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Abstract

Earnings call summarizes the financial
performance of a company, and it is an
important indicator of the future financial
risks of the company. We quantitatively
study how earnings calls are correlated
with the financial risks, with a special fo-
cus on the financial crisis of 2009. In par-
ticular, we perform a text regression task:
given the transcript of an earnings call, we
predict the volatility of stock prices from
the week after the call is made. We pro-
pose the use of copula: a powerful statis-
tical framework that separately models the
uniform marginals and their complex mul-
tivariate stochastic dependencies, while
not requiring any prior assumptions on the
distributions of the covariate and the de-
pendent variable. By performing probabil-
ity integral transform, our approach moves
beyond the standard count-based bag-of-
words models in NLP, and improves pre-
vious work on text regression by incor-
porating the correlation among local fea-
tures in the form of semiparametric Gaus-
sian copula. In experiments, we show
that our model significantly outperforms
strong linear and non-linear discriminative
baselines on three datasets under various
settings.

1 Introduction

Predicting the risks of publicly listed companies is
of great interests not only to the traders and ana-
lysts on the Wall Street, but also virtually anyone
who has investments in the market (Kogan et al.,
2009). Traditionally, analysts focus on quantita-
tive modeling of historical trading data. Today,
even though earnings calls transcripts are abun-
dantly available, their distinctive communicative
practices (Camiciottoli, 2010), and correlations
with the financial risks, in particular, future stock

performances (Price et al., 2012), are not well
studied in the past.

Earnings calls are conference calls where a
listed company discusses the financial perfor-
mance. Typically, a earnings call contains two
parts: the senior executives first report the oper-
ational outcomes, as well as the current financial
performance, and then discuss their perspectives
on the future of the company. The second part of
the teleconference includes a question answering
session where the floor will be open to investors,
analysts, and other parties for inquiries. The ques-
tion we ask is that, even though each earnings call
has distinct styles, as well as different speakers
and mixed formats, can we use earnings calls to
predict the financial risks of the company in the
limited future?

Given a piece of earnings call transcript, we
investigate a semiparametric approach for auto-
matic prediction of future financial risk1. To do
this, we formulate the problem as a text regres-
sion task, and use a Gaussian copula with prob-
ability integral transform to model the uniform
marginals and their dependencies. Copula mod-
els (Schweizer and Sklar, 1983; Nelsen, 1999)
are often used by statisticians (Genest and Favre,
2007; Liu et al., 2012; Masarotto and Varin, 2012)
and economists (Chen and Fan, 2006) to study the
bivariate and multivariate stochastic dependency
among random variables, but they are very new
to the machine learning (Ghahramani et al., 2012;
Han et al., 2012; Xiang and Neville, 2013; Lopez-
paz et al., 2013) and related communities (Eick-
hoff et al., 2013). To the best of our knowledge,
even though the term “copula” is named for the
resemblance to grammatical copulas in linguistics,
copula models have not been explored in the NLP
community. To evaluate the performance of our
approach, we compare with a standard squared
loss linear regression baseline, as well as strong
baselines such as linear and non-linear support

1In this work, the risk is defined as the measured volatil-
ity of stock prices from the week following the earnings call
teleconference. See details in Section 5.
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vector machines (SVMs) that are widely used in
text regression tasks. By varying different exper-
imental settings on three datasets concerning dif-
ferent periods of the Great Recession from 2006-
2013, we empirically show that our approach sig-
nificantly outperforms the baselines by a wide
margin. Our main contributions are:

• We are among the first to formally study tran-
scripts of earnings calls to predict financial
risks.

• We propose a novel semiparametric Gaussian
copula model for text regression.

• Our results significantly outperform standard
linear regression and strong SVM baselines.

• By varying the number of dimensions of the
covariates and the size of the training data,
we show that the improvements over the
baselines are robust across different param-
eter settings on three datasets.

In the next section, we outline related work in
modeling financial reports and text regression. In
Section 3, the details of the semiparametric cop-
ula model are introduced. We then describe the
dataset and dependent variable in this study, and
the experiments are shown in Section 6. We dis-
cuss the results and findings in Section 7 and then
conclude in Section 8.

