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{flati,vannella,navigli}@di.uniroma1.it
p.tommaso@gmail.com

Abstract

We present WiBi, an approach to the
automatic creation of a bitaxonomy for
Wikipedia, that is, an integrated taxon-
omy of Wikipage pages and categories.
We leverage the information available in
either one of the taxonomies to reinforce
the creation of the other taxonomy. Our
experiments show higher quality and cov-
erage than state-of-the-art resources like
DBpedia, YAGO, MENTA, WikiNet and
WikiTaxonomy. WiBi is available at
http://wibitaxonomy.org.

1 Introduction

Knowledge has unquestionably become a key
component of current intelligent systems in many
fields of Artificial Intelligence. The creation and
use of machine-readable knowledge has not only
entailed researchers (Mitchell, 2005; Mirkin et al.,
2009; Poon et al., 2010) developing huge, broad-
coverage knowledge bases (Hovy et al., 2013;
Suchanek and Weikum, 2013), but it has also
hit big industry players such as Google (Singhal,
2012) and IBM (Ferrucci, 2012), which are mov-
ing fast towards large-scale knowledge-oriented
systems.

The creation of very large knowledge bases
has been made possible by the availability of
collaboratively-curated online resources such as
Wikipedia and Wiktionary. These resources are
increasingly becoming enriched with new con-
tent in many languages and, although they are
only partially structured, they provide a great deal
of valuable knowledge which can be harvested
and transformed into structured form (Medelyan
et al., 2009; Hovy et al., 2013). Prominent
examples include DBpedia (Bizer et al., 2009),
BabelNet (Navigli and Ponzetto, 2012), YAGO
(Hoffart et al., 2013) and WikiNet (Nastase and
Strube, 2013). The types of semantic relation

in these resources range from domain-specific, as
in Freebase (Bollacker et al., 2008), to unspec-
ified relations, as in BabelNet. However, un-
like the case with smaller manually-curated re-
sources such as WordNet (Fellbaum, 1998), in
many large automatically-created resources the
taxonomical information is either missing, mixed
across resources, e.g., linking Wikipedia cate-
gories to WordNet synsets as in YAGO, or coarse-
grained, as in DBpedia whose hypernyms link to a
small upper taxonomy.

Current approaches in the literature have mostly
focused on the extraction of taxonomies from the
network of Wikipedia categories. WikiTaxonomy
(Ponzetto and Strube, 2007), the first approach
of this kind, is based on the use of heuristics
to determine whether is-a relations hold between
a category and its subcategories. Subsequent ap-
proaches have also exploited heuristics, but have
extended them to any kind of semantic relation
expressed in the category names (Nastase and
Strube, 2013). But while the aforementioned at-
tempts provide structure for categories that sup-
ply meta-information for Wikipedia pages, sur-
prisingly little attention has been paid to the ac-
quisition of a full-fledged taxonomy for Wikipedia
pages themselves. For instance, Ruiz-Casado et
al. (2005) provide a general vector-based method
which, however, is incapable of linking pages
which do not have a WordNet counterpart. Higher
coverage is provided by de Melo and Weikum
(2010) thanks to the use of a set of effective heuris-
tics, however, the approach also draws on Word-
Net and sense frequency information.

In this paper we address the task of taxono-
mizing Wikipedia in a way that is fully indepen-
dent of other existing resources such as WordNet.
We present WiBi, a novel approach to the cre-
ation of a Wikipedia bitaxonomy, that is, a tax-
onomy of Wikipedia pages aligned to a taxonomy
of categories. At the core of our approach lies the
idea that the information at the page and category
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level are mutually beneficial for inducing a wide-
coverage and fine-grained integrated taxonomy.

2 WiBi: A Wikipedia Bitaxonomy

We induce a Wikipedia bitaxonomy, i.e., a taxon-
omy of pages and categories, in 3 phases:

1. Creation of the initial page taxonomy: we
first create a taxonomy for the Wikipedia
pages by parsing textual definitions, ex-
tracting the hypernym(s) and disambiguating
them according to the page inventory.

2. Creation of the bitaxonomy: we leverage
the hypernyms in the page taxonomy, to-
gether with their links to the corresponding
categories, so as to induce a taxonomy over
Wikipedia categories in an iterative way. At
each iteration, the links in the page taxonomy
are used to identify category hypernyms and,
conversely, the new category hypernyms are
used to identify more page hypernyms.

3. Refinement of the category taxonomy: fi-
nally we employ structural heuristics to over-
come inherent problems affecting categories.

The output of our three-phase approach is a bitax-
onomy of millions of pages and hundreds of thou-
sands of categories for the English Wikipedia.

