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Abstract

This paper studies the idea of remov-
ing low-frequency words from a corpus,
which is a common practice to reduce
computational costs, from a theoretical
standpoint. Based on the assumption that a
corpus follows Zipf’s law, we derive trade-
off formulae of the perplexity ofk-gram
models and topic models with respect to
the size of the reduced vocabulary. In ad-
dition, we show an approximate behavior
of each formula under certain conditions.
We verify the correctness of our theory on
synthetic corpora and examine the gap be-
tween theory and practice on real corpora.

Introduction

ies addressing the question as it pertains to differ-
ent strategies (Stolcke, 1998; Buchsbaum et al.,
1998; Goodman and Gao, 2000; Gao and Zhang,
2002; Ha et al., 2006; Hirsimaki, 2007; Church

et al., 2007). Each of these studies experimen-
tally discusses trade-off relationships between the
size of the reduced corpus/model and its perfor-
mance measured by perplexity, word error rate,
and other factors. To our knowledge, however,
there is no theoretical study on the question and
no evidence for such a trade-off relationship, es-
pecially for topic models.

In this paper, we first address the question from
a theoretical standpoint. We focus on the cutoff
strategy for reducing a corpus, since a cutoff is
simple but powerful method that is worth study-
ing; as reported in (Goodman and Gao, 2000;
Gao and Zhang, 2002), a cutoff is competitive

Removing |ow-frequency words from a COprSWith SOphiSticated strategies such as entropy prun-
(often calledcutoff is a common practice to save iNg. As the basis of our theory, we assume Zipf’s
on the computational costs involved in learninglaw (Zipf, 1935), which is an empirical rule repre-
language models and topic models. In the casgenting a long-tail property of words in a corpus.
of language models, we often have to removeOur approach is essentially the same as those in
|0\N-frequency words because of a lack of Com-phySiCS, in the sense of constructing a theory while
putational resources, since the feature spade of believing experimentally observed results. For ex-
grams tends to be so large that we sometimes negdnple, we can derive the distance to the landing
cutoffs even in a distributed environment (BrantsPoint of a ball thrown up in the air with initial
et al., 2007). In the case of topic models, the inSpeedvy and angled asvy?sin(26)/g by believ-
tuition is that low-frequency words do not make aing in the experimentally observed gravity acceler-
large contribution to the statistics of the models ationg. In a similar fashion, we will try to clarify
Actually, when we try to roughly analyze a Corpusthe trade-off relationship by believing Zipf's law.
with topic models, a reduced corpus is enough for The rest of the paper is organized as follows. In
the purpose (Steyvers and Griffiths, 2007). Section 2, we define the notation and briefly ex-
A natural question arises: How many low- plain Zipf's law and perplexity. In Section 3, we
frequency words can we remove while maintain-theoretically derive the trade-off formulae of the
ing sufficient performance? Or more generally,cutoff for unigram modelsi-gram models, and
by how much can we reduce a corpus/model ustopic models, each of which represents its per-
ing a certain strategy and still keep a sufficientplexity with respect to a reduced vocabulary, un-
level of performance? There have been many studder the assumption that the corpus follows Zipf's
law. In addition, we show an approximate behav-

*This work was mainly carried out while the author was i o
ior of each formula under certain conditions. In

with Toshiba Corporation.
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Section 4, we verify the correctness of our theoryintuitively, PP means how many possibilities one
on synthetic corpora and examine the gap betweemas for estimating the next word in a test cor-
theory and practice on several real corpora. Se@us. According to the definition, a lower perplex-

tion 5 concludes the paper. ity means better generalization performance.of
o Another well-known evaluation measure is cross-
2 Preliminaries entropy. Since cross-entropy is easily calculated

aslog, PP, we can apply many of the results of

Let us consider a corpus := wy - - - of cor- .
P W this paper to cross-entropy.

pus sizeN and vocabulary sizé). We use an
sent the vocabulary of. Clearly, N = |w| and

W = |{w}| hold. Whenw has additional nota- NOw let us consider what a cutoff is. In our study,
tions, N and W inherit them. For example, we We simply define a corpus that has been reduced

will use N as the size ofv’ without its definition. By removing low-frequency words from the origi-
nal corpus with a certain threshold. Formally, we

