
Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 85–90,
Baltimore, Maryland USA, June 23-24, 2014. c©2014 Association for Computational Linguistics

kLogNLP: Graph Kernel–based Relational Learning of Natural Language
Mathias Verbeke♦Paolo Frasconi♠ Kurt De Grave♦ Fabrizio Costa♣ Luc De Raedt♦

♦ Department of Computer Science, KU Leuven, Belgium
{mathias.verbeke, kurt.degrave, luc.deraedt}@cs.kuleuven.be

♠ Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze, Italy,
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Abstract
kLog is a framework for kernel-based
learning that has already proven success-
ful in solving a number of relational tasks
in natural language processing. In this pa-
per, we present kLogNLP, a natural lan-
guage processing module for kLog. This
module enriches kLog with NLP-specific
preprocessors, enabling the use of exist-
ing libraries and toolkits within an elegant
and powerful declarative machine learn-
ing framework. The resulting relational
model of the domain can be extended by
specifying additional relational features in
a declarative way using a logic program-
ming language. This declarative approach
offers a flexible way of experimentation
and a way to insert domain knowledge.

1 Introduction
kLog (Frasconi et al., 2012) is a logical and re-
lational language for kernel-based learning. It has
already proven successful for several tasks in com-
puter vision (Antanas et al., 2012; Antanas et al.,
2013) and natural language processing. For ex-
ample, in the case of binary sentence classifica-
tion, we have shown an increase of 1.2 percent
in F1-score on the best performing system in the
CoNLL 2010 Shared Task on hedge cue detec-
tion (Wikipedia dataset) (Verbeke et al., 2012a).
On a sentence labeling task for evidence-based
medicine, a multi-class multi-label classification
problem, kLog showed improved results over both
the state-of-the-art CRF-based system of Kim et
al. (2011) and a memory-based benchmark (Ver-
beke et al., 2012b). Also for spatial relation ex-
traction from natural language, kLog has shown
to provide a flexible relational representation to
model the task domain (Kordjamshidi et al., 2012).

kLog has two distinguishing features. First, it is
able to transform relational into graph-based rep-
resentations, which allows to incorporate struc-
tural features into the learning process. Subse-

quently, kernel methods are used to work in an ex-
tended high-dimensional feature space, which is
much richer than most of the direct proposition-
alisation approaches. Second, it uses the logic
programming language Prolog for defining and
using (additional) background knowledge, which
renders the model very interpretable and provides
more insights into the importance of individual
(structural) features.

These properties prove especially advantageous
in the case of NLP. The graphical approach of
kLog is able to exploit the full relational represen-
tation that is often a natural way to express lan-
guage structures, and in this way allows to fully
exploit contextual features. On top of this rela-
tional learning approach, the declarative feature
specification allows to include additional back-
ground knowledge, which is often essential for
solving NLP problems.

In this paper, we present kLogNLP1, an NLP
module for kLog. Starting from a dataset and a
declaratively specified model of the domain (based
on entity-relationship modeling from database the-
ory), it transforms the dataset into a graph-based
relational format. We propose a general model
that fits most tasks in NLP, which can be extended
by specifying additional relational features in a
declarative way. The resulting relational represen-
tation then serves as input for kLog, and thus re-
sults in a full relational learning pipeline for NLP.

kLogNLP is most related to Learning-Based
Java (LBJ) (Rizzolo and Roth, 2010) in that it of-
fers a declarative pipeline for modeling and learn-
ing tasks in NLP. The aims are similar, namely ab-
stracting away the technical details from the pro-
grammer, and leaving him to reason about the
modeling. However, whereas LBJ focuses more
on the learning side (by the specification of con-
straints on features which are reconciled at in-
ference time, using the constrained conditional

1Software available at http://dtai.cs.
kuleuven.be/klognlp
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Figure 1: General kLog workflow extended with the kLogNLP module
model framework), due to its embedding in kLog,
kLogNLP focuses on the relational modeling, in
addition to declarative feature construction and
feature generation using graph kernels. kLog in it-
self is related to several frameworks for relational
learning, for which we refer the reader to (Fras-
coni et al., 2012).

