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Abstract

Convolution tree kernels are an efficient
and effective method for comparing syntac-
tic structures in NLP methods. However,
current kernel methods such as subset tree
kernel and partial tree kernel understate the
similarity of very similar tree structures.
Although soft-matching approaches can im-
prove the similarity scores, they are corpus-
dependent and match relaxations may be
task-specific. We propose an alternative ap-
proach called descending path kernel which
gives intuitive similarity scores on compa-
rable structures. This method is evaluated
on two temporal relation extraction tasks
and demonstrates its advantage over rich
syntactic representations.

1 Introduction

Syntactic structure can provide useful features for
many natural language processing (NLP) tasks
such as semantic role labeling, coreference resolu-
tion, temporal relation discovery, and others. How-
ever, the choice of features to be extracted from a
tree for a given task is not always clear. Convolu-
tion kernels over syntactic trees (tree kernels) offer
a potential solution to this problem by providing
relatively efficient algorithms for computing sim-
ilarities between entire discrete structures. These
kernels use tree fragments as features and count
the number of common fragments as a measure of
similarity between any two trees.

However, conventional tree kernels are sensitive
to pattern variations. For example, two trees in Fig-
ure 1(a) sharing the same structure except for one
terminal symbol are deemed at most 67% similar
by the conventional tree kernel (PTK) (Moschitti,
2006). Yet one might expect a higher similarity
given their structural correspondence.

The similarity is further attenuated by trivial
structure changes such as the insertion of an ad-

jective in one of the trees in Figure 1(a), which
would reduce the similarity close to zero. Such
an abrupt attenuation would potentially propel a
model to memorize training instances rather than
generalize from trends, leading towards overfitting.

In this paper, we describe a new kernel over
syntactic trees that operates on descending paths
through the tree rather than production rules as
used in most existing methods. This representation
is reminiscent of Sampson’s (2000) leaf-ancestor
paths for scoring parse similarities, but here it is
generalized over all ancestor paths, not just those
from the root to a leaf. This approach assigns more
robust similarity scores (e.g., 78% similarity in the
above example) than other soft matching tree ker-
nels, is faster than the partial tree kernel (Moschitti,
2006), and is less ad hoc than the grammar-based
convolution kernel (Zhang et al., 2007).

2 Background

2.1 Syntax-based Tree Kernels

Syntax-based tree kernels quantify the similarity
between two constituent parses by counting their
common sub-structures. They differ in their defini-
tion of the sub-structures.

Collins and Duffy (2001) use a subset tree (SST)
representation for their sub-structures. In the SST
representation, a subtree is defined as a subgraph
with more than one node, in which only full pro-
duction rules are expanded. While this approach is
widely used and has been successful in many tasks,
the production rule-matching constraint may be un-
necessarily restrictive, giving zero credit to rules
that have only minor structural differences. For
example, the similarity score between the NPs in
Figure 1(b) would be zero since the production rule
is different (the overall similarity score is above-
zero because of matching pre-terminals).

The partial tree kernel (PTK) relaxes the defi-
nition of subtrees to allow partial production rule
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Figure 1: Three example tree pairs.

matching (Moschitti, 2006). In the PTK, a subtree
may or may not expand any child in a production
rule, while maintaining the ordering of the child
nodes. Thus it generates a very large but sparse
feature space. To Figure 1(b), the PTK generates
fragments (i) [NP [DT a] [JJ fat]]; (ii) [NP [DT a]
[NN cat]]; and (iii) [NP [JJ fat] [NN cat]], among
others, for the second tree. This allows for partial
matching – substructure (ii) – while also generating
some fragments that violate grammatical intuitions.

Zhang et al. (2007) address the restrictiveness
of SST by allowing soft matching of production
rules. They allow partial matching of optional
nodes based on the Treebank. For example, the
rule NP → DT JJ NN indicates a noun phrase
consisting of a determiner, adjective, and common
noun. Zhang et al.’s method designates the JJ as
optional, since the Treebank contains instances of
a reduced version of the rule without the JJ node
(NP → DT NN ). They also allow node match-
ing among similar preterminals such as JJ, JJR, and
JJS, mapping them to one equivalence class.

Other relevant approaches are the spectrum tree
(SpT) (Kuboyama et al., 2007) and the route kernel
(RtT) (Aiolli et al., 2009). SpT uses a q-gram
– a sequence of connected vertices of length q –
as their sub-structure. It observes grammar rules
by recording the orientation of edges: a←b→c is
different from a→b→c. RtT uses a set of routes as
basic structures, which observes grammar rules by

NP

DT

a

NN

cat

l=0: [NP],[DT],[NN]

l=1: [NP-DT],[NP-NN],

[DT-a],[NN-cat]

l=2: [NP-DT-a],[NP-NN-cat]

Figure 2: A parse tree (left) and its descending
paths according to Definition 1 (l - length).

recording the index of a neighbor node.