2.1 Power law and Zipf's law sayw’ is acorpus reduced from the original cor-

e
A power law is a mathematical relationship be-PUSW, if w'is the longest subsequencewofsuch

AN /
tween two quantities: andy, wherey is propor-  that maxyrews r(w’) = W’ Note that a sub-
tional to thec-th power ofz, i.e.,y o z° and S€duence can include gaps in contrast to a sub-

¢ is a real number. Zipfs law (Zipf, 1935) is a string. For exa}mple, supposing we have a corpus
power law discovered on real corpora, wherein forV = abcaba with a vocabulary{w} = {a, l/” ¢}
any wordw € w in a corpusw, its frequency (or W1 = ababa is a reduced corpus, white’s =

/.
word count) f(w) is inversely proportional to its @ba @ndw’s = acaa are not.
frequency ranking (w), i.e. After learning a distributionp’ from a re-

duced corpusw’, we need to infer the distri-

C bution p learned from the original corpusv.
flw) = r(w) Here, we use&onstant restoringdefined below),
which assumes the frequencies of the reduced low-
Here, f(w) := {w’ € w | v = w}|, and frequency words are a constant.
r(w) = [{w" € w | f(u) > f(w)}|. From  pefinition 1 (Constant Restoring)Given a pos-

the definition, the constaxit is the maximum fre- 6 constant), a distributionp’ over a reduced
quency in the corpus. Taking the natural loga-

! ) “Y%corpus w/, and a corpusw, we say thatp is
rithms In(-) of both sides of the above equation, 5 y restored distribution of/ from w’ to w, if
we find that its plot becomes linear on a Iog-Iogz H(w) = 1, and for anyw € w '

graph ofr(w) and f(w). In fact, the result based <"} ’ '

on a statistical test in (Clauset et al., 2009) reports ) {p,(w) (w € w')

that the frequencies of words in a corpus com-
A (w ¢ w).

pletely follow a power law, whereas many datasets
with long-tail properties, such as networks, actu-

Constant restoring is similar to the additive
ally do not follow power laws.

smoothing defined by(w) « p’(w) + A, which is
used to solve the zero-frequency problem of lan-

o _ . uage models (Chen and Goodman, 1996). The
Perplexity is a widely used evaluation measure Ognly difference is the addition of a constant

k-gram models and topic models. Lebe a pre- only to zero-frequency words. We think con-
dictive distribution over words, which was learnedstant restoring is theoretically natural in our set-
from a training corpusv based on a certain model. tjng  since we can derive the above equation by
Formally, perplexityPP is defined as the geomet- |etiing each frequency of reduced words h&”

ric mean of the inverse of the per-word likelihood 5, defining a restored frequency function as fol-

2.2 Perplexity

on the held-out test corpus,, i.e., lows:
1\ ™ o [fw) (wew)
e (Qm) ' e {w (0 w).
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Informally, constant restoring involves padding Theorem 3. For any distributionp’ on a unigram
the vocabulary, while additive smoothing involvesmodel learned from a corpus’ reduced from the
padding the corpus. Smoothing should be carriedriginal corpusw following Zipf’'s law, the per-
out after restoring. plexity PP; of the \*-restored distributiorp of p’

_ _ fromw’ to w is calculated by
3.1 Perplexity of Unigram Models

Let us consider the perplexity of a unigram model  gp, (p7 B(W')
) (W) =H(W)exp
learned from a reduced corpus. In unigram mod- H(W)

els, a predictive distributiop’ on a reduced cor- , 1_ HW)
. wW-Ww H(W)
pus w' can be simply calculated gg(w’) = ,
'Y /N . ; H(W)—-HW)
f(w")/N’. We shall start with an analysis of
training-set perplexity, since we can derive an ex-
g-set perpiexty. where H(X) = S, ! and B(X) :=

act formula for it, which will give us a sufficient _ na
idea for making an approximate analysis of test2oz—1 1 -

set perplexity.
perpiextty Proof. We expand the first part &fP; in the proof

Let PPy := <Hw€w ﬁ(lw)> be the perplexity  of Lemma 2 using\* as follows:
of a A\-restored distributiop on a unigram model.

