
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 645–655,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Omnia Mutantur, Nihil Interit: Connecting Past with Present by Find-

ing Corresponding Terms across Time 

Yating Zhang*, Adam Jatowt*, Sourav S Bhowmick+, Katsumi Tanaka* 

*School of Informatics, Kyoto University 
+School of Computer Engineering, Nanyang Technological University 

{zhang,adam,tanaka}@dl.kuis.kyoto-u.ac.jp 

assourav@ntu.edu.sg 

  

Abstract 

In the current fast-paced world, people tend to 

possess limited knowledge about things from 

the past. For example, some young users may 

not know that Walkman played similar func-

tion as iPod does nowadays. In this paper, we 

approach the temporal correspondence prob-

lem in which, given an input term (e.g., iPod) 

and the target time (e.g. 1980s), the task is to 

find the counterpart of the query that existed 

in the target time. We propose an approach 

that transforms word contexts across time 

based on their neural network representations. 

We then experimentally demonstrate the ef-

fectiveness of our method on the New York 

Times Annotated Corpus.  

1 Introduction 

What music device 30 years ago played similar 

role as iPod does nowadays? Who are today’s 

Beatles? Who was a counterpart of President Chi-

rac in 1988? These and many other similar ques-

tions may be difficult to answer by average users 

(especially, by young ones). This is because peo-

ple tend to possess less knowledge about the past 

than about the contemporary time.  

    In this work we propose an effective method to 

solve the problem of finding counterpart terms 

across time. In particular, for an input pair of a 

term (e.g., iPod) and the target time (e.g. 1980s), 

we find the corresponding term that existed in the 

target time (walkman). We consider temporal 

counterparts to be terms which are semantically 

similar, yet, which existed in different time. 

    Knowledge of temporal counterparts can help 

to alleviate the problem of terminology gap for us-

ers searching within temporal document collec-

tions such as archives. For example, given a user’s 

query and the target time frame, a new modified 

query that represents the same meaning could be 

suggested to improve search results. Essentially, 

it would mean letting searchers use the knowledge 

they possess on the current world to perform 

search within unknown collections such as ones 

containing documents from the distant past. Fur-

thermore, solving temporal correspondence prob-

lem can help timeline construction, temporal sum-

marization, reference forecasting and can have ap-

plications in education. 

    The problem of temporal counterpart detection 

is however not trivial. The key difficulty comes 

from the change of the entire context that results 

in low overlap of context across time. In other 

words, it is difficult to find temporal counterpart 

terms by directly comparing context vectors 

across time. This fact is nicely portrayed by the 

Latin proverb: “omnia mutantur, nihil interit” (in 

English: “everything changes, nothing perishes”) 

which indicates that there are no completely static 

things, yet, many things and concepts are still sim-

ilar across time. Another challenge is the lack of 

training data. If we have had enough training pairs 

of input terms and their temporal counterparts, 

then it would have become possible to represent 

the task as a typical machine learning problem. 

However, it is difficult to collect multiple training 

pairs over various domains and for arbitrary time. 

    In view of the challenges mentioned above, we 

propose an approach that transforms term repre-

sentations from one vector space (e.g., one de-

rived from the present documents) to another vec-

tor space (e.g., one obtained from the past docu-

ments). Terms in both the vector spaces are repre-

sented by the distributed vector representation 

(Mikolov et al. 2013a; Mikolov et al. 2013c). Our 

method then matches the terms by comparing 

their relative positions in the vector spaces of dif-

ferent time periods alleviating the problem of low 

overlap between word contexts over time. It also 

does not require to manually prepare seed pairs of 

temporal counterparts. We further improve this 

method by automatically generating reference 

points that more precisely represent target terms 

in the form of local graphs. In result, our approach 

consists of finding global and local correspond-

ence between terms over time. 
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    To sum up, we make the following contribu-

tions in this paper: (1) we propose an efficient 

method to find temporal counterparts by trans-

forming the representation of terms within differ-

ent temporal spaces, (2) we then enhance the 

global correspondence method by considering 

also the local context of terms (local correspond-

ence) and (3) we perform extensive experiments 

on the New York Times Annotated Corpus 

(Sandhaus, 2008), including the search from the 

present to the past and vice versa, which prove the 

effectiveness of our approach.  

2 Global  Correspondence Across Time 

Let the base time denoted as TB mean the time pe-

riod associated with the input term and let the tar-

get time, TT, mean the time period in which we 

want to find this term’s counterparts. Typically, 

for users, the base time is the present time and the 

target time is some selected time period in the 

past. Note however, that we do not impose any re-

striction on the order and the distance of the both 

times. Hence, it is possible to search for present 

counterparts of terms that existed in the past. 

