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Abstract

We contribute a faster decoding algo-
rithm for phrase-based machine transla-
tion. Translation hypotheses keep track
of state, such as context for the language
model and coverage of words in the source
sentence. Most features depend upon only
part of the state, but traditional algorithms,
including cube pruning, handle state atom-
ically. For example, cube pruning will re-
peatedly query the language model with
hypotheses that differ only in source cov-
erage, despite the fact that source cover-
age is irrelevant to the language model.
Our key contribution avoids this behav-
ior by placing hypotheses into equivalence
classes, masking the parts of state that
matter least to the score. Moreover, we ex-
ploit shared words in hypotheses to itera-
tively refine language model scores rather
than handling language model state atom-
ically. Since our algorithm and cube prun-
ing are both approximate, improvement
can be used to increase speed or accuracy.
When tuned to attain the same accuracy,
our algorithm is 4.0-7.7 times as fast as
the Moses decoder with cube pruning.

1 Introduction

Translation speed is critical to making suggestions
as translators type, mining for parallel data by
translating the web, and running on mobile de-
vices without Internet connectivity. We contribute
a fast decoding algorithm for phrase-based ma-
chine translation along with an implementation in
a new open-source (LGPL) decoder available at
http://kheafield.com/code/.
Phrase-based decoders (Koehn et al., 2007; Cer
et al., 2010; Wuebker et al., 2012) keep track
of several types of state with translation hypothe-
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ses: coverage of the source sentence thus far, con-
text for the language model, the last position for
the distortion model, and anything else features
need. Existing decoders handle state atomically:
hypotheses that have exactly the same state can be
recombined and efficiently handled via dynamic
programming, but there is no special handling for
partial agreement. Therefore, features are repeat-
edly consulted regarding hypotheses that differ
only in ways irrelevant to their score, such as cov-
erage of the source sentence. Our decoder bun-
dles hypotheses into equivalence classes so that
features can focus on the relevant parts of state.

We pay particular attention to the language
model because it is responsible for much of the hy-
pothesis state. As the decoder builds translations
from left to right (Koehn, 2004), it records the last
N — 1 words of each hypothesis so that they can
be used as context to score the first N — 1 words
of a phrase, where N is the order of the language
model. Traditional decoders (Huang and Chiang,
2007) try thousands of combinations of hypothe-
ses and phrases, hoping to find ones that the lan-
guage model likes. Our algorithm instead discov-
ers good combinations in a coarse-to-fine manner.
The algorithm exploits the fact that hypotheses of-
ten share the same suffix and phrases often share
the same prefix. These shared suffixes and prefixes
allow the algorithm to coarsely reason over many
combinations at once.

Our primary contribution is a new search algo-
rithm that exploits the above observations, namely
that state can be divided into pieces relevant to
each feature and that language model state can be
further subdivided. The primary claim is that our
algorithm is faster and more accurate than the pop-
ular cube pruning algorithm.

2 Related Work

Our previous work (Heafield et al., 2013) devel-
oped language model state refinement for bottom-
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up decoding in syntatic machine translation. In
bottom-up decoding, hypotheses can be extended
to the left or right, so hypotheses keep track of
both their prefix and suffix. The present phrase-
based setting is simpler because sentences are
constructed from left to right, so prefix infor-
mation is unnecessary. However, phrase-based
translation implements reordering by allowing hy-
potheses that translate discontiguous words in the
source sentence. There are exponentially many
ways to cover the source sentence and hypotheses
carry this information as additional state. A main
contribution in this paper is efficiently ignoring
coverage when evaluating the language model. In
contrast, syntactic machine translation hypotheses
correspond to contiguous spans in the source sen-
tence, so in prior work we simply ran the search
algorithm in every span.

Another improvement upon Heafield et al.
(2013) is that we previously made no effort to
exploit common words that appear in translation
rules, which are analogous to phrases. In this
work, we explicitly group target phrases by com-
mon prefixes, doing so directly in the phrase table.