3 Phase 1: Inducing the Page Taxonomy

The goal of the first phase is to induce a taxonomy
of Wikipedia pages. Let P be the set of all the
pages and let TP = (P,E) be the page taxonomy
directed graph whose nodes are pages and whose
edge set E is initially empty (E := ∅). For each
p ∈ P our aim is to identify the most suitable gen-
eralization ph ∈ P so that we can create the edge
(p, ph) and add it to E. For instance, given the
page APPLE, which represents the fruit meaning
of apple, we want to determine that its hypernym
is FRUIT and add the hypernym edge connecting
the two pages (i.e., E := E∪{(APPLE, FRUIT)}).
To do this, we perform a syntactic step, in which
the hypernyms are extracted from the page’s tex-
tual definition, and a semantic step, in which the
extracted hypernyms are disambiguated according
to the Wikipedia inventory.

3.1 Syntactic step: hypernym extraction
In the syntactic step, for each page p ∈ P , we
extract zero, one or more hypernym lemmas, that
is, we output potentially ambiguous hypernyms
for the page. The first assumption, which follows

Julia Fiona Roberts is an American actress
NNP NNP NNP VBZ DT JJ NN

nn
nn

nsubj
cop

det
amod

Figure 1: A dependency tree example with copula.

the Wikipedia guidelines and is validated in the
literature (Navigli and Velardi, 2010; Navigli and
Ponzetto, 2012), is that the first sentence of each
Wikipedia page p provides a textual definition for
the concept represented by p. The second assump-
tion we build upon is the idea that a lexical tax-
onomy can be obtained by extracting hypernyms
from textual definitions. This idea dates back to
the early 1970s (Calzolari et al., 1973), with later
developments in the 1980s (Amsler, 1981; Calzo-
lari, 1982) and the 1990s (Ide and Véronis, 1993).

To extract hypernym lemmas, we draw on the
notion of copula, that is, the relation between the
complement of a copular verb and the copular verb
itself. Therefore, we apply the Stanford parser
(Klein and Manning, 2003) to the definition of a
page in order to extract all the dependency rela-
tions of the sentence. For example, given the def-
inition of the page JULIA ROBERTS, i.e., “Julia
Fiona Roberts is an American actress.”, the Stan-
ford parser outputs the set of dependencies shown
in Figure 1. The noun involved in the copula re-
lation is actress and thus it is taken as the page’s
hypernym lemma. However, the extracted hyper-
nym is sometimes overgeneral (one, kind, type,
etc.). For instance, given the definition of the
page APOLLO, “Apollo is one of the most impor-
tant and complex of the Olympian deities in an-
cient Greek and Roman religion [...].”, the only
copula relation extracted is between is and one.
To cope with this problem we use a list of stop-
words.1When such a term is extracted as hyper-
nym, we replace it with the rightmost noun of the
first following noun sequence (e.g., deity in the
above example). If the resulting lemma is again a
stopword we repeat the procedure, until a valid hy-
pernym or no appropriate hypernym can be found.
Finally, to capture multiple hypernyms, we iter-
atively follow the conj and and conj or relations
starting from the initially extracted hypernym. For
example, consider the definition of ARISTOTLE:
“Aristotle was a Greek philosopher and polymath,
a student of Plato and teacher of Alexander the
Great.” Initially, the philosopher hypernym is
selected thanks to the copula relation, then, fol-

1E.g., species, genus, one, etc. Full list available online.
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lowing the conjunction relations, also polymath,
student and teacher are extracted as hypernyms.
While more sophisticated approaches like Word-
Class Lattices could be applied (Navigli and Ve-
lardi, 2010), we found that, in practice, our hy-
pernym extraction approach provides higher cov-
erage, which is critical in our case.

3.2 Semantic step: hypernym disambiguation

Since our aim is to connect pairs of pages via
hypernym relations, our second step consists of
disambiguating the obtained hypernym lemmas of
page p by associating the most suitable page with
each hypernym. Following previous work (Ruiz-
Casado et al., 2005; Navigli and Ponzetto, 2012),
as the inventory for a given lemma we consider the
set of pages whose main title is the lemma itself,
except for the sense specification in parenthesis.
For instance, given fruit as the hypernym for AP-
PLE we would like to link APPLE to FRUIT as op-
posed to, e.g., FRUIT (BAND) or FRUIT (ALBUM).

3.2.1 Hypernym linkers
To disambiguate hypernym lemmas, we exploit
the structural features of Wikipedia through a
pipeline of hypernym linkers L = {Li}, applied
in cascade order (cf. Section 3.3.1). We start with
the set of page-hypernym pairs H = {(p, h)} as
obtained from the syntactic step. The successful
application of a linker to a pair (p, h) ∈ H yields
a page ph as the most suitable sense of h, result-
ing in setting isa(p, h) = ph. At step i, the i-
th linker Li ∈ L is applied to H and all the hy-
pernyms which the linker could disambiguate are
removed from H . This prevents lower-precision
linkers from overriding decisions taken by more
accurate ones.

