Simplified Dependency Annotations with GFL-Web

Michael T. Mordowanec

Nathan Schneider

Chris Dyer Noah A. Smith

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213, USA
michael.mordowanec@gmail.com, {nschneid,cdyer,nasmith}@cs.cmu.edu

Abstract

We present GFL-Web, a web-based in-
terface for syntactic dependency annota-
tion with the lightweight FUDG/GFL for-
malism. Syntactic attachments are spec-
ified in GFL notation and visualized as
a graph. A one-day pilot of this work-
flow with 26 annotators established that
even novices were, with a bit of training,
able to rapidly annotate the syntax of En-
glish Twitter messages. The open-source
tool is easily installed and configured; it
is available at: https://github.com/
Mordeaux/gfl_web

1 Introduction

High-quality syntactic annotation of natural lan-
guage is expensive to produce. Well-known large-
scale syntactic annotation projects, such as the
Penn Treebank (Marcus et al., 1993), the En-
glish Web Treebank (Bies et al., 2012), the Penn
Arabic Treebank (Maamouri et al., 2004), and
the Prague dependency treebanks (Haji¢, 1998;
Cmejrek et al., 2005), have relied on expert lin-
guists to produce carefully-controlled annotated
data. Because this process is costly, such anno-
tation projects have been undertaken for only a
handful of important languages. Therefore, devel-
oping syntactic resources for less-studied, lower-
resource, or politically less important languages
and genres will require alternative methods. To
address this, simplified annotation schemes that
trade cost for detail have been proposed (Habash
and Roth, 2009)."

!These can be especially effective when some details of
the syntax can be predicted automatically with high accuracy
(Alkuhlani et al., 2013).

The Fragmentary Unlabeled Dependency
Grammar (FUDG) formalism (Schneider et al.,
2013) was proposed as a simplified framework for
annotating dependency syntax. Annotation effort
is reduced by relaxing a number of constraints
placed on traditional annotators: partial fragments
can be specified where the annotator is uncertain
of part of the structure or wishes to focus only
on certain phenomena (such as verbal argument
structure). FUDG also offers mechanisms for
excluding extraneous tokens from the annotation,
for marking multiword units, and for describing
coordinate structures. FUDG is written in an
ASCII-based notation for annotations -called
Graph Fragment Language (GFL), and text-based
tools for verifying, converting, and rendering GFL.
annotations are provided.

Although GFL offers a number of conveniences
to annotators, the text-based UI is limiting: the
existing tools require constant switching between
a text editor and executing commands, and there
are no tools for managing a large-scale annotation
effort. Additionally, user interface research has
found marked preferences for and better perfor-
mance with graphical tools relative to text-based
interfaces—particularly for less computer-savvy
users (Staggers and Kobus, 2000). In this paper,
we present the GFL-Web tool, a web-based inter-
face for FUDG/GFL annotation. The simple inter-
face provides instantaneous feedback on the well-
formedness of a GFL annotation, and by wrapping
Schneider et al.’s notation parsing and rendering
software, gives a user-friendly visualization of the
annotated sentence. The tool itself is lightweight,
multi-user, and easily deployed with few software
dependencies. Sentences are assigned to anno-
tators via an administrative interface, which also
records progress and provides for a text dump of

Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 121-126,
Baltimore, Maryland USA, June 23-24, 2014. (©2014 Association for Computational Linguistics

A

lost

/N

contacts

all my

smh

(a) @Bryan_wright11 i lost all my contacts , smh .

/ “ \Go
|

Rangers~2

_

Texas_Rangers~1

—» 5 —» &

World_Series

T

the

(b) Texas Rangers are in the World Series | Go

Figure 1: FUDG annotation graphs for two tweets.

all annotations. The interface for annotators is de-
signed to be as simple as possible.

We provide an overview of the FUDG/GFL
framework (§2), detail how the tool is set up and
utilized (§3), and discuss a pilot exercise in which
26 users provided nearly 1,000 annotations of En-
glish Twitter messages (§4). Finally, we note some
of the technical aspects of the tool (§5) and related
syntactic annotation software (§6).

