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Abstract

This paper studies the idea of remov-
ing low-frequency words from a corpus,
which is a common practice to reduce
computational costs, from a theoretical
standpoint. Based on the assumption that a
corpus follows Zipf’s law, we derive trade-
off formulae of the perplexity ofk-gram
models and topic models with respect to
the size of the reduced vocabulary. In ad-
dition, we show an approximate behavior
of each formula under certain conditions.
We verify the correctness of our theory on
synthetic corpora and examine the gap be-
tween theory and practice on real corpora.

1 Introduction

Removing low-frequency words from a corpus
(often calledcutoff) is a common practice to save
on the computational costs involved in learning
language models and topic models. In the case
of language models, we often have to remove
low-frequency words because of a lack of com-
putational resources, since the feature space ofk-
grams tends to be so large that we sometimes need
cutoffs even in a distributed environment (Brants
et al., 2007). In the case of topic models, the in-
tuition is that low-frequency words do not make a
large contribution to the statistics of the models.
Actually, when we try to roughly analyze a corpus
with topic models, a reduced corpus is enough for
the purpose (Steyvers and Griffiths, 2007).

A natural question arises: How many low-
frequency words can we remove while maintain-
ing sufficient performance? Or more generally,
by how much can we reduce a corpus/model us-
ing a certain strategy and still keep a sufficient
level of performance? There have been many stud-
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ies addressing the question as it pertains to differ-
ent strategies (Stolcke, 1998; Buchsbaum et al.,
1998; Goodman and Gao, 2000; Gao and Zhang,
2002; Ha et al., 2006; Hirsimaki, 2007; Church
et al., 2007). Each of these studies experimen-
tally discusses trade-off relationships between the
size of the reduced corpus/model and its perfor-
mance measured by perplexity, word error rate,
and other factors. To our knowledge, however,
there is no theoretical study on the question and
no evidence for such a trade-off relationship, es-
pecially for topic models.

In this paper, we first address the question from
a theoretical standpoint. We focus on the cutoff
strategy for reducing a corpus, since a cutoff is
simple but powerful method that is worth study-
ing; as reported in (Goodman and Gao, 2000;
Gao and Zhang, 2002), a cutoff is competitive
with sophisticated strategies such as entropy prun-
ing. As the basis of our theory, we assume Zipf’s
law (Zipf, 1935), which is an empirical rule repre-
senting a long-tail property of words in a corpus.
Our approach is essentially the same as those in
physics, in the sense of constructing a theory while
believing experimentally observed results. For ex-
ample, we can derive the distance to the landing
point of a ball thrown up in the air with initial
speedv0 and angleθ asv0

2 sin(2θ)/g by believ-
ing in the experimentally observed gravity acceler-
ationg. In a similar fashion, we will try to clarify
the trade-off relationship by believing Zipf’s law.

The rest of the paper is organized as follows. In
Section 2, we define the notation and briefly ex-
plain Zipf’s law and perplexity. In Section 3, we
theoretically derive the trade-off formulae of the
cutoff for unigram models,k-gram models, and
topic models, each of which represents its per-
plexity with respect to a reduced vocabulary, un-
der the assumption that the corpus follows Zipf’s
law. In addition, we show an approximate behav-
ior of each formula under certain conditions. In
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Section 4, we verify the correctness of our theory
on synthetic corpora and examine the gap between
theory and practice on several real corpora. Sec-
tion 5 concludes the paper.

2 Preliminaries

Let us consider a corpusw := w1 · · ·wN of cor-
pus sizeN and vocabulary sizeW . We use an
abridged notation{w} := {w ∈ w} to repre-
sent the vocabulary ofw. Clearly,N = |w| and
W = |{w}| hold. Whenw has additional nota-
tions, N andW inherit them. For example, we
will useN ′ as the size ofw′ without its definition.

2.1 Power law and Zipf’s law

A power law is a mathematical relationship be-
tween two quantitiesx andy, wherey is propor-
tional to thec-th power ofx, i.e., y ∝ xc, and
c is a real number. Zipf’s law (Zipf, 1935) is a
power law discovered on real corpora, wherein for
any wordw ∈ w in a corpusw, its frequency (or
word count)f(w) is inversely proportional to its
frequency rankingr(w), i.e.,

f(w) =
C

r(w)
.