We now describe the hypernym linkers. In what
follows we denote with p h→ ph the fact that the
definition of a Wikipedia page p contains an oc-
currence of h linked to page ph. Note that ph is
not necessarily a sense of h.

Crowdsourced linker If p h→ ph, i.e., the hyper-
nym h is found to have been manually linked to ph

in p by Wikipedians, we assign isa(p, h) = ph.
For example, because capital was linked in the
BRUSSELS page definition to CAPITAL CITY, we
set isa(BRUSSELS, capital) = CAPITAL CITY.

Category linker Given the set W ⊂ P of
Wikipedia pages which have at least one category
in common with p, we select the majority sense

of h, if there is one, as hyperlinked across all the
definitions of pages in W :

isa(p, h) = arg max
ph

∑
p′∈W

1(p′ h→ ph)

where 1(p′ h→ ph) is the characteristic function
which equals 1 if h is linked to ph in page
p′, 0 otherwise. For example, the linker sets
isa(EGGPLANT, plant) = PLANT because most of
the pages associated with TROPICAL FRUIT, a cat-
egory of EGGPLANT, contain in their definitions
the term plant linked to the PLANT page.

Multiword linker If p
m→ ph and m is a

multiword expression containing the lemma h
as one of its words, set isa(p, h) = ph. For
example, we set isa(PROTEIN, compound) =
CHEMICAL COMPOUND, as chemical compound
is linked to CHEMICAL COMPOUND in the defini-
tion of PROTEIN.

Monosemous linker If h is monosemous in
Wikipedia (i.e., there is only a single page ph for
that lemma), link it to its only sense by setting
isa(p, h) = ph. For example, we extract the
hypernym businessperson from the definition of
MERCHANT and, as it is unambiguous, we link
it to BUSINESSPERSON.

Distributional linker Finally, we provide a dis-
tributional approach to hypernym disambiguation.
We represent the textual definition of page p as a
distributional vector ~vp whose components are all
the English lemmas in Wikipedia. The value of
each component is the occurrence count of the cor-
responding content word in the definition of p.

The goal of this approach is to find the best
link for hypernym h of p among the pages h is
linked to, across the whole set of definitions in
Wikipedia. Formally, for each ph such that h
is linked to ph in some definition, we define the
set of pages P (ph) whose definitions contain a

link to ph, i.e., P (ph) = {p′ ∈ P |p′ h→ ph}.
We then build a distributional vector ~vp′ for each
p′ ∈ P (ph) as explained above and create an ag-
gregate vector ~vph

=
∑

p′ ~vp′ . Finally, we de-
termine the similarity of p to each ph by calcu-
lating the dot product between the two vectors
sim(p, ph) = ~vp · ~vph

. If sim(p, ph) > 0 for any
ph we perform the following association:

isa(p, h) = arg max
ph

sim(p, ph)

For example, thanks to this linker we set
isa(VACUUM CLEANER, device) = MACHINE.

947



Figure 2: Distribution of linked hypernyms.

3.3 Page Taxonomy Evaluation
Statistics We applied the above linkers to the
October 2012 English Wikipedia dump. Out of
the 3,829,058 total pages, 4,270,232 hypernym
lemmas were extracted in the syntactic step for
3,697,113 pages (covering more than 96% of the
total). Due to illformed definitions, though, it
was not always possible to extract the hypernym
lemma: for example, 6 APRIL 2010 BAGHDAD

BOMBINGS is defined as “A series of bomb ex-
plosions destroyed several buildings in Baghdad”,
which only implicitly provides the hypernym.

The semantic step disambiguated 3,718,612 hy-
pernyms for 3,294,562 Wikipedia pages, i.e., cov-
ering more than 86% of the English pages with at
least one disambiguated hypernym. Figure 2 plots
the number and distribution of hypernyms disam-
biguated by our hypernym linkers.

Taxonomy quality To evaluate the quality of
our page taxonomy we randomly sampled 1,000
Wikipedia pages. For each page we provided: i)
a list of suitable hypernym lemmas for the page,
mainly selected from its definition; ii) for each
lemma the correct hypernym page(s). We calcu-
lated precision as the average ratio of correct hy-
pernym lemmas (senses) to the total number of
lemmas (senses) returned for all the pages in the
dataset, recall as the number of correct lemmas
(senses) over the total number of lemmas (senses)
in the dataset, and coverage as the fraction of
pages for which at least one lemma (sense) was
returned, independently of its correctness. Results,
both at lemma- and sense-level, are reported in Ta-
ble 1. Not only does our taxonomy show high pre-
cision and recall in extracting ambiguous hyper-
nyms, it also disambiguates more than 3/4 of the
hypernyms with high precision.

3.3.1 Hypernym linker order
The optimal order of application of the above
linkers is the same as that presented in Section
3.2.1. It was established by selecting the combina-
tion, among all possible permutations, which max-
imized precision on a tuning set of 100 randomly
sampled pages, disjoint from our page dataset.