2 Background

GFL-Web is designed to simplify the creation
of dependency treebanks from noisy or under-
resourced data; to that end, it exploits the
lightweight FUDG/GFL framework of Schneider
et al. (2013). Here we outline how FUDG differs
from traditional Dependency Grammar (§2.1) and
detail major aspects of GFL (§2.2).

2.1 FUDG

Figure 1 displays two FUDG graphs of annota-
tions of Twitter messages (“tweets”, shown below
in tokenized form). Arrows point upwards from
dependents to their heads. These tweets illustrate
several characteristics of the formalism, including:
* The input may contain multiple independent
syntactic units, or “utterances’; the annotation
indicates these by attaching their heads to a spe-
cial root node called *x.

Some input tokens are omitted if deemed ex-
trinsic to the syntax; by convention, these in-
clude most punctuation, hashtags, usernames,
and URLs.

122

Multiword units may be joined to form com-
posite lexical nodes (e.g., World_Series in fig-
ure 1b). These nodes are not annotated with any
internal syntactic structure.

Tokens that are used in the FUDG parse must be
unambiguous. If a word appears multiple times
in the input, it is disambiguated with ~ and an
index (e.g., Rangers~2 in figure 1b).

(Some of the other mechanisms in FUDG, such as
coordinate structures and underspecification, are
not shown here; they are not important for pur-
poses of this paper.)

2.2 GFL

The Graph Fragment Language is a simple ASCII-
based language for FUDG annotations. Its norms
are designed to be familiar to users with basic pro-
gramming language proficiency, and they are intu-
itive and easy to learn even for those without. The
annotation in figure la may be expressed in GFL

ElSl2

i > lostxx < ({all my} > contacts)
smhx

In GFL, angle brackets point from a dependent
(child) to its head (parent). Parentheses group
nodes together; the head of this group is then at-
tached to another node. The double asterisk (xx*)
marks a root node in an annotations containing
multiple utterances. Curly braces group nodes that
modify the same head.

GFL corresponding to Figure 1b is:

2The abbreviation smh stands for shaking my head.

Input format:

% ID data_set_name:417
% TEXT

http://fb.me/D2LsXBIx

% ANNO

Texas Rangers~1 are in the World Series
http://fb.me/D2LsXBJIx

Go Rangers~2

Figure 2: Illustration of the GFL-Web input format for a tweet. The ANNO section will be shown to the user as the default
annotation; punctuation has been stripped out automatically to save time.

Training SetJ Blank FurmJ

swahili gsfa

daily547

Figure 3: User home screen showing assigned batches for annotation, with links to the training set and blank annotation form.

[Texas Rangers~1] > arexx < in
in < (the > [World Series])
Gox* < Rangers~2

This uses square brackets for multiword expres-
sions. Similar to a programming language, there
are often many equivalent GFL annotation options
for a given sentence. The annotation can be split
across multiple lines so that annotators can ap-
proach smaller units first and then link them to-
gether.

3 Using GFL-Web

The GFL-Web tool uses the Python programming
language’s Flask microframework for server-side
scripting. This allows it to be deployed on a web
server, locally or via the Internet. This also en-
ables the interface to rely on scripts previously
created for analyzing GFL. Once installed, the re-
searcher need only configure a few settings and be-
gin entering data to be annotated.

3.1 Setup

There are a few simple configuration options. The
most useful of these options specify how many
sentences should be in each batch that is assigned

123

to an annotator, and how many sentences in each
batch should be doubly annotated, for the purpose
of assessing inter-annotator agreement. By de-
fault, the batch size is 10, and the first 2 sentences
of each batch overlap with the previous batch, so
4/10 of the sentences in the batch will be annotated
by someone else (assuming no two consecutive
batches are assigned to the same user). The pro-
gram requires tokenized input, with indices added
to distinguish between words that appear twice
(easily automated). The input format, figure 2, al-
lows for easy editing with a text editor if so de-
sired.