The next lemma gives the optimal restoring con- 1 WR)\* ( NR> (WRN’> =
-~ 14+ ==
N/

stant\* minimizing PP;. N
A R
Lemma 2. For any A-restored distributiorp of a o 1N
distribution p’ from a reduced corpusv’ to the — (N) ((W —WION ) a
original corpusw, its perplexity is minimized by N N =N
o N-—-N' The second part d#P; is as follows:
(W —W')N" )
Proof. Let w be the longest subsequence suc>< H ,1/> = H < ,1 , > "
thatmin, cw 7(w') = W’ + 1. Sincewg is the \wew P (w') refwy N (w’)
remainder ofw’, Ng = N — N andWr = W — W N
W’ hold. After substituting the normalized form — (TN >T
of p of Definition 1 intoPP;, we have —1 c
w < W
1 N\ ™~ c
. 1 1 \" =11 ( Yol ) I
PPl = H Ay H A r=1 r=1
oo D) P(wR) o
w w N° W/
N [N\~ C Inr
_ H 1+ WgrA H 1+ WrA\" “\¢o ) =P NZT :
- p'(w) A =
w'ew’ WREWR . . . .
1 We obtain the objective formula by putting the
_ 1+ WgrA H 1 \" above two formulae together with = CH (W)
AR o P (w') and N' = CH(W'), which are derived from
Zipf's law. O

We obtain the optimal sm}eothing factar when The functionsH(X) and B(X) hex-th

9 5 9 Ng. e functions an are theX-t

aaPPLoc gy (L WRA)AN =0, partial sum of the harmonic series and Bertrand
By using a similar argument to the one in theseries (special form), respectively. An approxima-

above lemma, we can obtain the optimal constartion by definite integrals yield& (X) ~ In X ++,

of additive smoothing as* ~ WN, N’ \whenN is where v is the Euler-Mascheroni constant, and

sufficiently large. B(X) ~ $In”> X. We may omity from the ap-
The next theorem gives the exact formula of theproximate analysis.

training-set perplexity of a unigram model learned Now let us consider an approximate form of

from a reduced corpus. PP,(W’) in Theorem 3. For further discussion,
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we define the last part &P, (W) as follows: test. Letw,’ be the longest subsequencevof
) such that for anyw € w,’, w € w’ holds. For-
, 1_HW) Il / ~ o ! f /
. W —W HW) mally, we assumg’(w) ~ p,'(w) foranyw € w.
F(W,W') = HOW) — HOV) whenW, > W', wherep,’ is the true distribu-
tion overw,’. Using similar arguments to those
SinceW'’ = §W holds for an appropriate raty  of Lemma 2 and Theorem 3 fox, we obtain

we have an approximation formula for the test-set perplex-
L HGW) ity, where we simply sub_st.itutW andW’ ir_l the.
FW,5W) W — oW ) HW) exact formula for the training-set perplexity with
H(W)— H(W) W, andW,/, respectively. For simplicity, we will
In (W) only consider training-set perplexity from now on,

since we can make a similar argument for the test-
set perplexity in the later analysis.

In 1(5)

< —6W  \'T nw
(1-9) .

< Y ) 3.2 Perplexity of k-gram Models

1 Here, we will consider the perplexity offagram

< (W — o0). model learned from a reduced corpus as a standard
extension of a unigram model. Our theory only

Therefore, wheriV is sufficiently large, we can assumes that the corpus is generated on the basis

useF (W, W’) ~ g7, sinceF(W,6W) ~ j holds  of Zipf's law. Thus, we can use a simple model

for any ratiod : 0 < 6 < 1. Using this fact, \herek-grams are calculated from a random word

we obtain an approximate formukP; of PP, as  sequence based on Zipf's law. This model seems

(o9

follows: to be stupid, since we can easily notice that the
R 2w\ W bigram “is is” is quite frequent, and the two bi-
PP (W) = InW exp (21 W) W grams “is a” and “a is” have the same frequency.
, However, the experiments described later uncov-
= VW InW exp (In W’ — I WW)* ) ered the fact that the model can roughly capture
2lnW the behavior of real corpora.