Prec. Rec. Cov.
Lemma 94.83 90.20 98.50

Sense 82.77 75.10 89.20

Table 1: Page taxonomy performance.

4 Phase 2: Inducing the Bitaxonomy

The page taxonomy built in Section 3 will serve
as a stable, pivotal input to the second phase, the
aim of which is to build our bitaxonomy, that is, a
taxonomy of pages and categories. Our key idea
is that the generalization-specialization informa-
tion available in each of the two taxonomies is
mutually beneficial. We implement this idea by
exploiting one taxonomy to update the other, and
vice versa, in an iterative way, until a fixed point
is reached. The final output of this phase is, on the
one hand, a page taxonomy augmented with addi-
tional hypernymy relations and, on the other hand,
a category taxonomy which is built from scratch.

4.1 Initialization
Our bitaxonomy B = {TP , TC} is a pair consist-
ing of the page taxonomy TP = (P,E), as ob-
tained in Section 3, and the category taxonomy
TC = (C, ∅), which initially contains all the cate-
gories as nodes but does not include any hypernym
edge between category nodes. In the following
we describe the core algorithm of our approach,
which iteratively and mutually populates and re-
fines the edge sets E(TP ) and E(TC).

4.2 The Bitaxonomy Algorithm
Preliminaries Before proceeding, we define
some basic concepts that will turn out to be use-
ful for presenting our algorithm. We denote by
superT (t) the set of all ancestors of a node t in the
taxonomy T (be it TP or TC). We further define a
verification function t ;T t′ which, in the case of
TC , returns true if there is a path in the Wikipedia
category network between t and t′, false other-
wise, and, in the case of TP , returns true if t′ is
a sense, i.e., a page, of a hypernym h of t (that
is, (t, h) ∈ H , cf. Section 3.2.1). For instance,
SPORTSMEN ;TC

MEN BY OCCUPATION holds
for categories because the former is a sub-category
of the latter in Wikipedia, and RADIOHEAD ;TP

BAND (MUSIC) for pages, because band is a hy-
pernym extracted from the textual definition of
RADIOHEAD and BAND (MUSIC) is a sense of
band in Wikipedia. Note that, while the super
function returns information that we have already
learned, i.e., it is in TP and TC , the ; operator
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holds just for candidate is-a relations, as it uses
knowledge from Wikipedia itself which is poten-
tially incorrect. For instance, SPORTSMEN ;TC

MEN’S SPORTS in the Wikipedia category net-
work, and RADIOHEAD ;TP

BAND (RADIO) be-
tween the two Wikipedia pages, both hold accord-
ing to our definition of ;, while connecting the
wrong hypernym candidates. At the core of our
algorithm, explained below, is the mutual lever-
aging of the super function from one of the two
taxonomies (pages or categories) to decide about
which candidates (for which a ; relation holds)
in the other taxonomy are real hypernyms.

Finally, we define the projection operator π,
such that π(c), c ∈ C, is the set of pages
categorized with c, and π(p), p ∈ P , is the
set of categories associated with page p in
Wikipedia. For instance, the pages which belong
to the category OLYMPIC SPORTS are given by
π(OLYMPIC SPORTS) = {BASEBALL, BOXING,
. . . , TRIATHLON}. Vice versa, π(TRIATHLON) =
{MULTISPORTS, OLYMPIC SPORTS, . . . , OPEN

WATER SWIMMING}. The projection operator π
enables us to jump from one taxonomy to the other
and expresses the mutual membership relation be-
tween pages and categories.

Algorithm We now describe in detail the bitax-
onomy algorithm, whose pseudocode is given in
Algorithm 1. The algorithm takes as input the two
taxonomies, initialized as described in Section 4.1.
Starting from the category taxonomy (line 1), the
algorithm updates the two taxonomies in turn, un-
til convergence is reached, i.e., no more edges can
be added to any side of the bitaxonomy. Let T be
the current taxonomy considered at a given mo-
ment and T ′ its dual taxonomy. The algorithm
proceeds by selecting a node t ∈ V (T ) for which
no hypernym edge (t, th) could be found up until
that moment (line 3), and then tries to infer such
a relation by drawing on the dual taxonomy T ′
(lines 5-12). This is the core of the bitaxonomy al-
gorithm, in which hypernymy knowledge is trans-
ferred from one taxonomy to the other. By apply-
ing the projection operator π to t, the algorithm
considers those nodes t′ aligned to t in the dual
taxonomy (line 5) and obtains their hypernyms t′h
using the superT ′ function (line 6). The nodes
reached in T ′ act as a clue for discovering the suit-
able hypernyms for the starting node t ∈ V (T ).
To perform the discovery, the algorithm projects
each such hypernym node t′h ∈ S and increments
the count of each projection th ∈ π(t′h) (line