The remainder of this paper is organized ac-
cording to the general kLog workflow, preceded
with the kLogNLP module, as outlined in Fig-
ure 1. In Section 2, we discuss the modeling of the
data, and present a general relational data model
for NLP tasks. Also the option to declaratively
construct new features using logic programming is
outlined. In the subsequent parts, we will illustrate
the remaining steps in the kLog pipeline, namely
graphicalization and feature generation (Section
3), and learning (Section 4) in an NLP setting. The
last section draws conclusions and presents ideas
for future work.

2 Data Modeling
kLog employs a learning from interpretations set-
ting (De Raedt et al., 2008). In learning from
interpretations, each interpretation is a set of tu-
ples that are true in the example, and can be
seen as a small relational database. Listing 3, to
be discussed later, shows a concise example. In
the NLP setting, an interpretation most commonly
corresponds to a document or a sentence. The
scope of an interpretation is either determined by
the task (e.g., for document classification, the in-
terpretations will at least need to comprise a sin-
gle document), or by the amount of context that
is taken into account (e.g., in case the task is sen-
tence classification, the interpretation can either be
a single sentence, or a full document, depending
on the scope of the context that you want to take
into account).

Since kLog is rooted in database theory, the
modeling of the problem domain is done using an
entity-relationship (E/R) model (Chen, 1976). It
gives an abstract representation of the interpreta-
tions. E/R models can be seen as a tool that is tai-
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Figure 2: Entity-relationship diagram of the
kLogNLP model
lored to model the domain at hand. As the name
indicates, E/R models consist of entities, which we
will represent as purple rectangles, and relations,
represented as orange diamonds. Both entities and
relations can have several attributes (yellow ovals).
Key attributes (green ovals) uniquely identify an
instance of an entity. We will now discuss the
E/R model we propose as a starting point in the
kLogNLP pipeline.

2.1 kLogNLP model
Since in NLP, most tasks are situated at either
the document, sentence, or token level, we pro-
pose the E/R model in Figure 2 as a general do-
main model suitable for most settings. It is able
to represent interpretations of documents as a se-
quence (nextS) of sentence entities, which
are composed of a sequence (nextW) of word
entities. Next to the sequence relations, also the
dependency relations between words (depRel)
are taken into account, where each relation has
its type (depType) as a property. Furthermore,
also the coreference relationship between words
or phrases (coref) and possibly synonymy re-
lations (synonymous) are taken into account.
The entities in our model also have a primary key,
namely wordID and sentID for words and sen-
tences respectively. Additional properties can be
attached to words such as the wordString it-
self, its lemma and POS-tag, and an indication
whether the word is a namedEntity.

This E/R model of Figure 2 is coded declara-
tively in kLog as shown in Listing 1. The kLog
syntax is an extension of the logical programming
language Prolog. In the next step this script will
be used for feature extraction and generation. Ev-
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ery entity or relationship is declared with the key-
word signature. Each signature is of a certain
type; either extensional or intensional.
kLogNLP only acts at the extensional level. Each
signature is characterized by a name and a list
of typed arguments. There are three possible ar-
gument types. First of all, the type can be the
name of an entity set which has been declared
in another signature (e.g., line 4 in Listing 1; the
nextS signature represents the sequence relation
between two entities of type sentence, namely
sent 1 and sent 2). The type self is used to
denote the primary key of an entity. An example is
word id (line 6), which denotes the unique iden-
tifier of a certain word in the interpretation. The
last possible type is property, in case the argu-
ment is neither a reference to another entity nor a
primary key (e.g., postag, line 9).

We will first discuss extensional signatures, and
the automated extensional feature extraction pro-
vided by kLogNLP, before illustrating how the
user can further enrich the model with intensional
predicates.