Coarse-to-fine approaches (Petrov et al., 2008;
Zhang and Gildea, 2008) invoke the decoder
multiple times with increasingly detailed models,
pruning after each pass. The key difference in our
work is that, rather than refining models in lock
step, we effectively refine the language model on
demand for hypotheses that score well. More-
over, their work was performed in syntactic ma-
chine translation while we address issues specific
to phrase-based translation.

Our baseline is cube pruning (Chiang, 2007;
Huang and Chiang, 2007), which is both a way
to organize search and an algorithm to search
through cross products of sets. We adopt the same
search organization (Section 3.1) but change how
cross products are searched.

Chang and Collins (2011) developed an exact
decoding algorithm based on Lagrangian relax-
ation. However, it has not been shown to tractably
scale to 5-gram language models used by many
modern translation systems.

3 Decoding

We begin by summarizing the high-level organiza-
tion of phrase-based cube pruning (Koehn, 2004;
Koehn et al., 2007; Huang and Chiang, 2007).
Sections 3.2 and later show our contribution.
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0 word 1 word 2 words 3 words
000 @00 the @00 cat ee®eo cat.
O@0 cat 000 the cat eee the cat.
ooe . 000 cat the eee cat the .
e0e@ . the e®e . the cat

Figure 1: Stacks to translate the French “le chat .”
into English. Filled circles indicate that the source
word has been translated. A phrase translates “le
chat” as simply “cat”, emphasizing that stacks are
organized by the number of source words rather
than the number of target words.

3.1 Search Organization

Phrase-based decoders construct hypotheses from
left to right by appending phrases in the target lan-
guage. The decoder organizes this search process
using stacks (Figure 1). Stacks contain hypothe-
ses that have translated the same number of source
words. The zeroth stack contains one hypothe-
sis with nothing translated. Subsequent stacks are
built by extending hypotheses in preceding stacks.
For example, the second stack contains hypothe-
ses that translated two source words either sepa-
rately or as a phrasal unit. Returning to Figure 1,
the decoder can apply a phrase pair to translate “le
chat” as “cat” or it can derive “the cat” by translat-
ing one word at a time; both appear in the second
stack because they translate two source words. To
generalize, the decoder populates the ¢th stack by
pairing hypotheses in the ¢ — jth stack with tar-
get phrases that translate source phrases of length
j. Hypotheses remember which source word they
translated, as indicated by the filled circles.

The reordering limit prevents hypotheses from
jumping around the source sentence too much and
dramatically reduces the search space. Formally,
the decoder cannot propose translations that would
require jumping back more than R words in the
source sentence, including multiple small jumps.

In practice, stacks are limited to k& hypothe-
ses, where k is set by the user. Small & is faster
but may prune good hypotheses, while large k is
slower but more thorough, thereby comprising a
time-accuracy trade-off. The central question in
this paper is how to select these k hypotheses.

Populating a stack boils down to two steps.
First, the decoder matches hypotheses with source
phrases subject to three constraints: the total
source length matches the stack being populated,
none of the source words has already been trans-
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Figure 2: Hypothesis suffixes arranged into a trie.
The leaves indicate source coverage and any other
hypothesis state.

lated, and the reordering limit. Second, the de-
coder searches through these matches to select
k high-scoring hypotheses for placement in the
stack. We improve this second step.

The decoder provides our algorithm with pairs
consisting of a hypothesis and a compatible source
phrase. Each source phrase translates to multiple
target phrases. The task is to grow these hypothe-
ses by appending a target phrase, yielding new hy-
potheses. These new hypotheses will be placed
into a stack of size k, so we are interested in se-
lecting k new hypotheses that score highly.

Beam search (Lowerre, 1976; Koehn, 2004)
tries every hypothesis with every compatible tar-
get phrase then selects the top k£ new hypotheses
by score. This is wasteful because most hypothe-
ses are discarded. Instead, we follow cube pruning
(Chiang, 2007) in using a priority queue to gen-
erate k£ hypotheses. A key difference is that we
generate these hypotheses iteratively.