Algorithm 1 The Bitaxonomy Algorithm
Input: TP , TC

1: T := TC , T ′ := TP

2: repeat
3: for all t ∈ V (T ) s.t. @(t, th) ∈ E(T ) do
4: reset count
5: for all t′ ∈ π(t) do
6: S := superT ′(t′)
7: for all t′h ∈ S do
8: for all th ∈ π(t′h) do count(th)++ end for
9: end for

10: end for
11: t̂h := arg maxth: t;T th

count(th)

12: if count(t̂h) > 0 thenE(T ) := E(T )∪{(t, t̂h)}
13: end for
14: swap T and T ′

15: until convergence
16: return {T, T ′}

8). Finally, the node t̂h ∈ V (T ) with maximum
count, and such that t ;T t̂h holds, if one exists,
is promoted as hypernym of t and a new hypernym
edge (t, t̂h) is added toE(T ) (line 12). Finally, the
role of the two taxonomies is swapped and the pro-
cess is repeated until no more change is possible.

Example Let us illustrate the algorithm by way
of an example. Assume we are in the first iteration
(T = TC) and consider the Wikipedia category
t = OLYMPICS (line 3) and its super-categories
{MULTI-SPORT EVENTS, SPORT AND POLITICS,
INTERNATIONAL SPORTS COMPETITIONS}. This
category has 27 pages associated with it (line
5), 23 of which provide a hypernym page in TP

(line 6): e.g., PARALYMPIC GAMES, associated
with the category OLYMPICS, is a MULTI-SPORT

EVENT and is therefore contained in S. By con-
sidering and counting the categories of each page
in S (lines 7-8), we end up counting the category
MULTI-SPORT EVENTS four times and other
categories, such as AWARDS and SWIMSUITS,
once. As MULTI-SPORT EVENTS has the highest
count and is connected to OLYMPICS by a path
in the Wikipedia category network (line 11),
the hypernym edge (OLYMPICS, MULTI-SPORT

EVENTS) is added to TC (line 12).

5 Phase 3: Category taxonomy
refinement

As the final phase, we refine and enrich the cate-
gory taxonomy. The goal of this phase is to pro-
vide broader coverage to the category taxonomy
TC created as explained in Section 4. We apply
three enrichment heuristics which add hypernyms
to those categories c for which no hypernym could
be found in phase 2, i.e., @c′ s.t. (c, c′) ∈ E(TC).
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Single super-category As a first structural re-
finement, we automatically link an uncovered cat-
egory c to c′ if c′ is the only direct super-category
of c in Wikipedia.

Sub-categories We increase the hypernym cov-
erage by exploiting the sub-categories of each un-
covered category c (see Figure 3a). In detail,
for each uncovered category c we consider the
set sub(c) of all the Wikipedia subcategories of
c (nodes c1, c2, . . . , cn in Figure 3a) and then let
each category vote, according to its direct hyper-
nym categories in TC (the vote is as in Algo-
rithm 1). Then we proceed in decreasing order
of vote and select the highest-ranking category c′
which is connected to c via a path in TC , i.e.,
c ;TC

c′. We then pick up the direct ancestor
c′′ of c which lies in the path from c to c′ and
add the hypernym edge (c, c′′) to E(TC). For ex-
ample, consider the category FRENCH TELEVI-
SION PEOPLE; since this category has no asso-
ciated pages, in phase 2 no hypernym could be
found. However, by applying the sub-categories
heuristic, we discover that TELEVISION PEOPLE

BY COUNTRY is the hypernym most voted by our
target category’s descendants, such as FRENCH

TELEVISION ACTORS and FRENCH TELEVISION

DIRECTORS. Since TELEVISION PEOPLE BY

COUNTRY is at distance 1 in the Wikipedia
category network from FRENCH TELEVISION

PEOPLE, we add (FRENCH TELEVISION PEOPLE,
TELEVISION PEOPLE BY COUNTRY) to E(TC).

Super-categories We then apply a similar
heuristic involving super-categories (see Figure
3b). Given an uncovered category c, we consider
its direct Wikipedia super-categories and let them
vote, according to their hypernym categories in
TC . Then we proceed in decreasing order of vote
and select the highest-ranking category c′ which is
connected to c in TC , i.e., c ;TC

c′. We then pick
up the direct ancestor c′′ of c which lies in the path
from c to c′ and add the edge (c, c′′) to E(TC).

5.1 Bitaxonomy Evaluation
Category taxonomy statistics We applied
phases 2 and 3 to the output of phase 1, which
was evaluated in Section 3.3. In Figure 4a we
show the increase in category coverage at each
iteration throughout the execution of the two
phases (1SUP, SUB and SUPER correspond to
the three above heuristics of phase 3). The final
outcome is a category taxonomy which includes
594,917 hypernymy links between categories,

c′

d e
c′′

c

c1 c2 . . . cn

(a) Sub categ. heuristic.

hypernym in TC

Wikipedia super-category

c′ c′′′

c1 c′′ cm. . .

c

(b) Super categ. heuristic.