    In our approach we first represent all the terms 

in the base time and in the target time within their 

respective semantic vector spaces, χB and χT. 

Then, we construct a transformation matrix to 

bridge the two vector spaces. Algorithm 1 sum-

marizes the procedures needed to compute the 

global transformation. We will explain it in Sec-

tion 2.1 and 2.2.  

 

Algorithm 1 Overview of Global Transformation 

Input: query q, base time TB and target time TT 

1. Construct word representation model for 

corpus in the base time, D(TB), and in the 

target time, D(TT). (Section 2.1) 

2. Construct transformation matrix M be-

tween D(TB) and D(TT) by first collecting 

CFTs as training pairs and then learning M 

using Eq. 1. (Section 2.2) 

3. Rank the words in target time by their cor-

respondence scores (Eq. 2) 

Output: ranked list of temporal counterparts  

2.1 Vector space word representations 

Distributed representation of words by neural 

network was first proposed by Rumelhart et al. 

(1986). More recently, Mikolov et al. (2013a, 

2013c) introduced the Skip-gram model which 

utilizes a simplified neural network architecture 

for learning vector representations of words from 

unstructured text data. We apply this model due to 

its advantages: (1) it can capture precise semantic 

word relationships; (2) due to the simplified neu-

ral network architecture, the model can easily 

scale to millions of words. After applying the 

Skip-gram model, the documents in the base time, 

D(TB), are converted to a m×p matrix where n is 

the vocabulary size and p are the dimensions of 

feature vectors. Similarly, the documents in the 

target time, D(TT), are represented as a n×q matrix 

(as shown in Fig. 1).  

 

 
Figure 1: Word vector representations for the base 

and the target time. 

2.2 Transformation across vector spaces 

Our goal is to compare words in the base time and 

the target time in order to find temporal counter-

parts. However, it is impossible to directly com-

pare words in two different semantic vector 

spaces, as the features in both spaces have no di-

rect correspondence between each other (as can be 

seen in Fig. 1). To solve this problem, we propose 

to train a transformation matrix in order to build 

the connection between different vector spaces. 

The key idea is that the relative positions of words 

in each vector space should remain more or less 

stable. In other words, a temporal counterpart 

term should have similar relative position in its 

own vector space as the position of the queried 

term in the base time space. Fig. 2 conceptually 

portrays this idea as the correspondence between 

the context of Walkman and the context of iPod 

(only two dimensions are shown for simplicity).  

 
Figure 2: Conceptual view of the across-time 

transformation by matching similar relative geo-

metric positions in each space.   
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into the target vector space. Suppose we have K 

pairs of temporal counterparts {(1, w1),…,(k, 

wk,)} where i is a base time term and wi is its 

counterpart in the target time. Then the transfor-

mation matrix Μ can be computed by minimizing 

the differences between Μ∙i and wi as given in 

Eq. 1. The latter part of Eq. 1 is added as regular-

ization to overcome the problem of overfitting. In-

tuitively, matrix M is obtained by making sure that 

the sum of Euclidean 2-norms between trans-

formed query vectors and their counterparts is 

minimal on K seed query-counterpart pairs. Eq.1 

is used for solving regularized least squares prob-

lem (γ equals to 0.02). 
 

2

2
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2
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minarg MwMM

K

i
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  


 (1) 

 

    However, as mentioned before, the other chal-

lenge is that the training pairs are difficult to be 

obtained. It is non-trivial to prepare large enough 

training data that would also cover various do-

mains and any possible combinations of the base 

and target time periods. We apply here a simple 

trick that performs reasonably well. We select 

terms that (a) have the same syntactic forms in the 

base and the target time periods and (b) are fre-

quent in the both time periods. Such Common 

Frequent Terms (CFTs) are then used as the train-

ing data. Essentially, we assume here that very 

frequent terms (e.g., man, women, water, dog, see, 

three) change their meanings only to small extent. 

The reasoning is that the more frequently the word 

is used, the harder is to change its dominant mean-

ing (or the longer time it takes to make the mean-

ing shift) as the word is commonly used by many 

people. The phenomenon that words used more 

often in everyday language had evolved more 

slowly has been observed in several languages in-

cluding English, Spanish, Russian and Greek 

(Pargel et al., 2007; Lieberman et al. 2007). Then, 

using the common frequent terms as the training 

pairs, we solve Eq. 1 as the least squares problem. 

Note that the number of CFTs is heuristically de-

cided. In Sec. 5 we discuss transformation perfor-

mance with regards to different numbers of CFTs. 