Here, f(w) := |{w′ ∈ w | w′ = w}|, and
r(w) := |{w′ ∈ w | f(w′) ≥ f(w)}|. From
the definition, the constantC is the maximum fre-
quency in the corpus. Taking the natural loga-
rithms ln(·) of both sides of the above equation,
we find that its plot becomes linear on a log-log
graph ofr(w) andf(w). In fact, the result based
on a statistical test in (Clauset et al., 2009) reports
that the frequencies of words in a corpus com-
pletely follow a power law, whereas many datasets
with long-tail properties, such as networks, actu-
ally do not follow power laws.

2.2 Perplexity

Perplexity is a widely used evaluation measure of
k-gram models and topic models. Letp be a pre-
dictive distribution over words, which was learned
from a training corpusw based on a certain model.
Formally, perplexityPP is defined as the geomet-
ric mean of the inverse of the per-word likelihood
on the held-out test corpuswτ , i.e.,

PP :=

( ∏
w∈wτ

1
p(w)

) 1
Nτ

.

Intuitively, PP means how many possibilities one
has for estimating the next word in a test cor-
pus. According to the definition, a lower perplex-
ity means better generalization performance ofp.
Another well-known evaluation measure is cross-
entropy. Since cross-entropy is easily calculated
as log2 PP, we can apply many of the results of
this paper to cross-entropy.

3 Perplexity on Reduced Corpora

Now let us consider what a cutoff is. In our study,
we simply define a corpus that has been reduced
by removing low-frequency words from the origi-
nal corpus with a certain threshold. Formally, we
sayw′ is acorpus reduced from the original cor-
pusw, if w′ is the longest subsequence ofw such
that maxw′∈w′ r(w′) = W ′. Note that a sub-
sequence can include gaps in contrast to a sub-
string. For example, supposing we have a corpus
w = abcaba with a vocabulary{w} = {a, b, c},
w′

1 = ababa is a reduced corpus, whilew′
2 =

aba andw′
3 = acaa are not.

After learning a distributionp′ from a re-
duced corpusw′, we need to infer the distri-
bution p learned from the original corpusw.
Here, we useconstant restoring(defined below),
which assumes the frequencies of the reduced low-
frequency words are a constant.

Definition 1 (Constant Restoring). Given a pos-
itive constantλ, a distributionp′ over a reduced
corpus w′, and a corpusw, we say thatp̂ is
a λ-restored distribution ofp′ from w′ to w, if∑

w∈{w} p̂(w) = 1, and for anyw ∈ w,

p̂(w) ∝
{

p′(w) (w ∈ w′)
λ (w /∈ w′).

Constant restoring is similar to the additive
smoothing defined bŷp(w) ∝ p′(w)+λ, which is
used to solve the zero-frequency problem of lan-
guage models (Chen and Goodman, 1996). The
only difference is the addition of a constantλ
only to zero-frequency words. We think con-
stant restoring is theoretically natural in our set-
ting, since we can derive the above equation by
letting each frequency of reduced words beλN ′

and defining a restored frequency function as fol-
lows:

f̂(w) =

{
f(w) (w ∈ w′)
λN ′ (w /∈ w′).
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Informally, constant restoring involves padding
the vocabulary, while additive smoothing involves
padding the corpus. Smoothing should be carried
out after restoring.

3.1 Perplexity of Unigram Models

Let us consider the perplexity of a unigram model
learned from a reduced corpus. In unigram mod-
els, a predictive distributionp′ on a reduced cor-
pus w′ can be simply calculated asp′(w′) =
f(w′)/N ′. We shall start with an analysis of
training-set perplexity, since we can derive an ex-
act formula for it, which will give us a sufficient
idea for making an approximate analysis of test-
set perplexity.

Let P̂P1 :=
(∏

w∈w
1

p̂(w)

) 1
N

be the perplexity

of aλ-restored distribution̂p on a unigram model.
The next lemma gives the optimal restoring con-
stantλ∗ minimizing P̂P1.

Lemma 2. For anyλ-restored distribution̂p of a
distribution p′ from a reduced corpusw′ to the
original corpusw, its perplexity is minimized by

λ∗ =
N −N ′

(W −W ′)N ′ .