Figure 3: Heuristic patterns for the coverage re-
finement of the category taxonomy.

covering more than 96% of the 618,641 categories
in the October 2012 English Wikipedia dump.
The graph shows the steepest slope in the first
iterations of phase 2, which converges around
400k categories at iteration 30, and a significant
boost due to phase 3 producing another 175k
hypernymy edges, with the super-category heuris-
tic contributing most. 78.90% of the nodes in
TC belong to the same connected component.
The average height of the biggest component of
TC is 23.26 edges and the maximum height is
49. We note that the average height of TC is
much greater than that of TP , which reflects the
category taxonomy distinguishing between very
subtle classes, such as ALBUMS BY ARTISTS,
ALBUMS BY RECORDING LOCATION, etc.

Category taxonomy quality To estimate the
quality of the category taxonomy, we ran-
domly sampled 1,000 categories and, for each of
them, we manually associated the super-categories
which were deemed to be appropriate hypernyms.
Figure 4b shows the performance trend as the al-
gorithm iteratively covers more and more cate-
gories. Phase 2 is particularly robust across it-
erations, as it leads to increased recall while re-
taining very high precision. As regards phase 3,
the super-categories heuristic leads to only a slight
precision decrease, while improving recall consid-
erably. Overall, the final taxonomy TC achieves
85.80% precision, 83.40% recall and 97.20% cov-
erage on our dataset.

Page taxonomy improvement As a result of
phase 2, 141,105 additional hypernymy links were
also added to the page taxonomy, resulting in
an overall 82.99% precision, 77.90% recall and
92.10% coverage, with a non-negligible 3% boost
from phase 1 to phase 2 in terms of recall and cov-
erage on our Wikipedia page dataset.

We also calculated some statistics for the result-
ing taxonomy obtained by aggregating the 3.8M
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Figure 4: Category taxonomy evaluation.

hypernym links in a single directed graph. Over-
all, 99% of nodes belong to the same connected
component, with a maximum height of 29 and an
average height on the biggest component of 6.98.

6 Related Work

Although the extraction of taxonomies from
machine-readable dictionaries was already being
studied in the early 1970s (Calzolari et al., 1973),
pioneering work on large amounts of data only
appeared in the 1990s (Hearst, 1992; Ide and
Véronis, 1993). Approaches based on hand-
crafted patterns and pattern matching techniques
have been developed to provide a supertype for
the extracted terms (Etzioni et al., 2004; Blohm,
2007; Kozareva and Hovy, 2010; Navigli and Ve-
lardi, 2010; Velardi et al., 2013, inter alia). How-
ever, these methods do not link terms to existing
knowledge resources such as WordNet, whereas
those that explicitly link do so by adding new
leaves to the existing taxonomy instead of acquir-
ing wide-coverage taxonomies from scratch (Pan-
tel and Ravichandran, 2004; Snow et al., 2006).

The recent upsurge of interest in collabo-
rative knowledge curation has enabled several
approaches to large-scale taxonomy acquisition
(Hovy et al., 2013). Most approaches initially
focused on the Wikipedia category network, an
entangled set of generalization-containment rela-
tions between Wikipedia categories, to extract the
hypernymy taxonomy as a subset of the network.
The first approach of this kind was WikiTaxonomy
(Ponzetto and Strube, 2007; Ponzetto and Strube,
2011), based on simple, yet effective lightweight
heuristics, totaling more than 100k is-a relations.
Other approaches, such as YAGO (Suchanek et
al., 2008; Hoffart et al., 2013), yield a taxonom-
ical backbone by linking Wikipedia categories to
WordNet. However, the categories are linked to
the first, i.e., most frequent, sense of the category
head in WordNet, involving only leaf categories in
the linking.

Interest in taxonomizing Wikipedia pages, in-

stead, developed with DBpedia (Auer et al., 2007),
which pioneered the current stream of work aimed
at extracting semi-structured information from
Wikipedia templates and infoboxes. In DBpedia,
entities are mapped to a coarse-grained ontology
which is collaboratively maintained and contains
only about 270 classes corresponding to popular
named entity types, in contrast to our goal of struc-
turing the full set of Wikipedia articles in a larger
and finer-grained taxonomy.

A few notable efforts to reconcile the two sides
of Wikipedia, i.e., pages and categories, have
been put forward very recently: WikiNet (Nas-
tase et al., 2010; Nastase and Strube, 2013) is a
project which heuristically exploits different as-
pects of Wikipedia to obtain a multilingual con-
cept network by deriving not only is-a relations,
but also other types of relations. A second project,
MENTA (de Melo and Weikum, 2010), creates
one of the largest multilingual lexical knowledge
bases by interconnecting more than 13M articles
in 271 languages. In contrast to our work, hy-
pernym extraction is supervised in that decisions
are made on the basis of labelled training exam-
ples and requires a reconciliation step owing to
the heterogeneous nature of the hypernyms, some-
thing that we only do for categories, due to their
noisy network. While WikiNet and MENTA bring
together the knowledge available both at the page
and category level, like we do, they either achieve
low precision and coverage of the taxonomical
structure or exhibit overly general hypernyms, as
we show in our experiments in the next section.