    After obtaining matrix Μ, we can then trans-

form the base time term, q, first by multiplying its 

vector representation with the transformation ma-

trix Μ, and then by calculating the cosine similar-

ity between such transformed vector and the vec-

tors of all the terms in the target time. We call the 

result of this similarity comparison the corre-

spondence score between the input term q in the 

base time and a given term w in the target time 

(see Eq. 2). A term which has the highest corre-

spondence score could be then considered as tem-

poral counterpart of q.  
 

   wqMwqenceCorrespond ,cos,   (2) 

3 Local Correspondence across Time 

The method described above computes “global 

similarity” between terms across time. In result, 

the discovered counterparts can be similar to the 

query term for variety of reasons, some of which 

may not always lead to the best results. For in-

stance, the global transformation finds VCR as the 

temporal counterpart of iPod in 1980s simply be-

cause both of them can have recording and play-

back functions. Macintosh is another term judged 

to be strongly corresponding to iPod since both 

are produced by Apple. Clearly, although VCR 

and Macintosh are somewhat similar to iPod, they 

are far from being its counterparts. The global 

transformation, as presented in the previous sec-

tion, may thus fail to find correct counterparts due 

to neglecting fundamental relations between a 

query term and its context.  

    Inspired by these observations, we propose an-

other method for leveraging the informative con-

text terms of an input query term called reference 

points. They are used to help mapping the query 

to its correct temporal counterpart by considering 

the relation between the query and the reference 

points. We call this kind of similarity matching as 

local correspondence in contrast to global corre-

spondence described in Sec. 2. In the following 

sub-sections, we first introduce the desired char-

acteristics of the reference points and we then pro-

pose three computation methods for selecting 

them. Finally, we describe how to find temporal 

counterparts using the selected reference points. 

Algorithm 2 shows the process of computing the 

local transformation. 

 

Algorithm 2 Overview of Local Transformation 

Input: query q, base time TB and target time TT  

1. Construct the local graph of q by detecting 

the reference points in the context of q. 

(Section 3.1) 

2. Compute similarity of the local graph of q 

with all the local graphs of candidate tem-

poral counterparts in the target time. (Sec-

tion 3.2) 

3. Rank the candidate temporal counterparts 

in the target time by graph similarity score 

(Eq. 4). 

Output: ranked list of temporal counterparts 
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3.1 Reference points detection 

Reference points are terms in the query’s context 

which help to build connection between the query 

and its temporal counterparts. Reference points 

should have at least some of the following charac-

teristics: (a) have high relation with the query (b) 

be sufficiently general and (c) be independent 

from each other.  

    Note that it does not mean that the selected ref-

erence point should have exactly same surface 

form across time. Let us consider the previous ex-

ample query iPod and 1980s as the target time. 

The term music could be a candidate reference 

point for this query. Its temporal counterpart has 

exactly the same syntax form in the target time 

(music). However, mp3 could be another refer-

ence point. Even though mp3 did not exist in 

1980s, it can still be referred to storage devices at 

the target time such as cassette or disk helping 

thus to find the correct counterparts of iPod, that 

is, walkman and CD player. 

    Since different reference points will lead to dif-

ferent answers, we propose three methods for se-

lecting the reference points.  Each one considers 

the previously mentioned characteristics of refer-

ence points to different extent. Note that, if neces-

sary, the choice of the references points can be left 

to users.  

Term co-occurrence. The first approach satis-

fies the reference points’ characteristics of being 

related to the query. To select reference points us-

ing this approach we rank context terms by multi-

plying two factors: tf(c) and relatedness(q,c), 

where tf(c) is the frequency of a context term c, 

while relatedness(q,c) is the relation strength of q 

and c measured by the χ2 test. The test is con-

ducted based on the hypothesis that 

P(c|q)=P(c|q̄), according to which the term c has 

the same probability of occurring in documents 

containing query q and in the documents not con-

taining q. We then use the inverse of the p-value 

obtained from the test as relatedness(q,c).  

    Lexico-syntactic patterns. As the second ap-

proach we propose using hypernyms of terms. 

This corresponds to the characteristic of reference 

points to be general words. General terms are pre-

ferred rather than specific or detailed ones since 

the former are more probable to be associated with 

correct temporal counterparts1 . This is because 

detailed or specific terms are less likely to have 

corresponding terms in the target time. To detect 

                                                 
1 We have experimented with hyponyms and coordinate 

terms used as reference points and found the results are 

worse than when using hypernyms. 

hypernyms on the fly, we adopt the method pro-

posed by Ohshima et al. (2010) that uses bi-direc-

tional lexico-syntactic patterns due to its high 

speed and the lack of requirements for using ex-

ternal ontologies. The latter is important since, to 

the best of our knowledge, there are no ready on-

tology resources for arbitrary periods in the past 

(e.g., there seems to be no Wordnet for the past). 