2 Related Work

Fung et al. (2003) are among the first to study
SVM and text mining methods in the market pre-
diction domain, where they align financial news
articles with multiple time series to simulate the
33 stocks in the Hong Kong Hang Seng Index.
However, text regression in the financial domain
have not been explored until recently. Kogan et
al. (2009) model the SEC-mandated annual re-
ports, and performs linear SVM regression with
ε-insensitive loss function to predict the mea-
sured volatility. Another recent study (Wang et
al., 2013) uses exactly the same max-margin re-
gression technique, but with a different focus on
the financial sentiment. Using the same dataset,
Tsai and Wang (2013) reformulate the regression
problem as a text ranking problem. Note that
all these regression studies above investigate the
SEC-mandated annual reports, which are very dif-
ferent from the earnings calls in many aspects such
as length, format, vocabulary, and genre. Most
recently, Xie et al. (2013) have proposed the use
of frame-level semantic features to understand fi-
nancial news, but they treat the stock movement

prediction problem as a binary classification task.
Broadly speaking, our work is also aligned to re-
cent studies that make use of social media data
to predict the stock market (Bollen et al., 2011;
Zhang et al., 2011).

Despite our financial domain, our approach is
more relevant to text regression. Traditional dis-
criminative models, such as linear regression and
linear SVM, have been very popular in various
text regression tasks, such as predicting movie rev-
enues from reviews (Joshi et al., 2010), under-
standing the geographic lexical variation (Eisen-
stein et al., 2010), and predicting food prices from
menus (Chahuneau et al., 2012). The advantage of
these models is that the estimation of the parame-
ters is often simple, the results are easy to inter-
pret, and the approach often yields strong perfor-
mances. While these approaches have merits, they
suffer from the problem of not explicitly model-
ing the correlations and interactions among ran-
dom variables, which in some sense, correspond-
ing to the impractical assumption of independent
and identically distributed (i.i.d) of the data. For
example, when bag-of-word-unigrams are present
in the feature space, it is easier if one does not ex-
plicitly model the stochastic dependencies among
the words, even though doing so might hurt the
predictive power, while the variance from the cor-
relations among the random variables is not ex-
plained.

3 Copula Models for Text Regression

In NLP, many statistical machine learning meth-
ods that capture the dependencies among ran-
dom variables, including topic models (Blei et al.,
2003; Lafferty and Blei, 2005; Wang et al., 2012),
always have to make assumptions with the under-
lying distributions of the random variables, and
make use of informative priors. This might be
rather restricting the expressiveness of the model
in some sense (Reisinger et al., 2010). On the
other hand, once such assumptions are removed,
another problem arises — they might be prone to
errors, and suffer from the overfitting issue. There-
fore, coping with the tradeoff between expressive-
ness and overfitting, seems to be rather important
in statistical approaches that capture stochastic de-
pendency.

Our proposed semiparametric copula regression
model takes a different perspective. On one hand,
copula models (Nelsen, 1999) seek to explicitly
model the dependency of random variables by sep-
arating the marginals and their correlations. On
the other hand, it does not make use of any as-
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sumptions on the distributions of the random vari-
ables, yet, the copula model is still expressive.
This nice property essentially allows us to fuse
distinctive lexical, syntactic, and semantic feature
sets naturally into a single compact model.

From an information-theoretic point of
view (Shannon, 1948), various problems in text
analytics can be formulated as estimating the
probability mass/density functions of tokens
in text. In NLP, many of the probabilistic text
models work in the discrete space (Church and
Gale, 1995; Blei et al., 2003), but our model is
different: since the text features are sparse, we
first perform kernel density estimates to smooth
out the zeroing items, and then calculate the
empirical cumulative distribution function (CDF)
of the random variables. By doing this, we
are essentially performing probability integral
transform— an important statistical technique
that moves beyond the count-based bag-of-words
feature space to marginal cumulative density
functions space. Last but not least, by using
a parametric copula, in our case, the Gaussian
copula, we reduce the computational cost from
fully nonparametric methods, and explicitly
model the correlations among the covariate and
the dependent variable.

In this section, we first briefly look at the
theoretical foundations of copulas, including the
Sklar’s theorem. Then we describe the proposed
semiparametric Gaussian copula text regression
model. The algorithmic implementation of our ap-
proach is introduced at the end of this section.