Our work differs from the others in at least three
respects: first, in marked contrast to most other re-
sources, but similarly to WikiNet and WikiTaxon-
omy, our resource is self-contained and does not
depend on other resources such as WordNet; sec-
ond, we address the taxonomization task on both
sides, i.e., pages and categories, by providing an
algorithm which mutually and iteratively transfers
knowledge from one side of the bitaxonomy to the
other; third, we provide a wide coverage bitaxon-
omy closer in structure and granularity to a manual
WordNet-like taxonomy, in contrast, for example,
to DBpedia’s flat entity-focused hierarchy.2

2Note that all the competitors on categories have average
height between 1 and 3.69 on their biggest component, while
we have 23.26, while on pages their height is between 1.9 and
4.22, while ours is 6.98. Since WordNet’s average height is
8.07 we deem WiBi to be the resource structurally closest to
WordNet.

951



Dataset System Prec. Rec. Cov.

Pages

WiBi 84.11 79.40 92.57
WikiNet 57.29†† 71.45†† 82.01
DBpedia 87.06 51.50†† 55.93
MENTA 81.52 72.49† 88.92

Categories

WiBi 85.18 82.88 97.31
WikiTax 88.50 54.83†† 59.43
YAGO 94.13 53.41†† 56.74
MENTA 87.11 84.63 97.15
MENTA−ENT 85.18 71.95†† 84.47

Table 2: Page and category taxonomy evaluation.
† (††) denotes statistically significant difference,
using χ2 test, p < 0.02 (p < 0.01) between WiBi
and the daggered resource.

7 Comparative Evaluation

7.1 Experimental Setup

We compared our resource (WiBi) against the
Wikipedia taxonomies of the major knowledge re-
sources in the literature providing hypernym links,
namely DBpedia, WikiNet, MENTA, WikiTax-
onomy and YAGO (see Section 6). As datasets,
we used our gold standards of 1,000 randomly-
sampled pages (see Section 3.3) and categories
(see Section 5.1). In order to ensure a level playing
field, we detected those pages (categories) which
do not exist in any of the above resources and re-
moved them to ensure full coverage of the dataset
across all resources. For each resource we cal-
culated precision, by manually marking each hy-
pernym returned for each page (category) as cor-
rect or not. As regards recall, we note that in
two cases (i.e., DBpedia returning page super-
types from its upper taxonomy, YAGO linking cat-
egories to WordNet synsets) the generalizations
are neither pages nor categories and that MENTA
returns heterogeneous hypernyms as mixed sets of
WordNet synsets, Wikipedia pages and categories.
Given this heterogeneity, standard recall across re-
sources could not be calculated. For this reason we
calculated recall as described in Section 3.3.

7.2 Results

Wikipedia pages We first report the results of
the knowledge resources which provide page hy-
pernyms, i.e., we compare against WikiNet, DB-
pedia and MENTA. We use the original outputs
from the three resources: the first two are based
on dumps which are from the same year as the one
used in WiBi (cf. Section 3.3), while MENTA is
based on a dump dating back to 2010 (consisting
of 3.25M pages and 565k categories). We decided
to include the latter for comparison purposes, as it

uses knowledge from 271 Wikipedias to build the
final taxonomy. However, we recognize its perfor-
mance might be relatively higher on a 2012 dump.

We show the results on our page hypernym
dataset in Table 2 (top). As can be seen, WikiNet
obtains the lowest precision, due to the high num-
ber of hypernyms provided, many of which are
incorrect, with a recall between that of DBpe-
dia and MENTA. WiBi outperforms all other re-
sources with 84.11% precision, 79.40% recall and
92.57% coverage. MENTA seems to be the clos-
est resource to ours, however, we remark that the
hypernyms output by MENTA are very heteroge-
neous: 48% of answers are represented by a Word-
Net synset, 37% by Wikipedia categories and 15%
are Wikipedia pages. In contrast to all other re-
sources, WiBi outputs page hypernyms only.

Wikipedia categories We then compared all the
knowledge resources which deal with categories,
i.e., WikiTaxonomy, YAGO and MENTA. For the
latter two, the above considerations about the 2012
dump hold, whereas we reimplemented WikiTax-
onomy, which was based on a 2009 dump, to run it
on the same dump as WiBi. We excluded WikiNet
from our comparison because it turned out to have
low coverage of categories (i.e., less than 1%).

