 11, 12} in T ′.

5 Experiments

We now evaluate the efficiency and accuracy of
SBTDM. We evaluate SBTs on two data sets, the
RCV1 Reuters corpus of newswire text (Lewis et
al., 2004), and a distinct data set of Wikipedia
links, WPL. We consider two disjoint subsets of
RCV1, a small training set (RCV1s) and a larger
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training set (RCV1).
We compare the accuracy and efficiency of

SBTDM against flat LDA and two existing hier-
archical models, the Pachinko Allocation Model
(PAM) and nested Hierarchical Dirichlet Process
(nHDP).

To explore how the SBT structure impacts mod-
eling performance, we experiment with two dif-
ferent SBTDM configurations. SBTDM-wide is
a shallow tree in which the branching factor in-
creases from the root downward in the sequence
3, 6, 6, 9, 9, 12, 12. Thus, the largest model we
consider has 3 ·6 ·6 ·9 ·9 ·12 ·12 = 1,259,712 dis-
tinct latent topics. SBTDM-tall has lower branch-
ing factors of either 2 or 3 (so in our evaluation its
depth ranges from 3 to 15). As in SBTDM-wide,
in SBTDM-tall the lower branching factors occur
toward the root of the tree. We vary the number
of topics by considering balanced subtrees of each
model. For nHDP, we use the same tree structures
as in SBT-wide. In preliminary experiments, using
the tall structure in nHDP yielded similar accuracy
but was somewhat slower.

Similar to our LDA implementation, SBTDM
optimizes hyperparameter settings as sampling
proceeds. We use local beam search to choose
new hyperparameters that maximize leave-one-
out likelihood for the distributions P (Z|d) and
P (Z|w) on the training data, evaluating the pa-
rameters against the current state of the sampler.

We trained all models by performing 100 sam-
pling passes through the full training corpus (i.e.,
approximately 10 billion samples for RCV1, and
8 billion samples for WPL). We evaluate perfor-
mance on held-out test sets of 998 documents for
RCV1 (122,646 tokens), and 200 documents for
WPL (84,610 tokens). We use the left-to-right al-
gorithm (Wallach et al., 2009) over a randomized
word order with 20 particles to compute perplex-
ity. We re-optimize the LDA hyperparameters at
regular intervals during sampling.

5.1 Small Corpus Experiments

We begin with experiments over a small corpus
to highlight the efficiency advantages of SBTDM.

Data Set Tokens Vocabulary Documents
RCV1s 2,669,093 46,130 22,149
RCV1 101,184,494 283,911 781,262
WPL 82,154,551 1,141,670 199,000

Table 1: Statistics of the three training corpora.

As argued above, existing hierarchical models re-
quire inference that becomes expensive as the
topic space increases in size. We illustrate this by
comparing our model with PAM and nHDP. We
also compare against a fast “flat” LDA implemen-
tation, SparseLDA, from the MALLET software
package (McCallum, 2002).

For SBTDM we utilize a parallel inference ap-
proach, sampling all variables using a fixed esti-
mate of the counts n, and then updating the counts
after each full sampling pass (as in (Wang et al.,
2009)). The SparseLDA and nHDP implementa-
tions are also parallel. All parallel methods use
15 threads. The PAM implementation provided in
MALLET is single-threaded.

Our efficiency measurements are shown in Fig-
ure 3. We plot the mean wall-clock time to per-
form 100 sampling passes over the RCV1s corpus,
starting from randomly initialized models (i.e.
without expansion in SBTDM). For the largest
plotted topic sizes for PAM and nHDP, we esti-
mate total runtime using a small number of iter-
ations. The results show that SBTDM’s time to
sample increases well below linear in the number
of topics. Both SBTDM methods have runtimes
that increase at a rate substantially below that of
the square root of the number of topics (plotted
as a blue line in the figure for reference). For the
largest numbers of topics in the plot, when we in-
crease the number of topics by a factor of 12, the
time to sample increases by less than a factor of
1.7 for both SBT configurations.

We also evaluate the accuracy of the mod-
els on the small corpus. We do not compare
against PAM, as the MALLET implementation
lacks a method for computing perplexity for a
PAM model. The results are shown in Table 3.
The SBT models tend to achieve lower perplexity
than LDA, and SBTDM-tall performs slightly bet-
ter than SBTDM-wide for most topic sizes. The
best model, SBT-wide with 8,748 topics, achieves
perplexity 14% lower than the best LDA model
and 2% lower than the best SBTDM-tall model.
The LDA model overfits for the largest topic con-
figuration, whereas at that size both SBT models
remain at least as accurate as any of the LDA mod-
els in Table 3.

We also evaluated using the topic coherence
measure from (Mimno et al., 2011), which re-
flects how well the learned topics reflect word co-
occurrence statistics in the training data. Follow-
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Figure 3: Time (in seconds) to perform a sampling
pass over the RCV1s corpus as number of topics
varies, plotted on a log-log scale. The SBT models
scale sub-linearly in the number of topics.

ing recent experiments with the measure (Stevens
et al., 2012), we use ε = 10−12 pseudo-co-
occurrences of each word pair and we evaluate the
average coherence using the top 10 words for each
topic. Table 2 shows the results. PAM, LDA, and
nHDP have better coherence at smaller topic sizes,
but SBT maintains higher coherence as the num-
ber of topics increases.

Topics LDA PAM nHDP SBTDM SBTDM
-wide -tall

18 -420.8 -421.2 -422.9 -444.3 -440.2
108 -434.8 -430.9 -554.3 -445.4 -445.8
972 -451.2 - -548.1 -443.3 -443.8
8748 -615.3 - - -444.3 -444.1

Table 2: Average topic coherence on the small
RCV1s corpus.