2.2 Temporal Relation Extraction

Among NLP tasks that use syntactic informa-
tion, temporal relation extraction has been draw-
ing growing attention because of its wide applica-
tions in multiple domains. As subtasks in Tem-
pEval 2007, 2010 and 2013, multiple systems
were built to create labeled links from events
to events/timestamps by using a variety of fea-
tures (Bethard and Martin, 2007; Llorens et al.,
2010; Chambers, 2013). Many methods exist for
synthesizing syntactic information for temporal
relation extraction, and most use traditional tree
kernels with various feature representations. Mir-
roshandel et al. (2009) used the path-enclosed tree
(PET) representation to represent syntactic informa-
tion for temporal relation extraction on the Time-
Bank (Pustejovsky et al., 2003) and the AQUAINT
TimeML corpus1. The PET is the smallest subtree
that contains both proposed arguments of a relation.
Hovy et al. (2012) used bag tree structures to rep-
resent the bag of words (BOW) and bag of part of
speech tags (BOP) between the event and time in
addition to a set of baseline features, and improved
the temporal linking performance on the TempEval
2007 and Machine Reading corpora (Strassel et
al., 2010). Miller at al. (2013) used PET tree, bag
tree, and path tree (PT, which is similar to a PET
tree with the internal nodes removed) to represent
syntactic information and improved the temporal
relation discovery performance on THYME data2

(Styler et al., 2014). In this paper, we also use
syntactic structure-enriched temporal relation dis-
covery as a vehicle to test our proposed kernel.

3 Methods

Here we decribe the Descending Path Kernel
(DPK).

1http://www.timeml.org
2http://thyme.healthnlp.org
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Definition 1 (Descending Path): Let T be a
parse tree, v any non-terminal node in T , dv a
descendant of v, including terminals. A descending
path is the sequence of indexes of edges connecting
v and dv, denoted by [v − · · · − dv]. The length l
of a descending path is the number of connecting
edges. When l = 0, a descending path is the non-
terminal node itself, [v]. Figure 2 illustrates a parse
tree and its descending paths of different lengths.

Suppose that all descending paths of a tree T are
indexed 1, · · · , n, and pathi(T ) is the frequency
of the i-th descending path in T . We represent T as
a vector of frequencies of all its descending paths:
Φ(T ) = (path1(T ), · · · , pathn(T )).

The similarity between any two trees T1 and T2

can be assessed via the dot product of their respec-
tive descending path frequency vector representa-
tions: K(T1, T2) = 〈Φ(T1),Φ(T2)〉.

Compared with the previous tree kernels, our
descending path kernel has the following advan-
tages: 1) the sub-structures are simplified so that
they are more likely to be shared among trees,
and therefore the sparse feature issues of previous
kernels could be alleviated by this representation;
2) soft matching between two similar structures
(e.g., NP→DT JJ NN versus NP→DT NN) have
high similarity without reference to any corpus or
grammar rules;

Following Collins and Duffy (2001), we derive
a recursive algorithm to compute the dot product
of the descending path frequency vector represen-
tations of two trees T1 and T2:

K(T1, T2) = 〈Φ(T1),Φ(T2)〉
=
∑

i

pathi(T1) · pathi(T2)

=
∑

n1∈N1

∑
n2∈N2

∑
i

Ipathi
(n1) · Ipathi

(n2)

=
∑

n1∈N1
n2∈N2

C(n1, n2)

(1)
where N1 and N2 are the sets of nodes in T1 and
T2 respectively, i indexes the set of possible paths,
Ipathi

(n) is an indicator function that is 1 iff the
descending pathi is rooted at node n or 0 other-
wise. C(n1, n2) counts the number of common
descending paths rooted at nodes n1 and n2:

C(n1, n2) =
∑

i

Ipathi
(n1) · Ipathi

(n2)

C(n1, n2) can be computed in polynomial time by

the following recursive rules:

Rule 1: If n1 and n2 have different labels (e.g.,
”DT” versus “NN”), then C(n1, n2) = 0;

Rule 2: Else if n1 and n2 have the same labels
and are both pre-terminals (POS tags), then

C(n1, n2) = 1 +

{
1 if term(n1) = term(n2)
0 otherwise.