We show the results on our category dataset
in Table 2 (bottom). Despite other systems ex-
hibiting higher precision, WiBi generally achieves
higher recall, thanks also to its higher category
coverage. YAGO obtains the lowest recall and
coverage, because only leaf categories are consid-
ered. MENTA is the closest system to ours, ob-
taining slightly higher precision and recall. No-
tably, however, MENTA outputs the first WordNet
sense of entity for 13.17% of all the given answers,
which, despite being correct and accounted in pre-
cision and recall, is uninformative. Since a system
which always outputs entity would maximise all
the three measures, we also calculated the perfor-
mance for MENTA when discarding entity as an
answer; as Table 2 shows (bottom, MENTA−ENT),
recall drops to 71.95%. Further analysis, pre-
sented below, shows that the specificity of its hy-
pernyms is considerably lower than that of WiBi.

7.3 Analysis of the results

To get further insight into our results we per-
formed two additional analyses of the data. First,
we estimated the level of specialization of the
hypernyms in the different resources on our two
datasets. The idea is that a hypernym should be
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Dataset System (X) WiBi=X WiBi>X WiBi<X

Pages
WikiNet 33.38 34.94 31.68
DBpedia 31.68 56.71 11.60
MENTA 19.04 50.85 30.12

Categories
WikiTax 43.11 38.51 18.38
YAGO 12.36 81.14 6.50
MENTA 12.36 73.69 13.95

Table 3: Specificity comparison.

valid while at the same time being as specific as
possible (e.g., SINGER should be preferred over
PERSON). We therefore calculated a measure,
which we called specificity, that computes the per-
centage of times a system outputs a more specific
answer than another system. To do this, we anno-
tated each hypernym returned by a system as fol-
lows: −1 if the answer was wrong, 0 if missing, >
0 if correct; more specific answers were assigned
higher scores. When comparing two systems, we
select the respective most specific answers a1, a2

and say the first system is more specific than the
latter whenever score(a1) > score(a2). Table 3
shows the results for all the resources and for both
the page and category taxonomies: WiBi consis-
tently provides considerably more specific hyper-
nyms than any other resource (middle column).

A second important aspect that we analyzed was
the granularity of each taxonomy, determined by
drawing each resource on a bidimensional plane
with the number of distinct hypernyms on the
x axis and the total number of hypernyms (i.e.,
edges) in the taxonomy on the y axis. Figures 5a
and 5b show the position of each resource for the
page and the category taxonomies, respectively.
As can be seen, WiBi, as well as the page tax-
onomy of MENTA, is the resource with the best
granularity, as not only does it attain high cover-
age, but it also provides a larger variety of classes
as generalizations of pages and categories. Specif-
ically, WiBi provides over 3M hypernym pages
chosen from a range of 94k distinct hypernyms,
while others exhibit a considerably smaller range
of distinct hypernyms (e.g., DBpedia by design,
but also WikiNet, with around 11k distinct page
hypernyms). The large variety of classes provided
by MENTA, however, is due to including more
than 100k Wikipedia categories (among which,
categories about deaths and births alone repre-
sent about 2% of the distinct hypernyms). As re-
gards categories, while the number of distinct hy-
pernyms of WiBi and WikiTaxonomy is approxi-
mately the same (around 130k), the total number
of hypernyms (around 580k for both taxonomies)
is distributed over half of the categories in Wiki-

(a) Page taxonomies (b) Category taxonomies

Figure 5: Hypernym granularity for the resources.

Taxonomy compared to WiBi, resulting in a dou-
ble number of hypernyms per category, but lower
coverage (cf. Table 2).

8 Conclusions

In this paper we have presented WiBi, an auto-
matic 3-phase approach to the construction of a
bitaxonomy for the English Wikipedia, i.e., a full-
fledged, integrated page and category taxonomy:
first, using a set of high-precision linkers, the page
taxonomy is populated; next, a fixed point algo-
rithm populates the category taxonomy while en-
riching the page taxonomy iteratively; finally, the
category taxonomy undergoes structural refine-
ments. Coverage, quality and granularity of the
bitaxonomy are considerably higher than the tax-
onomy of state-of-the-art resources like DBpedia,
YAGO, MENTA, WikiNet and WikiTaxonomy.

Our contributions are three-fold: i) we propose
a unified, effective approach to the construction of
a Wikipedia bitaxonomy, a richer structure than
those produced in the literature; ii) our method for
building the bitaxonomy is self-contained, thanks
to its independence from external resources (like
WordNet) and the virtual absence of supervision,
making WiBi replicable on any new version of
Wikipedia; iii) the taxonomy provides nearly full
coverage of pages and categories, encompassing
the entire encyclopedic knowledge in Wikipedia.

We will apply our video games with a purpose
(Vannella et al., 2014) to validate WiBi. We also
plan to integrate WiBi into BabelNet (Navigli and
Ponzetto, 2012), so as to fully taxonomize it, and
exploit its high quality for improving semantic
predicates (Flati and Navigli, 2013).
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