3.1 The Theory of Copula
In the statistics literature, copula is widely known
as a family of distribution function. The idea be-
hind copula theory is that the cumulative distri-
bution function (CDF) of a random vector can be
represented in the form of uniform marginal cu-
mulative distribution functions, and a copula that
connects these marginal CDFs, which describes
the correlations among the input random variables.
However, in order to have a valid multivariate dis-
tribution function regardless of n-dimensional co-
variates, not every function can be used as a copula
function. The central idea behind copula, there-
fore, can be summarize by the Sklar’s theorem and
the corollary.
Theorem 1 (Sklar’s Theorem (1959)) Let F
be the joint cumulative distribution function
of n random variables X1, X2, ..., Xn. Let
the corresponding marginal cumulative dis-
tribution functions of the random variable be
F1(x1), F2(x2), ..., Fn(xn). Then, if the marginal

functions are continuous, there exists a unique
copula C, such that

F (x1, ..., xn) = C[F1(x1), ..., Fn(xn)]. (1)

Furthermore, if the distributions are continuous,
the multivariate dependency structure and the
marginals might be separated, and the copula can
be considered independent of the marginals (Joe,
1997; Parsa and Klugman, 2011). Therefore, the
copula does not have requirements on the marginal
distributions, and any arbitrary marginals can be
combined and their dependency structure can be
modeled using the copula. The inverse of Sklar’s
Theorem is also true in the following:

Corollary 1 If there exists a copula C : (0, 1)n

and marginal cumulative distribution func-
tions F1(x1), F2(x2), ..., Fn(xn), then
C[F1(x1), ..., Fn(xn)] defines a multivariate
cumulative distribution function.

3.2 Semiparametric Gaussian Copula Models
The Non-Parametric Estimation
We formulate the copula regression model as fol-
lows. Assume we have n random variables of text
features X1, X2, ..., Xn. The problem is that text
features are sparse, so we need to perform non-
parametric kernel density estimation to smooth out
the distribution of each variable. Let f1, f2, ..., fn
be the unknown density, we are interested in de-
riving the shape of these functions. Assume we
have m samples, the kernel density estimator can
be defined as:

f̂h(x) =
1
m

m∑
i=1

Kh(x− xi) (2)

=
1
mh

m∑
i=1

K

(
x− xi
h

)
(3)

Here, K(·) is the kernel function, where in our
case, we use the Box kernel2 K(z):

K(z) =
1
2
, |z| ≤ 1, (4)

= 0, |z| > 1. (5)

Comparing to the Gaussian kernel and other ker-
nels, the Box kernel is simple, and computation-
ally inexpensive. The parameter h is the band-
width for smoothing3.

2It is also known as the original Parzen windows (Parzen,
1962).

3In our implementation, we use the default h of the Box
kernel in the ksdensity function in Matlab.
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Now, we can derive the empiri-
cal cumulative distribution functions
F̂X1(f̂1(X1)), F̂X2(f̂2(X2)), ..., F̂Xn(f̂n(Xn)) of
the smoothed covariates, as well as the dependent
variable y and its CDF F̂y(f̂(y)). The empirical
cumulative distribution functions are defined as:

F̂ (ν) =
1
m

m∑
i=1

I{xi ≤ ν} (6)

where I{·} is the indicator function, and ν in-
dicates the current value that we are evaluating.
Note that the above step is also known as prob-
ability integral transform (Diebold et al., 1997),
which allows us to convert any given continuous
distribution to random variables having a uniform
distribution. This is of crucial importance to mod-
eling text data: instead of using the classic bag-of-
words representation that uses raw counts, we are
now working with uniform marginal CDFs, which
helps coping with the overfitting issue due to noise
and data sparsity.

The Parametric Copula Estimation
Now that we have obtained the marginals, and then
the joint distribution can be constructed by apply-
ing the copula function that models the stochastic
dependencies among marginal CDFs:

F̂ (f̂1(X1), ..., f̂1(Xn), f̂(y)) (7)

= C[F̂X1

(
f̂1(X1)

)
, ..., F̂Xn

(
f̂n(Xn)

)
, F̂y

(
f̂y(y)

)
] (8)

In this work, we apply the parametric Gaussian
copula to model the correlations among the text
features and the label. Assume xi is the smoothed
version of random variable Xi, and y is the
smoothed label, we have:
F (x1, ..., xn, y) (9)

= ΦΣ

(
Φ−1[Fx1(x1)], ..., , Φ−1[Fxn(xn)], Φ−1[Fy(y)]

)
(10)

where ΦΣ is the joint cumulative distribution func-
tion of a multivariate Gaussian with zero mean and
Σ variance. Φ−1 is the inverse CDF of a standard
Gaussian. In this parametric part of the model, the
parameter estimation boils down to the problem of
learning the covariance matrix Σ of this Gaussian
copula. In this work, we perform standard maxi-
mum likelihood estimation for the Σ matrix.