The complexity of PP; is quasi-polynomial,  TNe frequencyf, of k-gram wordwy, & wh in
ie., PPL(W) = O(W/an’), which behaves as the model is represented by the following formula:
a~quadratic function on a log-log graph. Since o/
PP, (W) is convex, i.e. ,8W,2PP1(W’) > 0, and Fro(w) g (ri(wr))’
its gradientd{;’v, PP, (W) is zero wherV" = W,
we infer that low-frequency words may not largely .
contribute to the statistics.

Considering the special case Bf’ = W, we
obtain the perplexityPP; of the unigram model

whereC}, is the maximal frequency ik-grams;rx

is the frequency ranking af;, over k-grams, and
gi expresses the frequency decaycigrams. For
example, the decay functiogy of bigrams is as

learned from the original corpus as follows:
BW) (92(2))i := (92(1), 92(2), 92(3),---)
PP, = H(W)exp <H(I/V)> ~VWInW. =(1-1,1-2,2-1,1-3,3-1,---)

=(1,2,2,3,3,4,4,4,5, 5,6,---).

Interestingly, PP; is approximately expressed as
a simple elementary function of vocabulary sizeThis is an inverse of the sum of Piltz’s divisor
W. This suggests that models learned from corfunctionsdy(n) := -, . _ . 1, which represents
pora with the same vocabulary size theoreticallythe number of divisors of an integer(cf. (OEIS,
have the same perplexity. 2001)). In general, we formally defing through

For the test-set perplexity, we assume that botfits inverse: g; ' (¢) = Sk(¢), where Sy (¢) :=
the training corpusv and test corpus, are gen-  >.°_, di(n) anddy,(n) := D iy igeiy=n 1. SiNCE
erated from the same distribution based on Zipf'sgx(7)); is a sorted sequence of the elements of the
law. This assumption is natural, considering thek-th tensor power of vectofl,--- , W), we can
situation of an in-domain test or cross validationcalculate the maximum frequen¢y, as follows.
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Lemma 4. For any corpusw following Zipf'slaw, wherey = Inr. O
the maximum frequency &tgrams in our model

is calculated by In the case of unigrams:(= 1), the formula
exactly represents Zipf's law. In the case lof
Ch = N—-(k-1)D grams £ > 1), we found that the formula ap-
(HW))F 7 proaches Zipf's law whefil’ approaches infinity,
whereD denotes the number of documentsin ~ -€+ i —oo 7, = 1.

N Let us consider the perplexity of &-gram
Proof. Weuse},, fi(wi) = Cr(3_,, 1/7(w))". model learned from a reduced corpus. We im-
U mediately obtain the following corollary using

The sumsj,(¢) of Piltz's divisor functions can Lémma>.
be approximated by P (In¢), where P,(z) is @ Corollary 6. For any distributionp’ on ak-gram
polynomial of degreeék — 1 with respect tox, model learned from a corpus’ reduced from the
and the main term of P;(In /) is given by the original corpusw following Zipf’s law, assuming
following residue Re;lw, where((s) is  that fi(wy) o< 7(wg)~ " holds for anyk-gram
the Riemann zeta function (Li, 2005). Using thisword w;, € w* and the optimal exponenty, in
fact, we obtain an approximatidm (g, '(¢)) ~ Lemma 5, the perplexitPP;, of the \*-restored
In? 4+ O(In (In¥)) ~ In¢, when/ is sufficiently  distributionp of p’ fromw’ to w is calculated by
large. Thus, when the corpus is sufficiently large, B (W
we can see that the behavior fafis roughly linear PP.(W') =H, (W) exp ( m ))

on alog-log graph, i.e/, (wx) o r(wy) !, since Hz, (W)

g5 ;(t% o £° holds, thenfi(r) o (gn(r)~" < S )1_;%
' LCJnf(())rtLSJﬁater, however, most corpora in the Hz, (W) = H, (W) ’
real world are not so large that the above'where Hy(X) = Zf:h%a and B,(X) =

mentioned relation holds. Actually, Haetal. (Ha .y ,,.