Proof. Let wR be the longest subsequence such
thatminw′∈w′ r(w′) = W ′ + 1. SincewR is the
remainder ofw′, NR = N −N ′ andWR = W −
W ′ hold. After substituting the normalized form
of p̂ of Definition 1 intoP̂P1, we have

P̂P1 =

( ∏
w′∈w′

1
p̂(w′)

∏
wR∈wR

1
p̂(wR)

) 1
N

=

( ∏
w′∈w′

1 + WRλ

p′(w′)

∏
wR∈wR

1 + WRλ

λ

) 1
N

=
1 + WRλ

λ
NR
N

( ∏
w′∈w′

1
p′(w′)

) 1
N

.

We obtain the optimal smoothing factorλ∗ when
∂
∂λ P̂P1 ∝ ∂

∂λ(1 + WRλ)/λ
NR
N = 0.

By using a similar argument to the one in the
above lemma, we can obtain the optimal constant
of additive smoothing asλ∗ ≈ N−N ′

WN ′ , whenN is
sufficiently large.

The next theorem gives the exact formula of the
training-set perplexity of a unigram model learned
from a reduced corpus.

Theorem 3. For any distributionp′ on a unigram
model learned from a corpusw′ reduced from the
original corpusw following Zipf ’s law, the per-
plexity P̂P1 of theλ∗-restored distribution̂p of p′

fromw′ to w is calculated by

P̂P1(W ′) =H(W ) exp
(

B(W ′)
H(W )

)
(

W −W ′

H(W )−H(W ′)

)1−H(W ′)
H(W )

,

where H(X) :=
∑X

x=1
1
x and B(X) :=∑X

x=1
ln x
x .

Proof. We expand the first part of̂PP1 in the proof
of Lemma 2 usingλ∗ as follows:

1 + WRλ∗

λ∗
NR
N

=
(

1 +
NR
N ′

)(
WRN ′

NR

)NR
N

=
(

N

N ′

)(
(W −W ′)N ′

N −N ′

)1−N′
N

.

The second part of̂PP1 is as follows:( ∏
w′∈w′

1
p′(w′)

) 1
N

=
∏

w′∈{w′}

(
1

p′(w′)

) f(w′)
N

=
W ′∏
r=1

(
rN ′

C

) C
rN

=
W ′∏
r=1

(
N ′

C

) C
rN

W ′∏
r=1

r
C

rN

=
(

N ′

C

)N′
N

exp

(
C

N

W ′∑
r=1

ln r

r

)
.

We obtain the objective formula by putting the
above two formulae together withN = CH(W )
and N ′ = CH(W ′), which are derived from
Zipf’s law.

The functionsH(X) and B(X) are theX-th
partial sum of the harmonic series and Bertrand
series (special form), respectively. An approxima-
tion by definite integrals yieldsH(X) ≈ lnX+γ,
where γ is the Euler-Mascheroni constant, and
B(X) ≈ 1

2 ln2 X. We may omitγ from the ap-
proximate analysis.

Now let us consider an approximate form of
P̂P1(W ′) in Theorem 3. For further discussion,
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we define the last part of̂PP1(W ′) as follows:

F (W,W ′) :=
(

W −W ′

H(W )−H(W ′)

)1−H(W ′)
H(W )

.

SinceW ′ = δW holds for an appropriate ratioδ,
we have

F (W, δW ) =
(

W − δW

H(W )−H(δW )

)1−H(δW )
H(W )

≈
(

W − δW

ln W − ln (δW )

)1− ln (δW )
ln W

=
(

W (1− δ)
− ln δ

)− ln δ
ln W

→ 1
δ

(W →∞).

Therefore, whenW is sufficiently large, we can
useF (W,W ′) ≈ W

W ′ , sinceF (W, δW ) ≈ 1
δ holds

for any ratioδ : 0 < δ < 1. Using this fact,
we obtain an approximate formulãPP1 of P̂P1 as
follows:

P̃P1(W ′) = ln W exp
(

ln2 W ′

2 ln W

)
W

W ′

=
√

W ln W exp
(lnW ′ − ln W )2

2 ln W
.

The complexity of P̃P1 is quasi-polynomial,
i.e., P̃P1(W ′) = O(W ′ln W ′

), which behaves as
a quadratic function on a log-log graph. Since
P̃P1(W ′) is convex, i.e., ∂2

∂W ′2 P̃P1(W ′) > 0, and

its gradient ∂
∂W ′ P̃P1(W ′) is zero whenW ′ = W ,

we infer that low-frequency words may not largely
contribute to the statistics.