Once the input files have been placed in a des-
ignated directory, an admin interface can be used
to assign batches of data to specific users (annota-
tors).

3.2 Annotation

Annotators log in with their username and see a
home screen, figure 3. The home screen always
offers links to a training set to get them up to
speed, as well as a blank annotation form into
which they can enter and annotate any sentence.
Beneath these is a table of batches of sentences
which have been assigned to the user. Clicking

Number 10 of 10

Sentence:

The child ran quickly .

Annotation:
1 The = child = ran < guickly
2
3

Comments:

:J Analyze MJ :J

Home

ran

/N

child

T

The

quickly

Figure 4: A well-formed GFL annotation is indicated by a
green background and visualization of the analysis graph.

any of these will take the annotator to an annota-
tion page, which displays the text to be annotated,
an input field, and a comments box.

The annotation interface is simple and intuitive
and provides instant feedback, preventing the an-
notator from submitting ill-formed annotations.
Annotators press the Analyze button and receive
feedback before submitting annotations (figure 4).
Common GFL errors such as unbalanced paren-
theses are caught by the program and brought to
the attention of the annotator with an informative
error message (figure 5). The annotator can then
fix the error, and will be able to submit once all
errors are resolved.

The training set consists of 15 sentences se-
lected from Rossman and Mills (1922), shown in
the same annotation interface. Examples become
increasingly more complicated in order to famil-
iarize the user with different syntactic phenomena
and the entry-analyze-review workflow. A button
displays the FUDG graph from an expert annota-
tion so the novice can compare it to her own and
consult the guidelines (or ask for help) where the
two graphs deviate.

4 Pilot User Study

We conducted a pilot annotation project in which
26 annotators were trained on GFL-Web and asked
to annotate English Twitter messages from the
daily547 and oct27 Twitter datasets of Gimpel
etal. (2011). The overwhelming majority were all

124

trained on the same day, having no prior knowl-
edge of GFL. Most, but not all, were native speak-
ers of English. Those who had no prior knowl-
edge of dependency grammar in general received
a short tutorial on the fundamentals before being
introduced to the annotation workflow. All par-
ticipants who were new to FUDG/GFL worked
through the training set before moving on to the
Twitter data. Annotators were furnished with the
English annotation guidelines of Schneider et al.
(2013).2

4.1 Results

In the one-day event, 906 annotations were gen-
erated. Inter-annotator agreement was high—.9
according to the softComPrec measure (Schnei-
der et al., 2013)—and an expert’s examination of a
sample of the annotations found that 75% of con-
tained no major error.

Annotators used the analysis feature of the
interface—which displays either a visual represen-
tation of the tree or an error message—an aver-
age of 3.06 times per annotation. The interface re-
quires they analyze each annotation at least once.
Annotators have the ability to resubmit annota-
tions if they later realize they made an error, and
each annotation was submitted an average of 1.16
times. Disregarding instances that took over 1,000
seconds (under the assumption that these repre-
sent annotators taking breaks), the median time
between the first analysis and the first submission
of an annotation was 30 seconds. We take this
as evidence that annotators found the instant feed-
back features useful in refining their annotations.

4.2 Post-Pilot Improvements

Annotator feedback prompted some changes to the
interface. The annotation input box was changed
to incorporate bracket-matching. The graph visu-
alization for a correct annotation was added for
each example in the training set so new annota-
tors could compare their tree to an example. Pre-
sumably these changes would further reduce anno-
tators’ training time and improve their efficiency.
Progress bars were added to the user home screen
to show per-batch completion information.

4.3 Other Languages

In addition to English, guidelines for Swabhili,
Zulu, and Mandarin are currently in development.

3h‘ctps ://github.com/brendano/gfl_syntax/
blob/master/guidelines/guidelines.md

Dataset: gsfa
Batch: 45

Number 6 of 10

Sentence:

write these words in a list .

Annotation:

write < (these > words
write < in < (a = list)

ESRIEI

Comments:

<| Analyze| Submit >|

Home

Unbalanced parentheses, brackets, or braces in annotation: Write < (these > words Write < in < (a > list)

Figure 5: An example error notification. The red background indicates an error, and the cause of the error is displayed at the

bottom of the screen.