where term(n) is the terminal symbol under n;

Rule 3: Else if n1 and n2 have the same labels
and they are not both pre-terminals, then:

C(n1, n2) = 1 +
∑

ni∈children(n1)
nj∈children(n2)

C(ni, nj)

where children(m) are the child nodes of m.
As in other tree kernel approaches (Collins and

Duffy, 2001; Moschitti, 2006), we use a discount
parameter λ to control for the disproportionately
large similarity values of large tree structures.
Therefore, Rule 2 becomes:

C(n1, n2) = 1 +

{
λ if term(n1) = term(n2)
0 otherwise.

and Rule 3 becomes:

C(n1, n2) = 1 + λ
∑

ni∈children(n1)
nj∈children(n2)

C(ni, nj)

Note that Eq. (1) is a convolution kernel under
the kernel closure properties described in Haus-
sler (1999). Rules 1-3 show the equivalence be-
tween the number of common descending paths
rooted at nodes n1 and n2, and the number of
matching nodes below n1 and n2.

In practice, there are many non-matching nodes,
and most matching nodes will have only a few
matching children, so the running time, as in SST,
will be approximated by the number of matching
nodes between trees.

3.1 Relationship with other kernels
For a given tree, DPK will generate significantly
fewer sub-structures than PTK, since it does not
consider all ordered permutations of a production
rule. Moreover, the fragments generated by DPK
are more likely to be shared among different trees.
For the number of corpus-wide fragments, it is

83



Kernel ID #Frag Sim N(Sim)
SST a 9 3 0.50

O
(
ρ|N1||N2|

)
b 15 2 0.25
c 63 7 0.20

DPK a 11 7 0.78
O
(
ρ2|N1||N2|

)
b 13 9 0.83
c 31 22 0.83

PTK a 20 10 0.67
O
(
ρ3|N1||N2|

)
b 36 15 0.65
c 127 34 0.42

Table 1: Comparison of the worst case computa-
tional complexicity (ρ - the maximum branching
factor) and kernel performance on the 3 examples
from Figure 1. #Frag is the number of fragments,
N(Sim) is the normalized similarity. Please see
the online supplementary note for detailed frag-
ments of example (a).

possible that DPK≤ SST≤ PTK. In Table 1, given
λ = 1, we compare the performance of 3 kernels
on the three examples in Figure 1. Note that for
more complicated structures, i.e., examples b and
c, DPK generates fewer fragments than SST and
PTK, with more shared fragments among trees.

The complexity for all three kernels are at least
O
(|N1||N2|

)
since they share the pairwise summa-

tion at the end of Equation 1. SST, due to its re-
quirement of exact production rule matching, only
takes one pass in the inner loop which adds a factor
of ρ (the maximum branching factor of any pro-
duction rule). DPK does a pairwise summation
of children, which adds a factor of ρ2 to the com-
plexity. Finally, the efficient algorithm for PTK
is proved by Moschitti (2006) to contain a con-
stant factor of ρ3. Table 1 orders the tree kernels
according by their listed complexity.

It may seem that the value of DPK is strictly in its
ability to evaluate all paths, which is not explicitly
accounted for by other kernels. However, another
view of the DPK is possible by thinking of it as
cheaply calculating rule production similarity by
taking advantage of relatively strict English word
ordering. Like SST and PTK, the DPK requires
the root category of two subtrees to be the same
for the similarity to be greater than zero. Unlike
SST and PTK, once the root category comparison
is successfully completed, DPK looks at all paths
that go through it and accumulates their similarity
scores independent of ordering – in other words, it
will ignore the ordering of the children in its pro-

duction rule. This means, for example, that if the
rule production NP→ NN JJ DT were ever found
in a tree, to DPK it would be indistinguishable from
the common production NP→ DT JJ NN, despite
having inverted word order, and thus would have
a maximal similarity score. SST and PTK would
assign this pair a much lower score for having com-
pletely different ordering, but we suggest that cases
such as these are very rare due to the relatively
strict word ordering of English. In most cases, the
determiner of a noun phrase will be at the front, the
nouns will be at the end, and the adjectives in the
middle. So with small differences in production
rules (one or two adjectives, extra nominal modifier,
etc.) the PTK will capture similarity by compar-
ing every possible partial rule completion, but the
DPK can obtain higher and faster scores by just
comparing one child at a time because the ordering
is constrained by the language. This analysis does
lead to a hypothesis for the general viability of the
DPK, suggesting that in languages with freer word
order it may give inflated scores to structures that
are syntactically dissimilar if they have the same
constituent components in different order.