To calibrate the Σ matrix, we make use of
the power of randomness: using the initial Σ
from MLE, we generate random samples from
the Gaussian copula, and then concatenate previ-
ously generated joint of Gaussian inverse marginal
CDFs with the newly generated random copula

numbers, and re-estimate using MLE to derive the
final adjusted Σ. Note that the final Σ matrix has
to be symmetric and positive definite.

Computational Complexity
One important question regarding the proposed
semiparametric Gaussian copula model is the cor-
responding computational complexity. This boils
down to the estimation of the Σ̂ matrix (Liu et al.,
2012): one only needs to calculate the correla-
tion coefficients of n(n − 1)/2 pairs of random
variables. Christensen (2005) shows that sort-
ing and balanced binary trees can be used to cal-
culate the correlation coefficients with complex-
ity of O(n log n). Therefore, the computational
complexity of MLE for the proposed model is
O(n log n).

Efficient Approximate Inference
In this regression task, in order to perform
exact inference of the conditional probability
distribution p(Fy(y)|Fx1(x1), ..., Fxn(xn)),
one needs to solve the mean response
Ê(Fy(y)|Fx1(x1), ..., Fx1(x1)) from a joint
distribution of high-dimensional Gaussian copula.

Assume in the simple bivariate case of Gaussian
copula regression, the covariance matrix Σ is:

Σ =
[

Σ11 Σ12

Σ22

]
We can easily derive the conditional density that
can be used to calculate the expected value of the
CDF of the label:

C(Fy(y)|Fx1(x1); Σ) =
1

|Σ22 − ΣT
12Σ−1

11 Σ12| 12

exp

(
− 1

2
δT
(

[Σ22 − ΣT
12Σ−1

11 Σ12]−1 − I
)
δ

)
(11)

where δ = Φ−1[Fy(y)]− ΣT
12Σ−1

11 Φ−1[Fx1(x1)].
Unfortunately, the exact inference can be in-

tractable in the multivariate case, and approximate
inference, such as Markov Chain Monte Carlo
sampling (Gelfand and Smith, 1990; Pitt et al.,
2006) is often used for posterior inference. In this
work, we propose an efficient sampling method
to derive y given the text features — we sample
Fy(y) s.t. it maximizes the joint high-dimensional
Gaussian copula density:

ˆFy(y) ≈ arg max
Fy(y)∈(0,1)

1√
det Σ

exp

(
−1

2
∆T · (Σ−1 − I

) ·∆)
(12)
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where

∆ =


Φ−1(Fx1(x1))

...
Φ−1(Fxn(xn))
Φ−1(Fy(y))


Again, the reason why we perform approxi-

mated inference is that: exact inference in the
high-dimensional Gaussian copula density is non-
trivial, and might not have analytical solutions,
but approximate inference using maximum den-
sity sampling from the Gaussian copula signifi-
cantly relaxes the complexity of inference. Fi-
nally, to derive ŷ, the last step is to compute the
inverse CDF of ˆFy(y).

3.3 Algorithmic Implementation
The algorithmic implementation of our semipara-
metric Gaussian copula text regression model is
shown in Algorithm 1. Basically, the algorithm
can be decomposed into four parts:

• Perform nonparametric Box kernel density
estimates of the covariates and the dependent
variable for smoothing.

• Calculate the empirical cumulative distribu-
tion functions of the smoothed random vari-
ables.

• Estimate the parameters (covariance Σ) of the
Gaussian copula.

• Infer the predicted value of the dependent
variable by sampling the Gaussian copula
probability density function.

4 Datasets

We use three datasets4 of transcribed quarterly
earnings calls from the U.S. stock market, focus-
ing on the period of the Great Recession.

The pre-2009 dataset consists of earnings calls
from the period of 2006-2008, which includes
calls from the beginning of economic downturn,
the outbreak of the subprime mortgage crisis, and
the epidemic of collapses of large financial insti-
tutions. The 2009 dataset contains earnings calls
from the year of 2009, which is a period where the
credit crisis spreads globally, and the Dow Jones
Industrial Average hit the lowest since the begin-
ning of the millennium. The post-2009 dataset in-
cludes earnings calls from the period of 2010 to
2013, which concerns the recovery of global econ-
omy. The detailed statistics is shown in Table 1.