et al., 2002; Ha et al., 2006) experimentally found~—z=1 z* *

that although &-gram corpus roughly follows a  H,(X) is the X-th partial sum of the P-series
power law even wherk > 1, its exponent is Or hyper-harmonic series, which is a generaliza-
smaller than 1 (for Zipf’'s law). They pointed out tion of the harmonic seried (X). B,(X) is the
that the exponent of bigrams is about 0.66, andX-th partial sum of the Bertrand series (another
that of 5-grams is about 0.59 in the Wall Streetspecial form ofB(X)). When0 < a < 1, we can
Journal corpus (WSJ87). Believing their claimeasily calculatePP;(7W') by using the following
that there exists a constamnt such thatf;,(wy) o approximations:

ri(wg )~ ™, we estimated the exponent/efgrams -

in an actual situation in the form of the following 7 (x) ~ X+ -1

lemma. . l-a
Lemma 5. Assuming thatfy.(wi) o< ri(wy) ™™ Ba(X) & 77— (X + 1! In(X +1)
holds for anyk-gram wordw;, € w* in a corpus a a a
w following Zipf's law, the optimal exponent in TU—ap (X+1)7"+ 1—a2
our model based on the least squares criterion is
calculated by By putting the approximations off,(X) and
In W B,(X) into the formula of Corollary 6, we ob-
= . . . A 11—y,
Tk = E—Dn W) +mw’ tain an approximatioRP, (W) ~ o(W'"" ™).

' ' ~ Thisimplies thaPP;,(W’) is approximately linear
mizing the sum of squared errors between the grare|atively small and¥ is sufficiently large. Note

dients ofgk‘l(r) andr% on a log-log graph: that we must use the approximationff X ), not
) H,(X),whena = 1.
/ {8 (y + In Py(y)) — 9 <1y>} dy, The fact that the frequency @fgrams follows
dy Oy \mk a power law leads us to an additional convenient
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property, since the process of generating a com'? + and¢, (w) o n{ + O, wheren!” and

pus in our theory can be treated as a variant of,{*) respectively represent the number of times
the coupon collector’s problem. In this problem, assigning topic: in documentd and the number
we consider how many trials are needed for colyf times topicz is assigned to word.

lecting all coupons whose occurrence probabilities  Since an exact analysis is very hard, we will
follow some stable distribution. According to a place rough assumptions grandd to reduce the
well-known result about power law distributions complexity. The assumption placed ois that the
(Boneh and Papanicolaou, 1996), we need a Coyord distributiong. of each topic: follows Zipf's
pus OfSIZLIJ— In W whenr;, < 1,andW In* W Jaw. We think this is acceptable since we can re-
whenr, = 1 for collecting all of thek-grams, the  gard each topic as a corpus that follows Zipf’s law.
number of which isiW*. Using results in (Atso-  Sinceg, is normalized for each topic, we can as-
nios et al., 2011), we can easily obtain a Ioweran@ume that for any two topics; and 2/, and any
upper bound of the actual vocabulary siz& of  two words,w andw/, b.(w) ~ ¢ (w') holds if
k-grams from the corpus siz& and vocabulary -, (w) = 7, (w'), wherer,(w) is the frequency

sizeW as ranking ofw with respect ton'™). Note that the
~ _OemN g wh above assumption pertains to a posterior, and we
_ k_ k
Wi 2 (me + 1) (1 e v > do not discuss the fact that a Pitman-Yor process
o m < N )wlk N zlrlo;é)slli()etter suited for a power law (Goldwater et
k= - ) y .
Tk — 1 \Hqr, (WF) (m — 1) Hy (WF)

The assumption placed gnmay not be reason-
This means that we can determine the roughable in the case of, because we can easily think
sparseness df-grams and adjust some of the pa-of a document with only one topic, and we usu-
rameters such as the gram skz learning statis- ally use a small numbér of topics for LDA, e.g.,
tical language models. T = 20. Thus, we consider two extreme cases.
One is where each document evenly has all topics,
and the other is where each document only has one
In this section, we consider the perplexity of thetopic. Although these two cases might be unreal-
widely used topic model, Latent Dirichlet Alloca- istic, the actual (theoretical) perplexity is expected
tion (LDA) (Blei et al., 2003), by using the nota- to be between their values. We believe that analyz-
tion given in (Griffiths and Steyvers, 2004). LDA ing such extreme cases is theoretically important,
is a probabilistic language model that generates gince it would be useful for bounding the compu-
corpus as a mixture of hidden topics, and it allowstational complexity and predictive performance.