    Semantic clustering. The last method chooses 

reference points from clusters of context terms. 

The purpose of applying clustering is to avoid 

choosing semantically similar reference points. 

Clustering helps to select typical terms from dif-

ferent sematic clusters to provide diverse informa-

tive context.  

    For grouping the context terms we utilize the 

bisecting k-means algorithm. It is superior over k-

means and the agglomerative approach (Steinbach 

et al., 2000) in terms of accuracy. The procedure 

of bisecting k-means is to, first, select a cluster to 

split and then to utilize the basic k-means to form 

two sub-clusters. These two steps are repeated un-

til the desired number of clusters is obtained. The 

distance between any two terms w1, w2 is the in-

verse of cosine similarity between their vector 

representations. 
 

),cos(1),( 2121 wwwwDist   (3) 

3.2 Local graph matching 

    Formulation. The local graph of query q is a 

star shaped graph, denoted as Sq
FB, in which q is 

the internal node, and the set of reference points, 

𝐹B = {f1, f2,…, fu}, are leaf nodes where u is the 

number of reference points. Our objective is to 

find a local graph Sw
FT in the target vector space 

that is most similar to Sq
FB in the base vector space. 

w denotes here the temporal counterpart of q and 

FT is the set of terms in the target vector space that 

corresponds to FB.  

Algorithm. Step (1): to compare the similarity 

between two graphs in different vector spaces, 

every node (i.e. term) in Sq
FB is required to be 

transformed first to allow for comparison under 

the same vector space. So the transformed vector 

representation of q becomes Μ∙q and FB is trans-

formed to {Μ∙f1, Μ∙f2 …, Μ∙fu} (recall that Μ is 

the transformation matrix). Step (2): for each node 

in Sq
FB, we then choose the top k candidate terms 

with the highest correspondence score in the tar-

get space. Note that we would need to perform k∙ku 
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combinations of nodes (or candidate local graphs) 

in total, to find the best graph with the highest 

graph similarity. The computation time becomes 

then an issue as the number of comparisons grows 

in polynomial way with the increase in the number 

of candidate terms. However, we manage to re-

duce the number of combinations to k∙k∙u by as-

suming the reference points be independent of 

each other. Then, for every selected candidate 

temporal counterpart, we only choose the set of 

corresponding terms FT which maximizes the cur-

rent graph similarity. By default we set k equal to 

1000. The process is shown in Algorithm 3.  

 

Algorithm 3 Local Graph Matching 

Input: local graph of q, Sq
FB 

W = top k corresponding terms of q (by Eq. 2) 

FF = {top k corresponding terms of each f in 

reference points FB={ f0, f1, …, fu}} (by Eq. 2) 

for w = W[1:k] do: 

sum_cos = 0  # total graph similarity score 

for F = FF[1:u] do: 

max_cos = 0 # current maximum similar-

ity 

for c = F[1:k] do: 

find c which maximizes current graph 

similarity  

end for 

sum_cos += max_cos 

end for 

end for 
sort W by sum_cos of each w in W. 

Output: sorted W as ranked list of temporal 

counterparts 

 

    Graph similarity computation. To compute 

the similarity of two star shaped graphs, we take 

both the semantic and relational similarities into 

consideration. Fig. 3 conceptually portrays this 

idea. Since all the computation is done under the 

same vector space (after transformation), the se-

mantic meaning is represented by the absolute po-

sition of the term, that is, by its vector representa-

tion in the vector space. On the other hand, the re-

lation is described by the difference of two term 

vectors. Finally, the graph similarity function 

g(Sq
FB,Sw

FT) is defined as the combination of the 

relational similarity function, h(Sq
FB,Sw

FT), and se-

mantic similarity function, z(Sq
FB,Sw

FT), as follows: 
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(4) 

where Rq
f
B is the difference of vectors between q 

and fB in FB represented as [q-fB]. Rw
fT is the differ-

ence of vectors between w and fT in FT, [w-fT], 

where fT is selected from k candidates correspond-

ing terms of fB. fT maximizes the cosine similarity 

between [q- fB] and [w- fT]. λ is set to 0.5 by de-

fault. Intuitively, Sq
FB is a graph composed of 

query and its reference points, while Sw
FT is a 

graph containing candidate word w and its refer-

ence points. The first maximum in Eq. 4 finds for 

each reference point in the base time, fB, the top-k 

candidate terms corresponding to fB in the target 

time. Next, it finds within k such fT that similarity 

between [q- fB] and [w- fT] is maximum (relational 

similarity). The second maximum in Eq. 4 is same 

as the first one with the exception that it computes 

the semantic similarity instead of the relational 

similarity. The two summations in Eq. 4 aggregate 

both the similarity scores over all the reference 

points. 