5 Technical Architecture

GFL-Web and its software dependencies for ana-
lyzing and visualizing GFL are largely written in
Python. The tool is built with Flask, a Python
framework for web applications. Data is stored
and transmitted to and from the browser in the
Javascript Object Notation (JSON) format, which
is supported by libraries in most programming lan-
guages. The browser interface uses AJAX tech-
niques to interact dynamically with the server.

GFL-Web is written for Python version 2.7.
It wraps scripts previously written for the analy-
sis and visualization of GFL (Schneider et al.,
2013). These in turn require Graphviz (Ellson
et al., 2002), which is freely available.

Flask provides a built-in server, but can also be
deployed in Apache, via WSGI or CGI, etc.

6 Other Tools

In treebanking, a good user interface is essen-
tial for annotator productivity and accuracy. Sev-
eral existing tools support dependency annota-
tion; GFL-Web is the first designed specifi-
cally for the FUDG/GFL framework. Some,
including WebAnno (Yimam et al., 2013) and
brat (Stenetorp et al., 2012), are browser-based,
while WordFreak (Morton and LaCivita, 2003),
Abar-Hitz (Ilarraza et al., 2004), and TrEd (Pa-
jas and Fabian, 2000-2011) are client-side appli-
cations. All offer tree visualizations; to the best
of our knowledge, ours is the only dependency
annotation interface that has text as the exclu-

125

sive mode of entry. Some, such as WebAnno
and brat, aim to be fairly general-purpose, sup-
porting a wide range of annotation schemes; by
contrast, GFL-Web supports a single annotation
scheme, which keeps the configuration (and code-
base) simple. In the future, GFL-Web might in-
corporate elements of monitoring progress, such
as display of evaluation measures computed with
existing FUDG/GFL scripts.

Certain elements of the FUDG/GFL framework
can be found in other annotation systems, such
as the PASSAGE syntactic representation (Vilnat
et al., 2010), which allows for grouping of words
into units, but still requires dependency relations
to be labeled.

Finally, we note that new approaches to corpus
annotation of semantic dependencies also come
with rich browser-based annotation interfaces (Ba-
narescu et al., 2013; Abend and Rappoport, 2013).

7 Conclusion

While the creation of high-quality, highly speci-
fied, syntactically annotated corpora is a goal that
is out of reach for most languages and genres,
GFL-Web facilitates a rapid annotation workflow
within a simple framework for dependency syn-
tax. More information on FUDG/GFL is avail-
able at http://www.ark.cs.cmu.edu/FUDG/,
and the source code for GFL-Web is available at
https://github.com/Mordeaux/gfl_web.

Acknowledgments

The authors thank Archna Bhatia, Lori Levin, Ja-
son Baldridge, Dan Garrette, Jason Mielens, Liang
Sun, Shay Cohen, Spencer Onuffer, Nora Ka-
zour, Manaal Faruqui, Wang Ling, Waleed Am-
mar, David Bamman, Dallas Card, Jeff Flani-
gan, Lingpeng Kong, Bill McDowell, Brendan
O’Connor, Tobi Owoputi, Yanchuan Sim, Swabha
Swayamdipta, and Dani Yogatama for annotating
data, and anonymous reviewers for helpful feed-
back. This research was supported by NSF grant
11S-1352440.

References

Omri Abend and Ari Rappoport. 2013. Universal Con-
ceptual Cognitive Annotation (UCCA). In Proc. of
ACL, pages 228-238. Sofia, Bulgaria.

Sarah Alkuhlani, Nizar Habash, and Ryan Roth. 2013.
Automatic morphological enrichment of a mor-
phologically underspecified treebank. In Proc. of
NAACL-HLT, pages 460—470. Atlanta, Georgia.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proc. of the 7th Linguistic An-
notation Workshop and Interoperability with Dis-
course, pages 178—186. Sofia, Bulgaria.