us to infer two parameters: the document-topic \We can regard the former case as a unigram
distribution 6 that represents the mixture rate of model, since the marginal predictive distribution
topics in each document, and the topic-word dis T fa(2)bs(w) o< ST n{) 43 o f(w) is in-

tribution ¢ that represents the occurrence rate o =1 T =
. ¢ P , dependent ofl; here we have use)(z) = 1/T
words in each topic. For a given corpsis the

model is defined as from. the assumption. In the latter ca_se, we can
obtain an exact formula for the perplexity of LDA
84, ~ Dirichlet(c) when the topic assigned to each document follows
zil0a, ~ Multi(6y,) a discrete uniform distribution, as shown in the
.. ~ Dirichlet(s) nex_t the(_)re1m. Note thatamlxtu_re of corpora fol-
: _ lowing Zipf’s law can be approximately regarded
wilzi, ¢z~ Multi(gz,), as following Zipf's law, whenl¥ is sufficiently
where d; and z; are respectively the document large.
that includes the-th word w; and the hidden Theorem 7. For any distributionp’ on the LDA
topic that is assigned tw;. In the case of infer- model withT" topics learned from a corpus’ re-
ence by Gibbs sampling presented in (Griffiths andluced from the original corpus following Zipf's
Steyvers, 2004), we can sample a “good” topic askaw, assuming that each document only has one
signmentz; for each wordw; with high probabil- topic which is assigned based on a discrete uni-
ity. Using the assignments we obtain the pos- form distribution, the perplexitfPPy; of the \*-
terior distributions of two parameters é@(z) x restored distributiorp of p’ fromw’ to w is calcu-

3.3 Perplexity of Topic Models
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Table 1: Details oReuters , 20news, Enwiki ,
Zipfl , andZipfMix

Fig. 1(a) shows the word frequency of
Reuters , 20news, Enwiki , andZipfl versus
frequency ranking on a log-log graph. In all cor-

vocab. size| corpus size doc. size , _
Reuters 70.258| 2.754.800] 18,118 Pora we can regard each curve as linear with a
20News 192,667| 4,471.151] 19997 gradient close to 1. This means that all corpora
Enwiki 409.902| 16,711,226 51,231 roughly follow Zipf’s law. Furthermore, since the
Zipfl 69,786| 2,754,800 18,118 curve of Zipfl is similar to that ofReuters ,
ZipfMix 70,093| 2.754.800 18,118 Zipfl can be regarded as acceptable.
Fig. 1(b) plots the perplexity of unigram mod-
lated by els learned fromReuters , 20news, Enwiki |,
and Zipfl versus the size of reduced vocabu-
. B(W'/T lary on a log-log graph. Each value is the aver-
PPun(W') =H(W/T) exp <H((W//T))> age over different test sets of five-fold cross val-
,_=owv//r) idation. Theoryl is calculated using the for-
( w-—w > AW/T mula in Theorem 3. The graph shows that the
HW/T) - HW'/T) curve of Theoryl is nearly identical to that of

Proof. We can prove this by using a similar argu-
ment to that of Theorem 3 for each topic.

O]

Zipfl . Since the vocabulary si2&’; of each test
set is small in this experiment, some errors appear
when W' is large, i.e., W, < W'. This clearly

The formula of the theorem is nearly identical Means that our theory is theoretically correct for

to the one of Theorem 3 for B/T corpus. This an ideal corpugipfl . ComparingZipfl with
implies that the growth rate of the perplexity of Reuters , however, we find that their perplex-
LDA models is larger than that of unigram mod- ities are quite different. The reason is that the
els, whereas the perplexity of LDA models for 9P between the frequencies of low-ranking (high-
the original corpus is smaller than that of unigramfrequency) words is considerably large. For ex-
models. In fact, a similar argument to the one in@Mple, the frequency of the 1st-rank word of
the approximate analysis in Section 3.1 leads to aRReuters is f(w) 136,371, while that of

be suited for inferring the growth rate of perplexity

rather than the perplexity value itself.