 
 

Figure 3: The concept of computing semantic and 

relational similarity in matching local graphs. 

4 Experimental Setup 

4.1 Training sets 

For the experiments we use the New York Times 

Annotated Corpus (Sandhaus, 2008). This dataset 

contains over 1.8 million newspaper articles pub-

lished between 1987 and 2007. We first divide it 

into four parts according to article publication 

time: [1987-1991], [1992-1996], [1997-2001] and 

[2002-2007]. Each time period contains then 

around half a million articles. We next train the 

model of distributed vector representation sepa-

rately for each time period. The vocabulary size 

of the entire corpus is 360k, while the vocabulary 

size of each time period is around 300k.  

    In the experiments, we first focus on the pair of 

time periods separated by the longest time gap, 

that is, [2002, 2007] as the base time and [1987, 

1991] as the target time. We also repeat the exper-

iment using more recent target time: [1992, 1996].

base time
(e.g. 2003-2007)

  
 

  
 

ipod

mp3
music

apple

target time
(e.g. 1987-1991)

  
 

  
 

musiccassette

walkman

sony
semantic similarity

relational similarity
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Table 1: Example results where q is the input term and tc is the matching temporal counterpart. The 

numbers are the ranks of the correct temporal counterpart in the results ranked by each method. Since 

we output only the top 1000 results, ranks lower than 1000 are represented as 1000+. 

 

4.2 Test sets 

As far as we know there is no standard test bench 

for temporal correspondence finding. We then had 

to manually create test sets containing queries in 

the base time and their correct temporal counter-

parts in the target time. In this process we used 

external resources including the Wikipedia, a 

Web search engine and several historical text-

books. The test terms cover three types of entities: 

persons, locations and objects. 

    The examples of the test queries and their tem-

poral counterparts for [1987, 1991] are shown in 

Table 1 where q denotes the input term and tc is 

the correct counterpart. Note that the expected an-

swer is not required to be single neither exhaus-

tive. For example, there can be many answers for 

the same query term, such as letter, mail, fax, all 

being commonly used counterparts in 1980s for 

email. Furthermore, as we do not care for recall in 

this research, we do not require all the correct 

counterpart terms to be found. In total, there are 

95 pairs of terms (query and its counterpart) re-

sulting from 54 input query terms for the task of 

mapping [2002, 2007] with [1987, 1991], and 50 

term pairs created from 25 input query terms for 

matching [2002, 2007] and [1992, 1996].  

4.3 Evaluation measures and baselines 

    We use the Mean Reciprocal Rank (MRR) as a 

main metric to evaluate the ranked search results 

for each method. MRR is expressed as the mean 

of the inverse ranks for each test where a correct 

result appears. It is calculated as follows: 
 





N

i irankN
MRR

1

11  (5) 

 

where ranki is the rank of a correct counterpart at 

the i-th test. N is the number of query-answer 

pairs. MRR’s values range between [0,1]. The 

higher the value, the more correct the method is. 

Besides MRR, we also report precision @1, @5, 

@10 and @20. They are equal to the rates of tests 

in which the correct counterpart term tc was found 

in the top 1, 5, 10 and 20 results, respectively. 

    Baselines. We prepare three baselines:  

(1) Bag of words approach (BOW) without 

transformation: this method directly compares the 

context of the query in the base time with the con-

text of the candidate term in the target time. We 

use it to examine whether the distributed vector 

representation and transformation are necessary. 

(2)  Latent Semantic Indexing (LSI) without 

transformation (LSI-Com): we first merge the 

documents in the base time and the documents in 

the target time. Then, we train LSI (Deerwester, 

1988) on such combined collection to represent 

each term by the same distribution of detected top-

ics. We next search for the terms that exist in the 

target period and that are also semantically similar 

to the queried terms by comparing their vector 

q 

[2002,2007] 

tc  

[1987,1991] 

BOW 

(baseline) 

LSI-Com 

(baseline) 

LSI-Tran 

(baseline) 

GT 

(proposed) 

LT-Cooc 

(proposed) 

LT-Lex 

(proposed) 

LT-Clust 

(proposed) 

