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Abstract

Data-driven approach for parsing may suf-
fer from data sparsity when entirely un-
supervised. External knowledge has been
shown to be an effective way to alleviate
this problem. Subordinating conjunctions
impose important constraints on Chinese
syntactic structures. This paper proposes a
method to develop a grammar with hierar-
chical category knowledge of subordinat-
ing conjunctions as explicit annotations.
Firstly, each part-of-speech tag of the sub-
ordinating conjunctions is annotated with
the most general category in the hierar-
chical knowledge. Those categories are
human-defined to represent distinct syn-
tactic constraints, and provide an appropri-
ate starting point for splitting. Secondly,
based on the data-driven state-split ap-
proach, we establish a mapping from each
automatic refined subcategory to the one
in the hierarchical knowledge. Then the
data-driven splitting of these categories is
restricted by the knowledge to avoid over
refinement. Experiments demonstrate that
constraining the grammar learning by the
hierarchical knowledge improves parsing
performance significantly over the base-
line.

1 Introduction

Probabilistic context-free grammars (PCFGs) un-
derlie most of the high-performance parsers
(Collins, 1999; Charniak, 2000; Charniak and
Johnson, 2005; Zhang and Clark, 2009; Chen and
Kit, 2012; Zhang et al., 2013). However, a naive
PCFG which simply takes the empirical rules and
probabilities off of a Treebank does not perform
well (Klein and Manning, 2003; Levy and Man-
ning, 2003; Bansal and Klein, 2012), because

its context-freedom assumptions are too strong in
some cases (e.g. it assumes that subject and ob-
ject NPs share the same distribution). Therefore,
a variety of techniques have been developed to en-
rich PCFG (Klein and Manning, 2005; Matsuzaki
et al., 2005; Zhang and Clark, 2011; Shindo et al.,
2012).

Hierarchical state-split approach (Petrov et al.,
2006; Petrov and Klein, 2007; Petrov and Klein,
2008a; Petrov and Klein, 2008b; Petrov, 2009)
refines and generalizes the original grammars in
a data-driven manner, and achieves state-of-the-
art performance. Starting from a completely
markovized X-Bar grammar, each category is split
into two subcategories. EM is initialized with this
starting point and used to climb the highly non-
convex objective function of computing the joint
likelihood of the observed parse trees. Then a
merging step applies a likelihood ratio test to re-
verse the least useful half part of the splits. Learn-
ing proceeds by iterating between those two steps
for six rounds. Spectral learning of latent-variable
PCFGs (Cohen et al., 2012; Bailly et al., ; Co-
hen et al., 2013b; Cohen et al., 2013a) is an-
other effective manner of state-split approach that
provides accurate and consistent parameter esti-
mates. However, this two complete data-driven
approaches are likely to be hindered by the over-
fitting issue.

Incorporating knowledge (Zhang et al., 2013;
Wu et al., 2011) to refine the categories in train-
ing a parser has been proved to remedy the
weaknesses of probabilistic context-free grammar
(PCFG). The knowledge contains content words
semantic resources base (Fujita et al., 2010; Agirre
et al., 2008; Lin et al., 2009), named entity cues
(Li et al., 2013) and so on. However, they are
limited in that they do not take into account the
knowledge about subordinating conjunctions.

Subordinating conjunctions are important in-
dications for different syntactic structure, espe-
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cially for Chinese. For example, the subordinating
conjunction “ÃØ” (no matter what) is typically
ahead of a sentence with pros and cons of the sit-
uation; on the contrary, a sufficient condition of-
ten occurs after the subordinating conjunction “X
J” (if). Those two cases are of distinct syntac-
tic structure. Figure 1 demonstrates that although
the sequences of the part-of-speech of the input
words are similar, these two subordinating con-
junctions exert quite different syntactic constraints
to the following clauses.
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(a) “ÃØ” (no matter what) is typically ahead of a sentence
with pros and cons of the situation.
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(b) “XJ” (if) often precedes a sufficient condition.