W
TnTexp

(In W' —InW)?
2In (W/T)

PP (W)

As for the approximate formul®P; of Theo-
_ rem 3, we can surely regard the curveZipfl
when W is sufficiently large. That isPPu(W')  as being roughly quadratic. The curves of real
also has a quadratic behavior in a log-log graphgorpora also have a similar tendency, although
i.e., PPy (W) = O(Ww"™""), their gradients are slightly steeper. This difference
) might have been caused by the above-mentioned
4 Experiments errors. However, at least, we can ascertain the

We performed experiments on three real corporémpo”am fact that the results for the corpora re-
(Reuters , 20news, andEnwiki ) and two syn- duced by 1/100 are not so different from those of

thetic corpora Zipfl ~and ZipfMix ) to verify the original corpora from the perspective of their

the correctness of our theory and to examine th@€rplexity measures.

gap between theory and practicBeuters and Fig. 1(c) plots the frequency df-grams § €
20news here denote corpora extracted from the{1,2,3}) in Reuters versus frequency ranking
Reuters-21578 and 20 Newsgroups data sets, ren a log-log graphTheoryFreq (1-3) are calcu-
spectively. Enwiki is a1/100 corpus of the En- lated usingC} in Lemma 4 andr, in Lemma 5.
glish Wikipedia.Zipfl is a synthetic corpus gen- A comparison offTheoryFreq andZipf verifies
erated by Zipf’s law, whose corpus is the same sizéhe correctness of our theory. However, comparing
asReuters , andzZipfMix isamixture of 20syn- Zipf andReuters , we see tha; is poorly es-
thetic corpora, sizes are 1/20th Réuters . We  timated when the gram size is large, whereass
usedzipfMix  only for the experiments on topic roughly correct. This may have happened because
models. Table 1 lists the details of all five corpora.we did not put any assumptions on the word se-
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Figure 1: (a) Word frequency dReuters , 20news, Enwiki , andZipfl versus frequency ranking.

(b) Perplexity of unigram models learned frddeuters , 20news, Enwiki , andZipfl versus size of
reduced vocabularyTheoryl is calculated using the formula in Theorem 3. (c) Frequendy-gifams

(k € {1,2,3}) in Reuters andZipfl versus frequency ranking. The suffix digit of each label means
its gram sizeTheoryFreq (1-3) are calculated using Lemma 4 and Lemma 5. (d) Exponent of a power
law overk-grams inReuters versus gram sizelTheoryGrad is calculated using in Lemma 5. (e)
Perplexity ofk-gram models learned froiReuters versus size of reduced vocabulafheory2 and
Theory3 are calculated using the formula in Corollary 6. (f) Perplexity of topic models learned from
Reuters , 20news, Enwiki , Zipfl , andZipfMix versus size of reduced vocabulafjeoryMix is
calculated using the formula in Theorem 7.

guences in our simple model. The frequencies ofTheory2 andTheory3 are calculated using the
high-orderk-grams tend to be lower than in real- formula in Corollary 6. In the case of bigrams,
ity. We might need to place a hierarchical assumpthe perplexities offheory2 are almost the same
tion on the a power law, as in done in hierarchicalas that oZipf2 when the size of reduced vocab-
Pitman-Yor processes (Wood et al., 2011). ulary is large. However, in the case of trigrams,

Fig. 1(d) plots the exponent of the power Iawthe perple>.<itie.s ofrheory3 are far from those of
over k-grams inReuters  versus the gram size ZIPf3 . This difference may be due to the sparse-
on a normal graph. We estimated each exponert€SS of trigrams iZipf3 . To verify the correct-

of Reuters by using the least-squares method.N€Ss of our theory for higher ordergram models,
TheoryGrad is calculated using, in Lemma 5. We need to make assumptions that include backoff

Surprisingly, the real exponents Beuters are ~and smoothing.
almost the same as the theoretical estimate Fig. 1() plots the perplexity of LDA models

based on our “stupid” model that does not cargi, 20 topics learned frorReuters , 20news,
about the order of words. Note that we do not USE=nwiki Zipfl , andZipfMix versus the size of

any information other than the vocabulary size

. WS reduced vocabulary on a log-log graph. We used
and the gram siz& for estimatingry.