Ann Bies, Justin Mott, Colin Warner, and Seth Kulick.
2012. English Web Treebank. Technical Re-
port LDC2012T13, Linguistic Data Consortium,
Philadelphia, PA.

Martin émejrek, Jan Cufiin, Jan Hajic¢, and Jiff Havelka.
2005. Prague Czech-English Dependency Treebank:
resource for structure-based MT. In Proc. of EAMT,
pages 73-78. Budapest, Hungary.

John Ellson, Emden Gansner, Lefteris Koutsofios,
Stephen C. North, and Gordon Woodhull. 2002.
Graphviz—open source graph drawing tools. In Pe-
tra Mutzel, Michael Jiinger, and Sebastian Leipert,
editors, Graph Drawing, pages 483—484. Springer,
Berlin.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-speech tagging
for Twitter: annotation, features, and experiments.
In Proc. of ACL-HLT, pages 42—47. Portland, Ore-
gon.

Nizar Habash and Ryan Roth. 2009. CATiB: The
Columbia Arabic Treebank. In Proc. of ACL-
IJCNLP, pages 221-224. Suntec, Singapore.

Jan Haji¢. 1998. Building a syntactically annotated
corpus: the Prague Dependency Treebank. In Eva

Hajicova, editor, Issues of Valency and Meaning.
Studies in Honor of Jarmila Panevovd, pages 12—
19. Prague Karolinum, Charles University Press,
Prague.

Arantza Diaz De Ilarraza, Aitzpea Garmendia, and
Maite Oronoz. 2004. Abar-Hitz: An annotation tool
for the Basque dependency treebank. In Proc. of
LREC, pages 251-254. Lisbon, Portugal.

Mohamed Maamouri, Ann Bies, Tim Buckwalter, and
Wigdan Mekki. 2004. The Penn Arabic Tree-
bank: building a large-scale annotated Arabic cor-
pus. In NEMLAR Conference on Arabic Language
Resources and Tools, pages 102-109. Cairo.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: the Penn Treebank. Computa-
tional Linguistics, 19(2):313-330.

Thomas Morton and Jeremy LaCivita. 2003.
WordFreak: An open tool for linguistic anno-
tation. In Proc. of HLT-NAACL: Demonstrations,
pages 17-18. Edmonton, Canada.

Petr Pajas and Peter Fabian. 2000-2011. Tree Editor
TrEd 2.0. http://ufal.mff.cuni.cz/tred/.
Mary Blanche Rossman and Mary Wilda Mills. 1922.
Graded Sentences for Analysis, Selected from the
Best Literature and Systematically Graded for Class

Use. L. A. Noble.

Nathan Schneider, Brendan O’Connor, Naomi Saphra,
David Bamman, Manaal Faruqui, Noah A. Smith,
Chris Dyer, and Jason Baldridge. 2013. A frame-
work for (under)specifying dependency syntax with-
out overloading annotators. In Proc. of the 7th Lin-
guistic Annotation Workshop and Interoperability
with Discourse, pages 51-60. Sofia, Bulgaria.

Nancy Staggers and David Kobus. 2000. Comparing
response time, errors, and satisfaction between text-
based and graphical user interfaces during nursing
order tasks. Journal of the American Medical Infor-
matics Association, 7(2):164—-176.

Pontus Stenetorp, Sampo Pyysalo, Goran Topic,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for NLP-assisted
text annotation. In Proc. of EACL: Demonstrations,
pages 102—-107. Avignon, France.

Anne Vilnat, Patrick Paroubek, Eric Villemonte
de la Clergerie, Gil Francopoulo, and Marie-Laure
Guénot. 2010. PASSAGE syntactic representation:
a minimal common ground for evaluation. In Proc.
of LREC, pages 2478-2485. Valletta, Malta.

Seid Muhie Yimam, Iryna Gurevych, Richard
Eckart de Castilho, and Chris Biemann. 2013.
WebAnno: A flexible, web-based and visually
supported system for distributed annotations. In
Proc. of ACL: Demonstrations, pages 1-6. Sofia,
Bulgaria.

126