Figure 1: Different types of subordinating con-
junctions indicate distinct syntactic structure.

Based on the hierarchical state-split approach,
this paper proposes a data-oriented model super-
vised by our hierarchical subcategories of subordi-

nating conjunctions. In order to constrain the auto-
matic subcategory refinement, we firstly establish
the mapping between the automatic clustered sub-
categories and the predefined subcategories. Then
we employ a knowledge criterion to supervise the
hierarchical splitting of these subordinating con-
junction subcategories by the automatic state-split
approach, which can alleviate over-fitting. The ex-
periments are carried out on Penn Chinese Tree-
bank and Tsinghua Treebank, which verify that
the refined grammars with refined subordinating
conjunction categories can improve parsing per-
formance significantly.

The rest of this paper is organized as follows.
We first describe our hierarchical subcategories of
subordinating conjunction. Section 3 illustrates
the constrained grammar learning process in de-
tails. Section 4 presents the experimental evalua-
tion and the comparison with other approaches.

2 Hierarchical Subcategories of
Subordinating Conjunction

The only tag “CS” for all the various subordinat-
ing conjunctions is too coarse to indicate the in-
tricate subordinating relationship. The words in-
dicating different grammatical features share the
same tag “CS”, such as transition relationship,
progression relationship, preference relationship,
purpose relationship and condition relationship. In
each case, the context is different, and the subor-
dinating conjunction is an obvious indication for
the parse disambiguation for the context. The ex-
isting resources for computational linguistic, like
HowNet (Dong and Dong, 2003) and Cilin (Mei
et al., 1983), have classified all subordinating con-
junctions as one category, which is too coarse to
capture the syntactic implication.

To make use of the indication, we subdivide the
subordinating conjunctions according to its gram-
matical features in our scheme. Subordinating
conjunctions indicating each relationship is further
subdivided into two subcategories: one is used be-
fore the principal clause, the other is before the
subordinate clause. For example, the conjunc-
tions representing cause and effect contains “be-
cause” and “so”, where “because” should mod-
ify the cause, and “so” should modify the effect.
In addition, we found that there are several cases
in the conditional clause. Accordingly, we sub-
divide the conditional subordinating conjunctions
into seven types: assumption, universalization,
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Figure 2: Hierarchical subcategories of subordinating conjunctions with examples.

equality, sufficient condition, necessary condition,
sufficient but unnecessary condition and necessary
but insufficient condition (concession). The de-
tailed hierarchical subcategories of subordinating
conjunctions are displayed in Figure 2.

3 Parsing with Hierarchical Categories

The automatic state-split approach is designed to
refine all symbols together through a data-driven
manner, which takes the over-fitting risk. Instead
of splitting and merging all symbols together auto-
matically, we employ a knowledge-based criterion
with hierarchical refinement knowledge to con-
straint the splitting of these new refined tags for
subordinating conjunctions.

At the beginning, we produce a good starting
annotation with the top subcategories in the hi-
erarchical subcategories, which is of great use to
constraining the automatic splitting process. As
demonstrated in Figure 4, our parser is trained on
the good initialization with the automatic hierar-
chical state-split process, and gets improvements
compared with the original training data. For ex-
ample, as shown in Figure 2, the category for

%(but) and “Cause” for du(because) is anno-
tated as the top category “Transition” and “Cause
And Effect” respectively.

However, during this process, only the most
general hypernyms are used as the semantic rep-
resentation of words, and the lower subcategory
knowledge in the hierarchy is not explored. Thus,
we further constraint the split of the subordinating
conjunctions subcategories to be consistent with
the hierarchical subcategories to alleviate the over-
fitting issue. The top class is only used as the start-
ing annotations of POS tags to reduce the search
space for EM in our method. It is followed by the
hierarchical state-split process to further refine the
starting annotations based on the hierarchical sub-
categories.