Putin Yeltsin 1000+ 252 353 24 1 1 1 

Chirac Mitterrand 1000+ 8 1 7 19 1 3 

iPod Walkman 1000+ 20 131 3 13 1 16 

Merkel Kohl 1000+ 1000+ 537 142 76 7 102 

Facebook Usenet 1000+ 1000+ 1000+ 1 1 1 1 

Linux Unix 1000+ 11 1 20 1 1 1 

email letter 1000+ 1000+ 464 1 35 1 17 

email mail 1000+ 1 9 7 2 6 11 

email fax 1000+ 1000+ 10 3 1 4 2 

Pixar Tristar 1000+ 549 1 1 1 1 1 

Pixar Disney 1000+ 4 4 3 2 2 4 

Serbia Yugoslavia 1000+ 15 1000+ 1 1 1 1 

mp3 compact disk 1000+ 56 44 58 17 19 22 

Rogge Samaranch 1000+ 4 22 42 82 34 44 

Berlin Bonn 1000+ 43 265 62 40 48 56 

Czech Czechoslovakia 1000+ 1 3 4 3 7 4 

USB floppy disk 1000+ 209 1000+ 20 1 1 4 

spam junk mail 1000+ 1000+ 37 5 61 1 1 

Kosovo Yugoslavia 1000+ 59 1000+ 14 10 6 11 
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representations. The purpose of using LSI-Com is 

to check the need for the transformation over time.  

(3) Latent Semantic Indexing (LSI) with 

transformation (LSI-Tran): we train two LSI 

models separately on the documents in the base 

time and the documents in the target time. Then 

we train the transformation matrix in the same 

way as we did for our proposed methods. Lastly, 

for a given input query, we compare its trans-

formed vector representation with terms in the tar-

get time. LSI-Tran is used to investigate if LSI can 

be an alternative for the vector representation un-

der our transformation scenario.  

    Proposed Methods. All our methods use the 

neural network based term representation. The 

first one is the method without considering the lo-

cal context graph called GT (see Sec. 2). By test-

ing it we want to investigate the necessity of trans-

forming the context of the query in the target time. 

    We also test the three variants of the proposed 

approach that applies the local graph (explained in 

Sec. 3). The first one, LT-Lex, constructs the lo-

cal graph by using the hypernyms of terms. LT-

Cooc applies term co-occurrence to select the ref-

erence points. Finally, LT-Clust clusters the con-

text terms by their semantic meanings and selects 

the most common term from each cluster.  

4.4 Parameter settings 

We set the parameters as follows:  

(1) num_of_dim: we experimentally set the num-

ber of dimensions of the Skip-gram model and the 

number of topics of LSI to be 200.  

(2) num_of_CFTs: we utilize the top 5% (18k 

words) of Common Frequent Terms to train the 

transformation matrix. We have tried other num-

bers but we found 5% to perform best (see Fig. 4).    

(3) u: the number of reference points (same as the 

number of semantic clusters) is set to be 5. Ac-

cording to the results, we found that increasing the 

number of reference points does not always im-

prove the results. The performance depends rather 

on whether the reference points are general 

enough, as too detailed ones hurt the results.  

5 Experimental Results 

First, we look at the results of finding temporal 

counterparts in [1987, 1991]. The average scores 

for each method are shown in Table 2. Table 1 

shows detailed results for few example queries.  

    The main finding is that all our methods outper-

form the baselines when measured by MRR and 

by the precisions at different ranks. In the follow-

ing subsections we discuss the results in detail. 

5.1 Context change over time 

The first observation is that the task is quite diffi-

cult as evidenced by extremely poor performance 

of the bag of words approach (BOW). The correct 

answers in BOW approach are usually found at 

ranks 10k-30k (recall that the vocabulary size is 

360k). This suggests little overlap in the contexts 

of query and counterpart terms.  The fact that all 

our methods outperform the baselines suggests 

that the across-time transformation is helpful. 

5.2 Using local context graph 

We can observe from Table 2 that, in general, us-

ing the local context graph improves the results. 

The best performing approach, LT-Lex, improves 

GT method, which uses only global similarity 

matching, by 24% when measured using MRR. It 

increases the precision at certain levels of top 

ranks, especially, at the top 1, where it boosts the 

performance by 44%. LT-Lex uses the hyper-

nyms of query as reference points in the local 

graph. This suggests that using generalized con-

text terms as reference points is most helpful for 

finding correct temporal counterparts. On the 

other hand, LT-Cooc and LT-Clust usually fail to 

improve GT. It may be because the term co-oc-

currence and semantic clustering approaches de-

tect less general terms that tend to capture too de-

tailed information which is then poorly related to 

the temporal counterpart. For example, LT-Cooc 

detects {music, Apple, computer, digital, iTunes} 

as the reference points of the query iPod. While 

music is shared by iPod’s counterpart (walkman) 

and Apple can be considered analogical to Sony, 

other terms (i.e., computer, digital, iTunes) are ra-

ther too specific and unique for iPod. 