a collapsed Gibbs sampler with 100 iterations to
Fig. 1(e) plots the perplexity of-gram mod- infer the parameters and set the hyper parameters,

els ¢ € {1,2,3}) learned fromReuters versus « = 0.1 and = 0.1. In evaluating the perplexity,

the size of reduced vocabulary on a log-log graphwe estimated a posterior document-topic distribu-
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Table 2: Computational time and memory sizefr?g?ir:itaa:?glzlxtm:Zgrnitg%f;;rq;ptﬁé;;ﬁe zgnmse
for LDA learning on the original corpus, (1/10)- ! y

reduced corpus, and (1/20)-reduced corpus df-Ung- Although we did not examine the accuracy
Reuters . of real tasks in this paper, there is an interesting

corpus | time | memory | perplexity report that the word error rate of language mod-
original | 4m3.80s | 71,548KB 500 els follows a power law with respect to perplexity

(1/10) | 3m55.70s| 46,648KB 550 (Klakow and Peters, 2002). Thus, we conjecture
(1/20) | 3m42.63s| 34,024KB 611 that the word error rate also has a similar tendency

as perplexity with respect to the reduced vocabu-

tion f, by using the first half of each test documentIary size.

and calculated the perplexity on the second halfg  ~gnclusion
as is done in (Asuncion et al., 2009). Each value
is the average over different test sets of five-foldWe studied the relationship between perplexity

cross validation. Theoryl and TheoryMix and vocabulary size of reduced corpora. We de-
are calculated using the formulae in Theorem 3Jived trade-off formulae for the perplexity df-

and Theorem 7, respectively. Comparifigfl gram models and topic models with respect to the
with Theoryl , andZipfMix  with TheoryMix ,  size of reduced vocabulary and showed that each

we find that our theory of the extreme casegormula approximately has a simple behavior on a
discussed in Section 3.3 is theoretically cor-log-log graph under certain conditions. We veri-
rect. TheoryAve is the average offheoryl fied the correctness of our theory on synthetic cor-
and TheoryMix . Comparing Reuters and pora and examined the gap between theory and
TheoryAve , we see that their curves are almostpractice on real corpora. We found that the es-
the same. If theoretical perplexitPP has a timation of the perplexity growth rate is reason-
similar tendency as real perplexitP on a able. This means that we can maximize the reduc-
log-log graph, i.e.JnPP(W’) ~ InPP(W’) + ¢ tion rate, thereby ensuring an acceptable perplex-
for some constantc, we can approximate ity based on a user-specified deterioration rate.
its deterioration rate aPP(W’)/PP(W) =~  Furthermore, this suggests the possibility that we
exp (InPP(W') +¢)/exp (InPP(W)+¢) = can theoretically derive empirical parameters, or
PP(W') /PP(W). Therefore, we can use “rules of thumb”, for different NLP problems, as-
TheoryAve as a heuristic function for estimat- suming that a corpus follows Zipf's law. We be-
ing the perplexity of topic models. Since we lieve that our theoretical estimation has the advan-
can calculate an inverse dfheoryAve from tages of computational efficiency and scalability
the bisection or Newton-Raphson method, weespecially for very large corpora, although exper-
can maximize the reduction rate and ensure aimental estimations such as cross-validation may
acceptable perplexity based on a user-specifiele more accurate.

deterioration rate. According to the fact that the In the future, we want to find out the cause of
three real corpora with different sizes have athe gap between theory and practice and extend
similar tendency, it is expected that we can useur theory to bridge the gap, in the same way that
our theory for a larger corpus. we can construct equations of motion with air re-

Finally, let us examine the computational costss's’t"Jlnce in the example of the landing point of

for LDA learning. Table 2 shows computa- a ballhlr(lj'Sec;tmn 1 IF(cj)r exgmple, promﬁmg re-h
tional time and memory size for LDA learning search directions include using a general law suc

on the original corpus, (1/10)-reduced corpus, and® th_e Zipf-Manderrot law (Mandelbrot, 1965), a
(1/20)-reduced corpus deuters . Comparing sophisticated model that cares the order of words

the memory used in the learning with the origi_such as hierarchical Pitman-Yor processes (Wood

nal corpus and with the (1/10)-reduced corpus o tal., 2011), and smoothing/backoff methods to
Reuters , we find that the learning on the (1/10)- andle the sparseness problem.

reduced corpus used 60% of the memory _used bxcknowledgments

the learning on the original corpus. While the

computational time decreased a little, we believeThe author would like to thank the reviewers for
that reducing the memory size helps to reducéheir helpful comments.
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