1 begin_domain.
2 signature sentence(sent_id::self)::

extensional.
3

4 signature nextS(sent_1::sentence, sent_2
::sentence)::extensional.

5

6 signature word(word_id::self,
7 word_string::property,
8 lemma::property,
9 postag::property,

10 namedentity::property
11 )::extensional.
12

13 signature nextW(word_1::word, word_2::
word)::extensional.

14

15 signature corefPhrase(coref_id::self)::
extensional.

16 signature isPartOfCorefPhrase(
coref_phrase::corefPhrase, word::
word)::extensional.

17 signature coref(coref_phrase_1::
corefPhrase, coref_phrase_2::
corefPhrase)::extensional.

18

19 signature synonymous(word_1::word,
word_2::word)::extensional.

20

21 signature dependency(word_1::word,
22 word_2::word,
23 dep_rel::property
24 )::extensional.
25

26 kernel_points([word]).
27 end_domain.

Listing 1: Declarative representation of the
kLogNLP model

2.2 Extensional Feature Extraction
kLog assumes a closed-world, which means that
atoms that are not known to be true, are assumed
to be false. For extensional signatures, this en-
tails that all ground atoms need to be listed ex-
plicitly in the relational database of interpreta-
tions. These atoms are generated automatically
by the kLogNLP module based on the kLog script
and the input dataset. Considering the defined at-
tributes and relations in the model presented in
Listing 1, the module interfaces with NLP toolk-
its to preprocess the data to the relational format.
The user can remove unnecessary extensional sig-
natures or modify the number of attributes given in
the standard kLogNLP script as given in Listing 1
according to the needs of the task under consider-
ation.

An important choice is the inclusion of the
sentence signature. By inclusion, the gran-
ularity of the interpretation is set to the docu-
ment level, which implies that more context can
be taken into account. By excluding this signa-
ture, the granularity of the interpretation is set to
the sentence level.

Currently, kLogNLP interfaces with the follow-
ing NLP toolkits:

NLTK The Python Natural Language Toolkit
(NLTK) (Bird et al., 2009) offers a suite
of text processing libraries for tokenization,
stemming, tagging and parsing, and offers an
interface to WordNet.

Stanford CoreNLP Stanford CoreNLP2 pro-
vides POS tagging, NER, parsing and
coreference resolution functionality.

The preprocessing toolkit to be used can be
set using the kLogNLP flags mechanism, as il-
lustrated by line 3 of Listing 2. Subsequently,
the dataset predicate (illustrated in line 4 of
Listing 2) calls kLogNLP to preprocess a given
dataset3. This is done according to the speci-
fied kLogNLP model, i.e., the necessary prepro-
cessing modules to be called in the preprocess-
ing toolkit are determined based on the presence
of the entities, relationships, and their attributes in
the kLogNLP script. For example, the presence

2http://nlp.stanford.edu/software/
corenlp.shtml

3Currently supported dataset formats are directories con-
sisting of (one or more) plain text files or XML files consist-
ing of sentence and/or document elements.
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of namedentity as a property of word results
in the addition of a named entity recognizer in the
preprocessing toolkit. The resulting set of inter-
pretations is output to a given file. In case sev-
eral instantiations of a preprocessing module are
available in the toolkit, the preferred one can be
chosen by setting the name of the property accord-
ingly. The names as given in Listing 1 outline the
standard settings for each module. For instance, in
case the Snowball stemmer is preferred above the
standard (Wordnet) lemmatizer in NLTK, it can be
selected by changing lemma into snowball as
name for the word lemma property (line 8).

1 experiment :-
2 % kLogNLP
3 klognlp_flag(preprocessor,

stanfordnlp),
4 dataset(’/home/hedgecuedetection/

train/’,’trainingset.pl’),
5 attach(’trainingset.pl’),
6 % Kernel parametrization
7 new_feature_generator(my_fg,nspdk),
8 klog_flag(my_fg,radius,1),
9 klog_flag(my_fg,distance,1),

10 klog_flag(my_fg,match_type, hard),
11 % Learner parametrization
12 new_model(my_model,libsvm_c_svc),
13 klog_flag(my_model,c,0.1),
14 kfold(target, 10, my_model, my_fg).