5.3 Using neural network model 

When comparing the results of LSI-Com and 

LSI-Tran in Table 2, we can see that using the 

transformation does not help LSI to enhance the 

performance but, on the contrary, it makes the re-

sults worse.  

 
Method MRR P@1 P@5 P@10 P@20 

BOW 4.1E-5 0 0 0 0 

LSI-Com 0.206 15.8 27.3 29.5 38.6 

LSI-Tran 0.112 7.9 13.6 21.6 22.7 

GT 0.298 16.8 44.2 56.8 73.7 

LT-Cooc 0.283 18.8 35.3 50.6 62.4 

LT-Lex 0.369 24.2 49.5 63.2 71.6 

LT-Clust 0.285 14.7 42.1 55.1 65.2 

 

Table 2: Results of searching from present to past 

(present: 2002-2007; past: 1987-1991). 

651



    Yet, as discussed above, applying the transfor-

mation is good idea in the case of the Neural Net-

work Model. We believe the reason for this is be-

cause it is difficult to perform the global transfor-

mation between topics underling the dimensions 

of LSI, in contrast to transforming “semantic di-

mensions” of Neural Network Model. 

5.4 Effect of the number of CFTs 

Fig. 4 shows MRR results for different numbers 

of Common Frequent Terms (CFTs) when apply-

ing GT method. Note that the level of 0.10% (the 

first point) corresponds to using 658 stop words as 

seed pairs. As mentioned before, 5% of CFTs al-

lows to obtain the best results.  

 
Figure 4: Results of MRR for GT method depend-

ing on number of used CFTs. 

5.5 Searching from past to present 

We next analyze the case of searching from the 

past to the present. This scenario may apply to the 

case of a user (perhaps, an older person) who pos-

sesses knowledge about the past term but does not 

know its modern counterparts. 

    Table 3 shows the performance. We can see 

that, again, all our approaches outperform all the 

baselines using all the measures. LT-Lex is the 

best performing approach, when measured by 

MRR and P@1 and P@20. LT-Cooc this time re-

turns the best results at P@5 and P@10. 

     
Method MRR P@1 P@5 P@10 P@20 

BOW 3.4E-5 0 0 0 0 

LSI-Com 0.181 13.2 19.7 28.9 35.5 

LSI-Tran 0.109 5.3 17.1 21.1 23.7 

GT 0.226 15.2 27.3 33.3 45.5 

LT-Cooc 0.231 14.7 30.7 36 46.7 

LT-Lex 0.235 16.7 28.8 31.8 48.5 
LT-Clust 0.228 13.6 28.8 31.8 47 

 

Table 3: Average scores of searching from past to 

present (present: 2002-2007; past: 1987-1991). 

 

    The objective of testing the search from the past 

to present is to prove our methods work in both 

directions. As for now, we can only conclude the 

performance is asymmetrical. Yet, we might spec-

ulate that, along with the increase in distance, 

searching from past to present could be harder due 

to present world becoming relatively more diverse 

when seen from the distant past. 

5.6 Results using different time period 

Finally, we perform additional experiment using 

another target time period [1992, 1996] to verify 

whether our approach is still superior on different 

target time.  For the experiment we use the best 

performing baseline listed in Table 2, LSI-Com, 

and the best proposed approach, LT-Lex, as well 

as GT. The results are shown in Tables 4 and 5. 

LT-Lex outperforms the other baselines in both 

the search from the present to the past (Table 4) 

and from the past to the present (Table 5). Note 

that since the query-answers pairs for [1992, 

1996] are different than ones for [1987, 1991], 

their results cannot be directly compared.  

 
Method MRR P@1 P@5 P@10 P@20 

LSI-Com 0.115 10.6 14.9 21.3 23.4 

GT 0.132 8.5 27.7 40.4 53.2 

LT-Lex 0.169 10.6 34.1 48.9 55.3 

 

Table 4: Results of searching from present to past 

(present: 2002-2007; past: 1992-1996).  

 
Method MRR P@1 P@5 P@10 P@20 

LSI-Com 0.148 11.6 18.6 23.3 30.2 

GT 0.184 11.6 23.3 30.2 44.2 

LT-Lex 0.212 14 28 32.6 44.2 

 

Table 5: Results of searching from past to present 

(present: 2002-2007; past: 1992-1996).  