Formally, Moschitti (2006) showed that SST is
a special case of PTK when only the longest child
sequence from each tree is considered. On the other
end of the spectrum, DPK is a special case of PTK
where the similarity between rules only considers
child subsequences of length one.

4 Evaluation

We applied DPK to two published temporal relation
extraction systems: (Miller et al., 2013) in the
clinical domain and Cleartk-TimeML (Bethard,
2013) in the general domain respectively.

4.1 Narrative Container Discovery

The task here as described by Miller et al. (2013) is
to identify the CONTAINS relation between a time
expression and a same-sentence event from clinical
notes in the THYME corpus, which has 78 notes
of 26 patients. We obtained this corpus from the
authors and followed their linear composite kernel
setting:

KC(s1, s2) = τ
P∑

p=1

KT (tp1, t
p
2)+KF (f1, f2) (2)

where si is an instance object composed of flat fea-
tures fi and a syntactic tree ti. A syntactic tree ti
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can have multiple representations, as in Bag Tree
(BT), Path-enclosed Tree (PET), and Path Tree
(PT). For the tree kernel KT , subset tree (SST) ker-
nel was applied on each tree representation p. The
final similarity score between two instances is the
τ -weighted sum of the similarities of all representa-
tions, combined with the flat feature (FF) similarity
as measured by a feature kernel KF (linear or poly-
nomial). Here we replaced the SST kernel with
DPK and tested two feature combinations FF+PET
and FF+BT+PET+PT. To fine tune parameters, we
used grid search by testing on the default develop-
ment data. Once the parameters were tuned, we
tested the system performance on the testing data,
which was set up by the original system split.

4.2 Cleartk-TimeML
We tested one sub-task from TempEval-2013 –
the extraction of temporal relations between an
event and time expression within the same sen-
tence. We obtained the training corpus (Time-
Bank + AQUAINT) and testing data from the au-
thors (Bethard, 2013). Since the original features
didn’t contain syntactic features, we created a PET
tree extractor for this system. The kernel setting
was similar to equation (2), while there was only
one tree representation, PET tree, P=1. A linear
kernel was used as KF to evaluate the exact same
flat features as used by the original system. We
used the built-in cross validation to do grid search
for tuning the parameters. The final system was
tested on the testing data for reporting results.

4.3 Results and Discussion
Results are shown in Table 2. The top section
shows THYME results. For these experiments,
the DPK is superior when a syntactically-rich PET
representation is used. Using the full feature set of
Miller et al. (2013), SST is superior to DPK and
obtains the best overall performance. The bottom
section shows results on TempEval-2013 data, for
which there is little benefit from either tree kernel.

Our experiments with THYME data show that
DPK can capture something in the linguistically
richer PET representation that the SST kernel can-
not, but adding BT and PT representations decrease
the DPK performance. As a shallow representation,
BT does not have much in the way of descending
paths for DPK to use. PT already ignores the pro-
duction grammar by removing the inner tree nodes.
DPK therefore cannot get useful information and
may even get misleading cues from these two rep-

Features KT P R F
THYME

FF+PET DPK 0.756 0.667 0.708
SST 0.698 0.630 0.662

FF+BT+ DPK 0.759 0.626 0.686
PET+PT SST 0.754 0.711 0.732

TempEval
FF+PET DPK 0.328 0.263 0.292

SST 0.325 0.263 0.290
FF - 0.309 0.266 0.286

Table 2: Comparison of tree kernel performance
for temporal relation extraction on THYME and
TempEval-2013 data.

resentations. These results show that, while DPK
should not always replace SST, there are represen-
tations in which it is superior to existing methods.
This suggests an approach in which tree representa-
tions are matched to different convolution kernels,
for example by tuning on held-out data.

For TempEval-2013 data, adding syntactic fea-
tures did not improve the performance significantly
(comparing F-score of 0.290 with 0.286 in Ta-
ble 3). Probably, syntactic information is not a
strong feature for all types of temporal relations on
TempEval-2013 data.

5 Conclusion

In this paper, we developed a novel convolution
tree kernel (DPK) for measuring syntactic similar-
ity. This kernel uses a descending path represen-
tation in trees to allow higher similarity scores on
partially matching structures, while being simpler
and faster than other methods for doing the same.
Future work will explore 1) a composite kernel
which uses DPK for PET trees, SST for BT and PT,
and feature kernel for flat features, so that different
tree kernels can work with their ideal syntactic rep-
resentations; 2) incorporate dependency structures
for tree kernel analysis 3) applying DPK to other
relation extraction tasks on various corpora.
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