4http://www.cs.cmu.edu/˜yww/data/earningscalls.zip

Algorithm 1 A Semi-parametric Gaussian Copula
Model Based Text Regression Algorithm

Given:
(1) training data (X(tr), ~y(tr));
(2) testing data (X(te), ~y(te));

Learning:
for i = 1→ n dimensions do

X
(tr)′
i ← BoxKDE(X

(tr)
i , X

(tr)
i );

U
(tr)
i ← EmpiricalCDF (X

(tr)′
i );

X
(te)′
i ← BoxKDE(X

(tr)
i , X

(te)
i );

U
(te)
i ← EmpiricalCDF (X

(te)′
i );

end for
y(tr)′ ← BoxKDE(y(tr), y(tr));
v(tr) ← EmpiricalCDF (y(tr)′);
Z(tr) ← GaussianInverseCDF ([U (tr) v(tr)]);
Σ̂← CorrelationCoefficients(Z(tr));
r ←MultiV ariateGaussianRandNum(0, Σ̂, n);

Z(tr)′ = GaussianCDF (r);
Σ̂← CorrelationCoefficients([Z(tr) Z(tr)′ ]);

Inference:
for j = 1→ m instances do

maxj ← 0;
Ŷ ′ = 0;
for k = 0.01→ 1 do

Z(te) ← GaussianInverseCDF ([U (te) k]);

pj = MultiV ariateGaussianPDF (Z(te),Σ̂)∏
n GaussianPDF (Z(te))

;
if pj ≥ maxj then

maxj = pj ;
Ŷ ′ = k;

end if
end for

end for
ŷ ← InverseCDF (~y(tr), Ŷ ′);

Dataset #Calls #Companies #Types #Tokens
Pre-2009 3694 2746 371.5K 28.7M
2009 3474 2178 346.2K 26.4M
Post-2009 3726 2107 377.4K 28.6M

Table 1: Statistics of three datasets. Types: unique
words. Tokens: word tokens.

Note that unlike the standard news corpora in
NLP or the SEC-mandated financial report, Tran-
scripts of earnings call is a very special genre
of text. For example, the length of WSJ docu-
ments is typically one to three hundreds (Harman,
1995), but the averaged document length of our
three earnings calls datasets is 7677. Depending
on the amount of interactions in the question an-
swering session, the complexities of the calls vary.
This mixed form of formal statement and informal
speech brought difficulties to machine learning al-
gorithms.

5 Measuring Financial Risks

Volatility is an important measure of the financial
risk, and in this work, we focus on predicting the
future volatility following the earnings teleconfer-
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ence call. For each earning call, we have a week of
stock prices of the company after the day on which
the earnings call is made. The Return of Day t is:

rt =
xt
xt−1

− 1 (13)

where xt represents the share price of Day t, and
the Measured Stock Volatility from Day t to t+ τ :

y(t,t+τ) =

√∑τ
i=0(rt+i − r̄)2

τ
(14)

Using the stock prices, we can use the equations
above to calculate the measured stock volatility af-
ter the earnings call, which is the standard measure
of risks in finance, and the dependent variable y of
our predictive task.

6 Experiments

6.1 Experimental Setup
In all experiments throughout this section, we use
80-20 train/test splits on all three datasets.

Feature sets:
We have extracted lexical, named entity, syntactic,
and frame-semantics features, most of which have
been shown to perform well in previous work (Xie
et al., 2013). We use the unigrams and bigrams
to represent lexical features, and the Stanford part-
of-speech tagger (Toutanova et al., 2003) to extract
the lexicalized named entity and part-of-speech
features. A probabilistic frame-semantics parser,
SEMAFOR (Das et al., 2010), is used to provide
the FrameNet-style frame-level semantic annota-
tions. For each of the five sets, we collect the top-
100 most frequent features, and end up with a total
of 500 features.

Baselines:
The baselines are standard squared-loss linear
regression, linear kernel SVM, and non-linear
(Gaussian) kernel SVM. They are all standard
algorithms in regression problems, and have
been shown to have outstanding performances in
many recent text regression (Kogan et al., 2009;
Chahuneau et al., 2012; Xie et al., 2013; Wang
et al., 2013; Tsai and Wang, 2013). We use
the Statistical Toolbox’s linear regression imple-
mentation in Matlab, and LibSVM (Chang and
Lin, 2011) for training and testing the SVM mod-
els. The hyperparameter C in linear SVM, and
the γ and C hyperparameters in Gaussian SVM
are tuned on the training set using 10-fold cross-
validation. Note that since the kernel density esti-
mation in the proposed copula model is nonpara-
metric, and we only need to learn the Σ in the

Gaussian copula, there is no hyperparameters that
need to be tuned.