3.1 Mapping from Automatic Subcategories
to Predefined Subcategories

With the initialization proposed above, the auto-
matically split-merge approach produces a series
of refined categories for each tag. We restrict each
automatically refined subcategory of subordinat-
ing conjunctions to correspond to a special node
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Figure 3: A schematic figure for the hierarchical state-split process of the tag “CS”. Each subcategory
of this tag has its own word set, and corresponds to one layer at the appropriate level in the hierarchical
subcategories.

in the hierarchical subcategories, as a hyponym
of “CS”. The hierarchical subcategories are em-
ployed in the hierarchical state-split process to im-
pose restrictions on the subcategory refinement.

First of all, it is necessary to establish the map-
ping from each subcategory in the data-driven hi-
erarchical subcategories to the subcategory in the
predefined hierarchical subcategories. We trans-
fer the method for semantic-related labels (Lin et
al., 2009) to our case here. The mapping is imple-
mented with the word set related to each automati-
cally refined granularity of clustered subordinating
conjunctions and the node at the special level in
the subcategory knowledge. The schematic in Fig-
ure 3 demonstrates this supervised splitting pro-
cess for CS. The left part of this figure is the word
sets of automatic clustered subcategories of the
CS, which is split hierarchically. As expressed
by the lines, each subcategory corresponds to one
node in the right part of this figure, which is our hi-
erarchical subcategory knowledge of subordinat-
ing conjunctions.

As it is shown in Figure 3, the original tag “CS”
treats all the words it produces as its word set.
Upon splitting each coarse category into two more
specific subcategories, its word set is also cut into
two subsets accordingly, through forcedly divid-
ing each word in the word set into one subcategory
which is most probable for this word in the lex-
ical grammar. And each automatic refinement is

mapped to the most specific subcategory (that is to
say, the lowest node) that contains the entirely cor-
responding word set in the human-defined knowl-
edge. On this basis, the new knowledge-based cri-
terion is introduced to enrich and generalize these
subcategories, with the purpose of fitting the re-
finement to the subcategory knowledge rather than
the training data.

3.2 Knowledge-based Criterion for
Subordinating Conjunctions Refinement

With the mapping between the automatic refined
subcategories and the human-defined hierarchical
subcategory knowledge, we could supervise the
automatic state refinement by the knowledge.

Instead of being merged by likelihood, a
knowledge-based criterion is employed, to decide
whether or not to go back to the upper layer in
the hierarchical subcategories and thus remove the
new subcategories of these tags. The criterion is
that, we assume that the bottom layer in the hi-
erarchical subcategories is special enough to ex-
press the distinction of the subordinating conjunc-
tions. If the subcategories of the subordinating
conjunctions has gone beyond the bottom layer,
then the new split subcategories are deemed to be
unnecessary and should be merged back. That is
to say, once the parent layer of this new subcate-
gory is mapped onto the most special subcategory,
it should be removed immediately. As illustrated
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Treebank Train Dataset Develop Dataset Test Dataset

CTB5 Articles 1-270 Articles 400-1151, 301-325 Articles 271-300
TCT 16000 sentences 800 sentences 758 sentences

Table 1: Data allocation of our experiment.

in Figure 3, if the node has no hyponym, this sub-
category has been specialized enough according to
the knowledge, and thus the corresponding subcat-
egory will stop splitting.

By introducing a knowledge-based criterion,
the issue is settled whether or not to further split
subcategories from the perspective of predefined
knowledge. To investigate the effectiveness of the
presented approach, several experiments are con-
ducted on both Penn Chinese Treebank and Ts-
inghua Treebank. They reveal that the subcategory
knowledge of subordinating conjunctions is effec-
tive for parsing.