5.7 Confidence of Results 

The approach described in this paper will al-

ways try to output some matching terms to a query 

in the target time period. However in some cases, 

no term corresponding to the one in the base time 

existed in the target time (e.g. when the semantic 

concept behind the term was not yet born or, on 

the contrary, it has already felt out of use). For ex-

ample, junk mail may not have any equivalent in 

texts created around 1800s. A simple solution to 

this problem would be to use Eqs. 2 and 4 to serve 

as measures of confidence behind each result in 

order to decide whether the found counterparts 

should or not be shown to users. Note however 

that the scores returned by Eqs. 2 and 4 need to be 

first normalized according to the distance between 

the target time and the base time periods. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.00% 2.00% 4.00% 6.00% 8.00% 10.00% 12.00% 14.00% 16.00%

M
R

R
 f

o
r 

G
T

 m
et

h
o

d

Percentage of used CFTs

652



6 Related Work 

Temporal changes in word meaning have been an 

important topic of study within historical linguis-

tics (Aitchison, 2001; Campbell 2004; Labov, 

2010; Hughes, 1988). Some researchers employed 

computational methods for analyzing changes in 

word senses over time (Mihalcea and Nastase, 

2012; Kim et al., 2014; Jatowt and Duh, 2014; 

Kulkarni et al., 2015). For example, Mihalcea and 

Nastase (2012) classified words to one of three 

past epochs based on words’ contexts. Kim et al. 

(2014) and Kulkarni et al. (2015) computed the 

degree of meaning change by applying neural net-

works for word representation. Jatowt and Duh 

(2014) used also sentiment analysis and word pair 

comparison for meaning change estimation. Our 

objective is different as we search for correspond-

ing terms across time, and, in our case, temporal 

counterparts can have different syntactic forms. 

    Some works considered computing term simi-

larity across time (Kalurachchi et al., 2010; Kan-

habua et al. 2010; Tahmasebi et al. 2012, Berber-

ich et al. 2009). Kalurachchi et al. (2010) pro-

posed to discover semantically identical tempo-

rally altering concepts by applying association 

rule mining, assuming that the concepts referred 

by similar events (verbs) are semantically related. 

Kanhabua et al. (2010) discovered the change of 

terms through the comparison of temporal Wik-

ipedia snapshots. Berberich et al. (2009) ap-

proached the problem by introducing a HMM 

model and measuring the across-time sematic 

similarity between two terms by comparing the 

contexts captured by co-occurrence measures. 

Tahmasebi et al. (2012) improved their approach 

by first detecting the periods of name change and 

then by analyzing the contexts during the change 

periods to find the temporal co-references of dif-

ferent names. There are important differences be-

tween those works and ours. First, the previous 

works mainly focused on detecting changes of the 

names of the same, single entity over time. For ex-

ample, the objective was to look for the previous 

name of Pope Benedict (i.e. Joseph Ratzinger) or 

the previous name of St. Petersburg (i.e. Lenin-

grad). Second, these approaches relied on apply-

ing the co-occurrence statistics according to the 

intuition that if two terms share similar contexts, 

then these terms are semantically similar. In our 

work, we do not require the context to be literally 

same but to have the same meaning. 

    Transfer Learning (Pan et al., 2010) is related 

to some extent to our work. It has been mainly 

used in tasks such as POS tagging (Blitzer et al., 

2006), text classification (Blitzer et al., 2007; Ling 

et al., 2008; Wang et al., 2011; Xue et al., 2008), 

learning to rank (Cai et al., 2011; Gao et al., 2010; 

Wang et al., 2009) and content-based retrieval 

(Kato et al., 2012). The temporal correspondence 

problem can be also understood as a transfer 

learning as it is a search process that uses samples 

in the base time for inferring correspondent in-

stances existing in the target time. However, the 

difference is that we do not only consider the 

structural correspondence but we also utilize the 

semantic similarity across time. 

The idea of distance-preserving projections is 

also used in automatic translation (Mikolov et al., 

2013b). Our research problem is however more 

difficult and is still unexplored. In the traditional 

language translation, languages usually share 

same concepts, while in the across-time transla-

tion concepts evolve and thus may be similar but 

not always same. Furthermore, the lack of training 

data is another key problem. 

7  Conclusions and Future Work 

This work approaches the problem of finding tem-

poral counterparts as a way to build a “bridge” 

across different times. Knowing corresponding 

terms across time can have direct usage in sup-

porting search within longitudinal document col-

lections or be helpful for constructing evolution 

timelines. We first discuss the key challenge of 

the temporal counterpart detection – the fact that 

contexts of terms change, too. We then propose 

the global correspondence method using transfor-

mation between two vector spaces. Based on this, 

we then introduce more refined approach of com-

puting the local correspondence. Through experi-

ments we demonstrate that the local correspond-

ence using hypernyms outperforms both the base-

lines and the global correspondence approach.  

    In the future, we plan to test our approaches 

over longer time spans and to design the way to 

automatically “explain” temporal counterparts by 

outputting “evidence” terms for clarifying the 

similarity between the counterparts. 
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