Listing 2: Full predicate for 10-fold classification
experiment

Each interpretation can be regarded as a small
relational database. We will illustrate the exten-
sional feature extraction step on the CoNLL-2010
dataset on hedge cue detection, a binary classifi-
cation task where the goal is to detect uncertainty
in sentences. This task is situated at the sentence
level, so we left out the sentence and nextS
signatures, as no context from other sentences was
taken into account. A part of a resulting interpre-
tation is shown in Listing 3.

1 word(w1,often,often,rb,0,1).
2 depRel(w1,w5,adv).
3 nextW(w1,w2).
4 word(w2,the,the,dt,0,2).
5 depRel(w2,w4,nmod).
6 nextW(w2,w3).
7 word(w3,response,response,nn,0,3).
8 nextW(w3,w4).
9 depRel(w3,w4,nmod).

10 word(w4,may,may,md,0,5).
11 nextW(w4,w5).

Listing 3: Part of an interpretation

Optionally, additional extensional signatures
can easily be added to the knowledge base by the
user, as deemed suitable for the task under consid-
eration. At each level of granularity (document,

sentence, or word level), the user is given the
corresponding interpretation and entity IDs, with
which additional extensional facts can be added
using the dedicated Python classes. We will now
turn to declarative feature construction. The fol-
lowing steps are inherently part of the kLog frame-
work. We will briefly illustrate their use in the
context of NLP.

2.3 Declarative Feature Construction
The kLog script presented in Listing 1 can now
be extended using declarative feature construction
with intensional signatures. In contrast to ex-
tensional signatures, intensional signatures intro-
duce novel relations using a mechanism resem-
bling deductive databases. This type of signatures
is mostly used to add domain knowledge about the
task at hand. The ground atoms are defined implic-
itly using Prolog definite clauses.

For example, in case of sentence labeling for
evidence-based medicine, the lemma of the root
word proved to be a distinguishing feature (Ver-
beke et al., 2012b), which can be expressed as

1 signature lemmaRoot(sent_id::sentence,
lemmaOfRoot::property)::intensional.

2 lemmaRoot(S,L) :-
3 hasWord(S, I),
4 word(I,_,L,_,_,_),
5 depRel(I,_,root).

Also more complex features can be constructed.
For example, section headers in documents (again
in the case of sentence labeling using document
context) can be identified as follows:

1 hasHeaderWord(S,X) :-
2 word(W,X,_,_,_,_),
3 hasWord(S,W),
4 (atom(X) -> name(X,C) ; C = X),
5 length(C,Len),
6 Len > 4,
7 all_upper(C).
8

9 signature isHeaderSentence(sent_id::
sentence)::intensional.

10 isHeaderSentence(S) :-
11 hasHeaderWord(S,_).
12

13 signature hasSectionHeader(sent_id::
sentence, header::property)::
intensional.

14 hasSectionHeader(S,X) :-
15 nextS(S1,S),
16 hasHeaderWord(S1,X).
17 hasSectionHeader(S,X) :-
18 nextS(S1,S),
19 not isHeaderSentence(S),
20 once(hasSectionHeader(S1,X)).

In this case, first the sentences that contain a
header word are identified using the helper pred-
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Figure 3: Graphicalization of the (partial) interpretation in Listing 3. For the sake of clarity, attributes of
entities and relationships are depicted inside the respective entity or relationship.
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Figure 4: Illustration of the NSPDK feature concept. Left: instance G with 2 vertices v, u as roots for
neighborhood subgraphs (A, B) at distance 2. Right: some of the neighborhood pairs, which form the
NSPDK features, at distance d = 2 and radius r = 0 and 1 respectively. Note that neighborhood subgraphs
can overlap.
icate hasHeaderWord, where a header word is
defined as an upper case string that has more than
four letters (lines 1-7). Next, all sentences that rep-
resent a section header are identified using the in-
tensional signature isHeaderSentence (lines
9-11), and each sentence in the paragraphs follow-
ing a particular section header is labeled with this
header, using the hasSectionHeader predi-
cate (lines 13-20).