4 Experiments

4.1 Experimental Setup

We present experimental results on both Chinese
Treebank (CTB) 5.0 (Xue et al., 2002) (All traces
and functional tags were stripped.) and Tsinghua
Treebank (TCT) (Zhou, 2004). All the experi-
ments were carried out after six cycles of split-
merge.

The data set allocation is described in Table 1.
We use the EVALB parseval reference imple-
mentation (Sekine, 1997) for scoring. Statistical
significance was checked by Bikel’s randomized
parsing evaluation comparator (Bikel, 2000).

4.2 Parsing Performance with Hierarchical
Subcategories

We presented a flexible approach which refines
the subordinating conjunctions in a hierarchy fash-
ion where the hierarchical layers provide different
granularity of specificity. To facilitate the compar-
isons, we set up 6 experiments on CTB5.0 with
different strategies of choosing the subcategory
layers in the hierarchical subcategory knowledge:

• baseline: Training without hierarchical sub-
category knowledge

• top: Choosing the top layer in hierarchi-
cal subcategories (using “Transition”, “Con-
dition” , “Purpose” and so on)

• bottom: Choosing the bottom layer in hierar-
chical subcategories (the most specified sub-
categories)

• word: Substituting POS tag with the word it-
self

• knowledge criterion: Automatically choos-
ing the appropriate layer through the knowl-
edge criterion

Figure 4: Comparison of parsing performance for
each model in the split-merge cycles.

Figure 4 shows the F1 scores of the last 4 cy-
cles in the 6 split-merge cycles. The results are
just as expectation, through which we can tell that
the “top” model performs slightly better than the
baseline owing to a better start point of the state-
splitting. This result confirms the value of our
initial explicit annotations. While the “bottom”
model doesn’t improve the performance due to
excessive refinement and causes over-fitting, the
“word” model behaves even worse for the same
reason. In the 5th split-merge cycle, the “knowl-
edge criterion” model picks the appropriate layer
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in hierarchical subcategories and achieves the best
result.

We also test our method on TCT. Table 2 com-
pares the accuracies of the baseline, initialization
with top subcategories and the “knowledge cri-
terion” model, and confirms that the subcategory
knowledge helps parse disambiguation.

Parser P R F1

baseline 74.40 74.28 74.34

top 75.12 75.17 75.14

knowledge criterion 76.18 76.27 76.22

Table 2: Our parsing performance with different
criterions on TCT.

4.3 Final Results

Our final results are achieved using the “knowl-
edge criterion” model. As we can see from the
table 3, our final parsing performance is higher
than the unlexicalized parser (Levy and Manning,
2003; Petrov, 2009) and the parsing system in
Qian and Liu (2012), but falls short of the systems
using semantic knowledge of Lin et al. (2009) and
exhaustive word formation knowledge of Zhang et
al. (2013).

Parser P R F1

Levy(2003) 78.40 79.20 78.80

Petrov(2009) 84.82 81.93 83.33

Qian(2012) 84.57 83.68 84.13

Zhang(2013) 84.42 84.43 84.43

Lin(2009) 86.00 83.10 84.50

This paper 85.93 82.87 84.32

Table 3: Our final parsing performance compared
with the best previous works on CTB5.0.

The improvement on the hierarchical state-split
approach verifies the effectiveness of the subcat-
egory knowledge of subordinating conjunctions
for alleviating over-fitting. And the subcategory
knowledge could be integrated with the knowl-
edge base employed in Lin et al. (2009) and Zhang
et al. (2013) to contribute more on parsing accu-
racy improvement.

5 Conclusion

In this paper, we present an approach to constrain
the data-driven state-split method by hierarchi-
cal subcategories of subordinating conjunctions,
which appear as explicit annotations in the gram-
mar. The parsing accuracy is improved by this
method owing to two reasons. Firstly, the most
general hypernym of subordinating conjunctions
exerts an initial restrict to the following splitting
step. Secondly, the splitting process is confined
by a knowledge-based criterion with the human-
defined hierarchical subcategories to avoid over
refinement.
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