Evaluation Metrics:
Spearman’s correlation (Hogg and Craig, 1994)
and Kendall’s tau (Kendall, 1938) have been
widely used in many regression problems in NLP
(Albrecht and Hwa, 2007; Yogatama et al., 2011;
Wang et al., 2013; Tsai and Wang, 2013), and here
we use them to measure the quality of predicted
values ŷ by comparing to the vector of ground
truth y. In contrast to Pearson’s correlation, Spear-
man’s correlation has no assumptions on the rela-
tionship of the two measured variables. Kendall’s
tau is a nonparametric statistical metric that have
shown to be inexpensive, robust, and represen-
tation independent (Lapata, 2006). We also use
paired two-tailed t-test to measure the statistical
significance between the best and the second best
approaches.

6.2 Comparing to Various Baselines
In the first experiment, we compare the proposed
semiparametric Gaussian copula regression model
to three baselines on three datasets with all fea-
tures. The detailed results are shown in Table 2.
On the pre-2009 dataset, we see that the linear re-
gression and linear SVM perform reasonably well,
but the Gaussian kernel SVM performs less well,
probably due to overfitting. The copula model
outperformed all three baselines by a wide mar-
gin on this dataset with both metrics. Similar per-
formances are also obtained in the 2009 dataset,
where the result of linear SVM baseline falls be-
hind. On the post-2009 dataset, none of results
from the linear and non-linear SVM models can
match up with the linear regression model, but
our proposed copula model still improves over all
baselines by a large margin. Comparing to second-
best approaches, all improvements obtained by the
copula model are statistically significant.

6.3 Varying the Amount of Training Data
To understand the learning curve of our proposed
copula regression model, we use the 25%, 50%,
75% subsets from the training data, and evaluate
all four models. Figure 1 shows the evaluation
results. From the experiments on the pre-2009
dataset, we see that when the amount of training
data is small (25%), both SVM models have ob-
tained very impressive results. This is not surpris-
ing at all, because as max-margin models, soft-
margin SVM only needs a handful of examples
that come with nonvanishing coefficients (support
vectors) to find a reasonable margin. When in-
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Method Pre-2009 2009 Post-2009
Spearman Kendall Spearman Kendall Spearman Kendall

linear regression: 0.377 0.259 0.367 0.252 0.314 0.216
linear SVM: 0.364 0.249 0.242 0.167 0.132 0.091
Gaussian SVM: 0.305 0.207 0.280 0.192 0.152 0.104
Gaussian copula: 0.425* 0.315* 0.422* 0.310* 0.375* 0.282*

Table 2: Comparing the learning algorithms on three datasets with all features. The best result is high-
lighted in bold. * indicates p < .001 comparing to the second best result.

Figure 1: Varying the amount of training data. Left column: pre-2009 dataset. Middle column: 2009
dataset. Right column: post-2009 dataset. Top row: Spearman’s correlation. Bottom row: Kendall’s tau.

creasing the amount of training data to 50%, we do
see the proposed copula model catches up quickly,
and lead all baseline methods undoubtably at 75%
training data. On the 2009 dataset, we observe
very similar patterns. Interestingly, the proposed
copula regression model has dominated all meth-
ods for both metrics throughout all proportions of
the “post-2009” earnings calls dataset, where in-
stead of financial crisis, the economic recovery is
the main theme. In contrast to the previous two
datasets, both linear and non-linear SVMs fail to
reach reasonable performances on this dataset.

6.4 Varying the Amount of Features

Finally, we investigate the robustness of the pro-
posed semiparametric Gaussian copula regression
model by varying the amount of features in the co-
variate space. To do this, we sample equal amount
of features from each feature set, and concatenate

them into a feature vector. When increasing the
amount of total features from 100 to 400, the re-
sults are shown in Figure 2. On the pre-2009
dataset, we see that the gaps between the best-
perform copula model and the second-best linear
regression model are consistent throughout all fea-
ture sizes. On the 2009 dataset, we see that the
performance of Gaussian copula is aligned with
the linear regression model in terms of Spearman’s
correlation, where the former seems to perform
better in terms of Kendall’s tau. Both linear and
non-linear SVM models do not have any advan-
tages over the proposed approach. On the post-
2009 dataset that concerns economic growth and
recovery, the boundaries among all methods are
very clear. The Spearman’s correlation for both
SVM baselines is less than 0.15 throughout all set-
tings, but copula model is able to achieve 0.4 when
using 400 features. The improvements of copula
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Figure 2: Varying the amount of features. Left column: pre-2009 dataset. Middle column: 2009 dataset.
Right column: post-2009 dataset. Top row: Spearman’s correlation. Bottom row: Kendall’s tau.