Due to the relational approach, the span can be
very large. Furthermore, since these features are
defined declaratively, there is no need to reprocess
the dataset each time a new feature is introduced,
which renders experimentation very flexible4.

3 Graphicalization and Feature
Generation

In this step, a technique called graphicalization
transforms the relational representations from the
previous step into graph-based ones and derives
features from a grounded entity/relationship dia-
gram using graph kernels. This can be interpreted
as unfolding the E/R diagram over the data. An ex-
ample of the graphicalization of the interpretation
part in Listing 3 can be found in Figure 3.

From the resulting graphs, features can be ex-
tracted using a feature generation technique that is
based on Neighborhood Subgraph Pairwise Dis-

4Note that changes in the extensional signatures do re-
quire reprocessing the dataset. However, for different runs of
an experiment with varying parameters for the feature gener-
ator or the learner, kLogNLP uses a caching mechanism to
check if the extensional signatures have changed, when call-
ing the dataset predicate.

tance Kernel (NSPDK) (Costa and De Grave,
2010), a particular type of graph kernel. Infor-
mally the idea of this kernel is to decompose a
graph into small neighborhood subgraphs of in-
creasing radii r ≤ rmax. Then, all pairs of such
subgraphs whose roots are at a distance not greater
than d ≤ dmax are considered as individual fea-
tures. The kernel notion is finally given as the frac-
tion of features in common between two graphs.

Formally, the kernel is defined as:

κr,d(G,G′) =
∑

A,B∈R−1
r,d

(G)

A′,B′∈R−1
r,d

(G′)

1A∼=A′ · 1B∼=B′ (1)

whereR−1
r,d(G) indicates the multiset of all pairs

of neighborhoods of radius r with roots at distance
d that exist inG, and where 1 denotes the indicator
function and ∼= the isomorphism between graphs.
For the full details, we refer the reader to (Costa
and De Grave, 2010). The neighborhood pairs are
illustrated in Figure 4 for a distance of 2 between
two arbitrary roots (v and u).

In kLog, the feature set is generated in a combi-
natorial fashion by explicitly enumerating all pairs
of neighborhood subgraphs; this yields a high-
dimensional feature space that is much richer than
most of the direct propositionalization approaches.
The result is an extended high-dimensional fea-
ture space on which a statistical learning algorithm
can be applied. The feature generator is initialized
using the new feature generator predicate
and hyperparameters (e.g., maximum distance and
radius, and match type) can be set using the kLog
flags mechanism (Listing 2, lines 6-10).
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4 Learning
In the last step, different learning tasks can be per-
formed on the resulting extended feature space. To
this end, kLog interfaces with several solvers, in-
cluding LibSVM (Chang and Lin, 2011) and SVM
SGD (Bottou, 2010). Lines 11-15 (Listing 2) illus-
trate the initialization of LibSVM and its use for
10-fold cross-validation.

5 Conclusions and Future Work

In this paper, we presented kLogNLP, a natu-
ral language processing module for kLog. Based
on an entity-relationship representation of the do-
main, it transforms a dataset into the graph-based
relational format of kLog. The basic kLogNLP
model can be easily extended with additional
background knowledge by adding relations us-
ing the declarative programming language Prolog.
This offers a more flexible way of experimenta-
tion, as new features can be constructed on top
of existing ones without the need to reprocess the
dataset. In future work, interfaces will be added
to other (domain-specific) NLP frameworks (e.g.,
the BLLIP parser with the self-trained biomedical
parsing model (McClosky, 2010)) and additional
dataset formats will be supported.
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