5.1.1 Evaluating Expansion
The results discussed above do not utilize ex-
pansion in SBTDM. To evaluate expansion, we
performed separate experiments in which we ex-
panded a 972-topic model trained on RCV1s to
initialize a 8,748-topic model. Compared to ran-
dom initialization, expansion improved efficiency
and accuracy. Inference in the expanded model
executed approximately 30% faster and used 70%
less memory, and the final 8,748-topic models had
approximately 10% lower perplexity.

5.2 Large Corpus Results
Our large corpus experiments are reported in Ta-
ble 4. Here, we compare the test set perplexity

of a single model for each topic size and model
type. We focus on SBTDM-tall for the large
corpora. We utilize expansion (see Section 4.4)
for SBTDM-tall models with more than a thou-
sand topics on each data set. The results show
that on both data sets, SBTDM-tall utilizes larger
numbers of topics more effectively. On RCV1,
LDA improves only marginally between 972 and
8,748 topics, whereas SBTDM-tall improves dra-
matically. For 8,748 topics, SBTDM-tall achieves
a perplexity score 17% lower than LDA model
on RCV1, and 29% lower on WPL. SBT im-
proves even further in larger topic configurations.
Training and testing LDA with our implementa-
tion using over a hundred thousand topics was not
tractable on our data sets due to space complexity
(the MALLET implementation exceeded our max-
imum 250G of heap space). As discussed above,
expansion enables SBTDM to dramatically reduce
space complexity for large topic spaces.

The results highlight the accuracy improve-
ments found from utilizing larger numbers of top-
ics than are typically used in practice. For exam-
ple, an SBTDM with 104,976 topics achieves per-
plexity 28-52% lower when compared with a stan-
dard LDA configuration using only 1,000 topics.

RCV1 WPL
# Topics LDA SBTDM-tall LDA SBTDM-tall
108 1,121 1,148 7,049 7,750
972 820 841 2,598 2,095
8,748 772 637 1,730 1,236
104,976 - 593 - 1,242
1,259,712 - 626 - -

Table 4: Model accuracy on large corpora (cor-
pus perplexity measure). The SBT model utilizes
larger numbers of topics more effectively.

5.3 Exploring the Learned Topics

Lastly, we qualitatively examine whether the
SBTDM’s learned topics reflect meaningful hi-
erarchical relationships. From an SBTDM of
104,976 topics trained on the Wikipedia links data
set, we examined the first 108 leaves (these are
contained in a single subtree of depth 5). 760
unique terms (i.e. Wikipedia pages) had positive
counts for the topics, and 500 of these terms were
related to radio stations.

The leaves appear to encode fine-grained sub-
categorizations of the terms. In Figure 4, we pro-
vide examples from one subtree of six topics (top-
ics 13-18). For each topic t, we list the top three
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Number of Topics
Model 18 108 972 8,748 104,976
LDA 1420 (16.3) 1016 (9.8) 844 (1.8) 845 (3.3) 1058 (4.1)
nHDP 1433 (19.6) 1446 (53.3) 1583 (157.7) - -
SBTDM-wide 1510 (31.5) 1091 (31.8) 797 (3.5) 723 (18.2) 844 (60.1)
SBTDM-tall 1480 (13.5) 1051 (9.1) 787 (10.5) 736 (3.2) 776 (14.1)

Table 3: Small training corpus (RCV1s) performance. Shown is perplexity averaged over three runs for
each method and number of topics, with standard deviation in parens. Both SBTDM models achieve
lower perplexity than LDA and nHDP for the larger numbers of topics.

Radio Stations 
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TN 
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WQMA 
KPGM 
WV, MS, 
OK stations 
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… … 
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… 

… 

Figure 4: An example of topics from a 104,976-
topic SBTDM defined over Wikipedia pages.

terms w (ranked by symmetric conditional prob-
ability, P (w|t)P (t|w)), and a specific categoriza-
tion that applies to the three terms. Interestingly,
as shown in the figure, the top terms for the six
topics we examined were all four-character “call
letters” for particular radio stations. Stations with
similar content or in nearby locations tend to clus-
ter together in the tree. For example, the two topics
focused on radio stations in Tennessee (TN) share
the same parent, as do the topics focused on North
Carolina (NC) AM stations. More generally, all
six topics focus on radio stations in the southern
US.

Figure 5 shows a different example, from a
model trained on the RCV1 corpus. In this ex-
ample, we first select only those terms that oc-
cur at least 2,000 times in the corpus and have
a statistical association with their topic that ex-
ceeds a threshold, and we again rank terms by
symmetric conditional probability. The 27-topic
subtree detailed in the figure appears to focus on
terms from major storylines in United States pol-
itics in early 1997, including El Niño, Lebanon,
White House Press Secretary Mike McCarry, and
the Senate confirmation hearings of CIA Director
nominee Tony Lake.
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Figure 5: An example of topics from an 8,748-
topic SBTDM defined over the RCV1 corpus.

6 Conclusion and Future Work

We introduced the Sparse Backoff Tree (SBT), a
prior for latent topic distributions that organizes
the latent topics as leaves in a tree. We pre-
sented and experimentally analyzed a document
model based on the SBT, called an SBTDM. The
SBTDM was shown to utilize large topic spaces
more effectively than previous techniques.

There are several directions of future work. One
limitation of the current work is that the SBT is
defined only implicitly. We plan to investigate
explicit representations of the SBT prior or re-
lated variants. Other directions include developing
methods to learn the SBT structure from data, as
well as applying the SBT prior to other tasks, such
as sequential language modeling.
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