Pre-2009 2009 Post-2009
2008/CD 2008 first quarter

2008 million/CD revenue/NN
third quarter 2008/CD revenue

third million quarter of
third/JJ million in compared to

the third the fourth million in
million/CD fourth quarter Peter/PERSON

capital fourth call
million fourth/JJ first/JJ

FE Trajector entity $/$ million/CD

Table 3: Top-10 features that have positive corre-
lations with stock volatility in three datasets.

model over squared loss linear regression model
are increasing, when working with larger feature
spaces.

6.5 Qualitative Analysis
Like linear classifiers, by “opening the hood” to
the Gaussian copula regression model, one can ex-
amine features that exhibit high correlations with
the dependent variable. Table 3 shows the top fea-
tures that are positively correlated with the future
stock volatility in the three datasets. On the top
features from the “pre-2009” dataset, which pri-
marily (82%) includes calls from 2008, we can
clearly observe that the word “2008” has strong
correlation with the financial risks. Interestingly,
the phrase “third quarter” and its variations, not
only play an important role in the model, but also
highly correlated to the timeline of the financial
crisis: the Q3 of 2008 is a critical period in the

recession, where Lehman Brothers falls on the
Sept. 15 of 2008, filing $613 billion of debt —
the biggest bankruptcy in U.S. history (Mamudi,
2008). This huge panic soon broke out in vari-
ous financial institutions in the Wall Street. On
the top features from “2009” dataset, again, we see
the word “2008” is still prominent in predicting fi-
nancial risks, indicating the hardship and extended
impacts from the center of the economic crisis.
After examining the transcripts, we found sen-
tences like: “...our specialty lighting business that
we discontinued in the fourth quarter of 2008...”,
“...the exception of fourth quarter revenue which
was $100,000 below our guidance target...”, and
“...to address changing economic conditions and
their impact on our operations, in the fourth quar-
ter we took the painful but prudent step of de-
creasing our headcount by about 5%...”, show-
ing the crucial role that Q4 of 2008 plays in 2009
earnings calls. Interestingly, after the 2008-2009
crisis, in the recovery period, we have observed
new words like “revenue”, indicating the “back-to-
normal” trend of financial environment, and new
features that predict financial volatility.

7 Discussions
In the experimental section, we notice that the
proposed semiparametric Gaussian copula model
has obtained promising results in various setups
on three datasets in this text regression task. The
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main questions we ask are: how is the pro-
posed model different from standard text regres-
sion/classification models? What are the advan-
tages of copula-based models, and what makes it
perform so well?

One advantage we see from the copula model
is that it does not require any assumptions on
the marginal distributions. For example, in latent
Dirichlet allocation (Blei et al., 2003), the topic
proportion of a document is always drawn from
a Dirichlet(α) distribution. This is rather re-
stricted, because the possible shapes from a K−1
simplex of Dirichlet is always limited in some
sense. In our copula model, instead of using some
priors, we just calculate the empirical cumulative
distribution function of the random variables, and
model the correlation among them. This is ex-
tremely practical, because in many natural lan-
guage processing tasks, we often have to deal with
features that are extracted from many different do-
mains and signals. By applying the Probability
Integral Transform to raw features in the copula
model, we essentially avoid comparing apples and
oranges in the feature space, which is a common
problem in bag-of-features models in NLP.

The second hypothesis is about the semiparam-
etirc parameterization, which contains the non-
parametric kernel density estimation and the para-
metric Gaussian copula regression components.
The benefit of a semiparametric model is that here
we are not interested in performing completely
nonparametric estimations, where the infinite di-
mensional parameters might bring intractability.
In contrast, by considering the semiparametric
case, we not only obtain some expressiveness from
the nonparametric models, but also reduce the
complexity of the task: we are only interested in
the finite-dimensional components Σ in the Gaus-
sian copula with O(n log n) complexity, which
is not as computationally difficult as the com-
pletely nonparametric cases. Also, by modeling
the marginals and their correlations seperately, our
approach is cleaner, easy-to-understand, and al-
lows us to have more flexibility to model the un-
certainty of data. Our pilot experiment also aligns
with our hypothesis: when not performing the ker-
nel density estimation part for smoothing out the
marginal distributions, the performances dropped
significantly when sparser features are included.