3.2 Tries

For each source phrase, we collect the set of com-
patible hypotheses. We then place these hypothe-
ses in a trie that emphasizes the suffix words be-
cause these matter most when appending a target
phrase. Figure 2 shows an example. While it suf-
fices to build this trie on the last N — 1 words
that matter to the language model, Li and Khu-
danpur (2008) have identified cases where fewer
words are necessary because the language model
will back off. The leaves of the trie are complete
hypotheses and reveal information irrelevant to the
language model, such as coverage of the source
sentence and the state of other features.

Each source phrase translates to a set of tar-
get phrases. Because these phrases will be ap-
pended to a hypothesis, the first few words mat-
ter the most to the language model. We therefore

>have > diplomatic

are
which ™
ﬁave diplomatic

that

€

Figure 3: Target phrases arranged into a trie. Set
in italic, leaves reveal parts of the phrase that are
irrelevant to the language model.

arrange the target phrases into a prefix trie. An
example is shown in Figure 3. Similar to the hy-
pothesis trie, the depth may be shorter than NV — 1
in cases where the language model will provably
back off (Li and Khudanpur, 2008). The trie can
also be short because the target phrase has fewer
than N — 1 words. We currently store this trie
data structure directly in the phrase table, though
it could also be computed on demand to save mem-
ory. Empirically, our phrase table uses less RAM
than Moses’s memory-based phrase table.

As an optimization, a trie reveals multiple
words when there would otherwise be no branch-
ing. This allows the search algorithm to make de-
cisions only when needed.

Following Heafield et al. (2013), leaves in the
trie take the score of the underlying hypothesis or
target phrase. Non-leaf nodes take the maximum
score of their descendants. Children of a node are
sorted by score.

3.3 Boundary Pairs

The idea is that the decoder reasons over pairs of
nodes in the hypothesis and phrase tries before de-
vling into detail. In this way, it can determine what
the language model likes and, conversely, quickly
discard combinations that the model does not like.

A boundary pair consists of a node in the hy-
pothesis trie and a node in the target phrase trie.
For example, the decoder starts at the root of each
trie with the boundary pair (e, €). The score of a
boundary pair is the sum of the scores of the un-
derlying trie nodes. However, once some words
have been revealed, the decoder calls the language
model to compute a score adjustment. For exam-
ple, the boundary pair (country, that) has score ad-
justment
p(that | country)

p(that)

log

times the weight of the language model. This
has the effect of cancelling out the estimate made
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when the phrase was scored in isolation, replacing
it with a more accurate estimate based on avail-
able context. These score adjustments are efficient
to compute because the decoder retained a pointer
to “that” in the language model’s data structure
(Heafield et al., 2011).

3.4 Splitting

Refinement is the notion that the boundary pair
(¢, €) divides into several boundary pairs that re-
veal specific words from hypotheses or target
phrases. The most straightforward way to do this
is simply to split into all children of a trie node.
Continuing the example from Figure 2, we could
split (e, €) into three boundary pairs: (country, €),
(nations, €), and (countries,e¢). However, it is
somewhat inefficient to separately consider the
low-scoring child (countries, €). Instead, we con-
tinue to split off the best child (country,e) and
leave a note that the zeroth child has been split off,
denoted (e[17],€). The index increases each time
a child is split off.

The the boundary pair (e[17],¢) no longer
counts (country, €) as a child, so its score is lower.

Splitting alternates sides. For example,
(country,e) splits into (country,that) and
(country, €[17]). If one side has completely
revealed words that matter to the language model,
then splitting continues with the other side.
This procedure ensures that the language model
score is completely resolved before considering
irrelevant differences, such as coverage of the
source sentence.

3.5 Priority Queue

Search proceeds in a best-first fashion controlled
by a priority queue. For each source phrase,
we convert the compatible hypotheses into a trie.
The target phrases were already converted into a
trie when the phrase table was loaded. We then
push the root (e, €) boundary pair into the prior-
ity queue. We do this for all source phrases under
consideration, putting their root boundary pairs
into the same priority queue. The algorithm then
loops by popping the top boundary pair. It the top
boundary pair uniquely describes a hypothesis and
target phrase, then remaining features are evalu-
ated and the new hypothesis is output to the de-
coder’s stack. Otherwise, the algorithm splits the
boundary pair and pushes both split versions. Iter-
ation continues until £ new hypotheses have been
found.
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3.6 Overall Algorithm

We build hypotheses from left-to-right and man-
age stacks just like cube pruning. The only dif-
ference is how the % elements of these stacks are
selected.