The third advantage we observe is the power of
modeling the covariance of the random variables.
Traditionally, in statistics, independent and identi-
cally distributed (i.i.d) assumptions among the in-
stances and the random variables are often used in
various models, such that the correlations among

the instances or the variables are often ignored.
However, this might not be practical at all: in im-
age processing, the “cloud” pixel of a pixel show-
ing the blue sky of a picture are more likelihood to
co-occur in the same picture; in natural language
processing, the word “mythical” is more likely to
co-occur with the word “unicorn”, rather than the
word “popcorn”. Therefore, by modeling the cor-
relations among marginal CDFs, the copula model
has gained the insights on the dependency struc-
tures of the random variables, and thus, the perfor-
mance of the regression task is boosted.

In the future, we plan to apply the proposed
approach to large datasets where millions of fea-
tures and millions of instances are involved. Cur-
rently we have not experienced the difficulty when
estimating the Gaussian copula model, but paral-
lel methods might be needed to speedup learning
when significantly more marginal CDFs are in-
volved. The second issue is about overfitting. We
see that when features are rather noisy, we might
need to investigate regularized copula models to
avoid this. Finally, we plan to extend the proposed
approach to text classification and structured pre-
diction problems in NLP.

8 Conclusion
In this work, we have demonstrated that the more
complex quarterly earnings calls can also be used
to predict the measured volatility of the stocks in
the limited future. We propose a novel semipara-
metric Gausian copula regression approach that
models the dependency structure of the language
in the earnings calls. Unlike traditional bag-of-
features models that work discrete features from
various signals, we perform kernel density esti-
mation to smooth out the distribution, and use
probability integral transform to work with CDFs
that are uniform. The copula model deals with
marginal CDFs and the correlation among them
separately, in a cleaner manner that is also flexible
to parameterize. Focusing on the three financial
crisis related datasets, the proposed model signif-
icantly outperform the standard linear regression
method in statistics and strong discriminative sup-
port vector regression baselines. By varying the
size of the training data and the dimensionality of
the covariates, we have demonstrated that our pro-
posed model is relatively robust across different
parameter settings.
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Thomson, Shoou-I Yu, Zi Yang, and anonymous
reviewers for their useful comments.

1163



References
Joshua Albrecht and Rebecca Hwa. 2007. Regression

for sentence-level mt evaluation with pseudo refer-
ences. In Proceedings of Annual Meeting of the As-
sociation for Computational Linguistics.

David Blei, Andrew Ng, and Michael Jordan. 2003.
Latent dirichlet allocation. Journal of machine
Learning research.

Johan Bollen, Huina Mao, and Xiaojun Zeng. 2011.
Twitter mood predicts the stock market. Journal of
Computational Science.

Belinda Camiciottoli. 2010. Earnings calls: Exploring
an emerging financial reporting genre. Discourse &
Communication.

Victor Chahuneau, Kevin Gimpel, Bryan R Routledge,
Lily Scherlis, and Noah A Smith. 2012. Word
salad: Relating food prices and descriptions. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning.

Chih-Chung Chang and Chih-Jen Lin. 2011. Libsvm:
a library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology.

Xiaohong Chen and Yanqin Fan. 2006. Estimation
of copula-based semiparametric time series models.
Journal of Econometrics.

David Christensen. 2005. Fast algorithms for the cal-
culation of kendalls τ . Computational Statistics.

Kenneth Church and William Gale. 1995. Poisson
mixtures. Natural Language Engineering.

Dipanjan Das, Nathan Schneider, Desai Chen, and
Noah A Smith. 2010. Probabilistic frame-semantic
parsing. In Human language technologies: The
2010 annual conference of the North American
chapter of the association for computational linguis-
tics.

Francis X Diebold, Todd A Gunther, and Anthony S
Tay. 1997. Evaluating density forecasts.

Carsten Eickhoff, Arjen P. de Vries, and Kevyn
Collins-Thompson. 2013. Copulas for information
retrieval. In Proceedings of the 36th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval.

Jacob Eisenstein, Brendan O’Connor, Noah A Smith,
and Eric P Xing. 2010. A latent variable model for
geographic lexical variation. In Proceedings of the
2010 Conference on Empirical Methods in Natural
Language Processing.

Pui Cheong Fung, Xu Yu, and Wai Lam. 2003. Stock
prediction: Integrating text mining approach using
real-time news. In Proceedings of IEEE Interna-
tional Conference on Computational Intelligence for
Financial Engineering.

Alan Gelfand and Adrian Smith. 1990. Sampling-
based approaches to calculating marginal densities.
Journal of the American statistical association.

Christian Genest and Anne-Catherine Favre. 2007.
Everything you always wanted to know about copula
modeling but were afraid to ask. Journal of Hydro-
logic Engineering.

Zoubin Ghahramani, Barnabás Póczos, and Jeff
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