When the decoder matches a hypothesis with a
compatible source phrase, we immediately evalu-
ate the distortion feature and update future costs,
both of which are independent of the target phrase.
Our future costs are exactly the same as those used
in Moses (Koehn et al., 2007): the highest-scoring
way to cover the rest of the source sentence. This
includes the language model score within target
phrases but ignores the change in language model
score that would occur were these phrases to be
appended together. The hypotheses compatible
with each source phrase are arranged into a trie.
Finally, the priority queue algorithm from the pre-
ceding section searches for options that the lan-
guage model likes.

4 Experiments

The primary claim is that our algorithm performs
better than cube pruning in terms of the trade-off
between time and accuracy. We compare our new
decoder implementation with Moses (Koehn et al.,
2007) by translating 1677 sentences from Chinese
to English. These sentences are a deduplicated
subset of the NIST Open MT 2012 test set and
were drawn from Chinese online text sources, such
as discussion forums. We trained our phrase table
using a bitext of 10.8 million sentence pairs, which
after tokenization amounts to approximately 290
million words on the English side. The bitext con-
tains data from several sources, including news ar-
ticles, UN proceedings, Hong Kong government
documents, online forum data, and specialized
sources such as an idiom translation table. We also
trained our language model on the English half of
this bitext using unpruned interpolated modified
Kneser-Ney smoothing (Kneser and Ney, 1995;
Chen and Goodman, 1998).

The system has standard phrase table, length,
distortion, and language model features. We
plan to implement lexicalized reordering in future
work; without this, the test system is 0.53 BLEU
(Papineni et al., 2002) point behind a state-of-the-
art system. We set the reordering limit to R = 15.
The phrase table was pre-pruned by applying the
same heuristic as Moses: select the top 20 target
phrases by score, including the language model.
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Figure 4: Performance of our decoder and Moses for various stack sizes k.

Moses (Koehn et al., 2007) revision d6df825
was compiled with all optimizations recom-
mended in the documentation. We use the in-
memory phrase table for speed. Tests were run
on otherwise-idle identical machines with 32 GB
RAM; the processes did not come close to running
out of memory. The language model was com-
piled into KenLLM probing format (Heafield, 2011)
and placed in RAM while text phrase tables were
forced into the disk cache before each run. Timing
is based on CPU usage (user plus system) minus
loading time, as measured by running on empty
input; our decoder is also faster at loading. All re-
sults are single-threaded. Model score is compa-
rable across decoders and averaged over all 1677
sentences; higher is better. The relationship be-
tween model score and uncased BLEU (Papineni
et al., 2002) is noisy, so peak BLEU is not attained
by the highest search accuracy.

Figure 4 shows the results for pop limits & rang-
ing from 5 to 10000 while Table 1 shows select
results. For Moses, we also set the stack size to
k to disable a second pruning pass, as is common.
Because Moses is slower, we also ran our decoder
with higher beam sizes to fill in the graph. Our
decoder is more accurate, but mostly faster. We
can interpret accuracy improvments as speed im-
provements by asking how much time is required
to attain the same accuracy as the baseline. By
this metric, our decoder is 4.0 to 7.7 times as fast
as Moses, depending on k.
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Model CPU BLEU
Stack Moses This Moses This Moses This
10 -29.96 -29.70 0.019 0.004 12.92 13.46
100 -28.68 -28.54 0.057 0.016 14.19 14.40
1000 -27.87 -27.80 0.463 0.116 1491 14.95
10000 -27.46 -27.39 4773 1.256 15.32 15.28

Table 1: Results for select stack sizes k.

5 Conclusion

We have contributed a new phrase-based search al-
gorithm based on the principle that the language
model cares the most about boundary words. This
leads to two contributions: hiding irrelevant state
from features and an incremental refinement algo-
rithm to find high-scoring combinations. This al-
gorithm is implemented in a new fast phrase-based
decoder, which we release as open-source under
the LGPL at kheafield.com/code/.
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