Considering the special case ofW ′ = W , we
obtain the perplexityPP1 of the unigram model
learned from the original corpusw as

PP1 = H(W ) exp
(

B(W )
H(W )

)
≈
√

W ln W.

Interestingly,PP1 is approximately expressed as
a simple elementary function of vocabulary size
W . This suggests that models learned from cor-
pora with the same vocabulary size theoretically
have the same perplexity.

For the test-set perplexity, we assume that both
the training corpusw and test corpuswτ are gen-
erated from the same distribution based on Zipf’s
law. This assumption is natural, considering the
situation of an in-domain test or cross validation

test. Letwτ
′ be the longest subsequence ofwτ

such that for anyw ∈ wτ
′, w ∈ w′ holds. For-

mally, we assumep′(w) ≈ pτ
′(w) for anyw ∈ w′

τ

whenWτ > W ′, wherepτ
′ is the true distribu-

tion overwτ
′. Using similar arguments to those

of Lemma 2 and Theorem 3 forwτ , we obtain
an approximation formula for the test-set perplex-
ity, where we simply substituteW andW ′ in the
exact formula for the training-set perplexity with
Wτ andWτ

′, respectively. For simplicity, we will
only consider training-set perplexity from now on,
since we can make a similar argument for the test-
set perplexity in the later analysis.

3.2 Perplexity ofk-gram Models

Here, we will consider the perplexity of ak-gram
model learned from a reduced corpus as a standard
extension of a unigram model. Our theory only
assumes that the corpus is generated on the basis
of Zipf’s law. Thus, we can use a simple model
wherek-grams are calculated from a random word
sequence based on Zipf’s law. This model seems
to be stupid, since we can easily notice that the
bigram “is is” is quite frequent, and the two bi-
grams “is a” and “a is” have the same frequency.
However, the experiments described later uncov-
ered the fact that the model can roughly capture
the behavior of real corpora.

The frequencyfk of k-gram wordwk ∈ wk in
the model is represented by the following formula:

fk(wk) =
Ck

gk(rk(wk))
,

whereCk is the maximal frequency ink-grams,rk

is the frequency ranking ofwk overk-grams, and
gk expresses the frequency decay ink-grams. For
example, the decay functiong2 of bigrams is as
follows:

(g2(i))i := (g2(1), g2(2), g2(3), · · · )
= (1 · 1, 1 · 2, 2 · 1, 1 · 3, 3 · 1, · · · )
= (1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, · · · ).

This is an inverse of the sum of Piltz’s divisor
functionsd2(n) :=

∑
i1·i2=n 1, which represents

the number of divisors of an integern (cf. (OEIS,
2001)). In general, we formally definegk through
its inverse: g−1

k (ℓ) := Sk(ℓ), whereSk(ℓ) :=∑ℓ
n=1 dk(n) anddk(n) :=

∑
i1·i2···ik=n 1. Since

(gk(i))i is a sorted sequence of the elements of the
k-th tensor power of vector(1, · · · ,W ), we can
calculate the maximum frequencyCk as follows.
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Lemma 4. For any corpusw following Zipf ’s law,
the maximum frequency ofk-grams in our model
is calculated by

Ck =
N − (k − 1)D

(H(W ))k
,

whereD denotes the number of documents inw.

Proof. We use
∑

wk
fk(wk) = Ck(

∑
w 1/r(w))k.

The sumSk(ℓ) of Piltz’s divisor functions can
be approximated byℓPk(ln ℓ), wherePk(x) is a
polynomial of degreek − 1 with respect tox,
and the main term ofℓPk(ln ℓ) is given by the

following residue Ress=1
ζk(s)xs

s , whereζ(s) is
the Riemann zeta function (Li, 2005). Using this
fact, we obtain an approximationln (g−1

k (ℓ)) ≈
ln ℓ + O(ln (ln ℓ)) ≈ ln ℓ, whenℓ is sufficiently
large. Thus, when the corpus is sufficiently large,
we can see that the behavior offk is roughly linear
on a log-log graph, i.e.,fk(wk) ∝ rk(wk)−1, since
if g−1

k (ℓ) ∝ ℓc holds, thenfk(r) ∝ (gk(r))−1 ∝
r−

1
c holds.
Unfortunately, however, most corpora in the

real world are not so large that the above-
mentioned relation holds. Actually, Ha et al. (Ha
et al., 2002; Ha et al., 2006) experimentally found
that although ak-gram corpus roughly follows a
power law even whenk > 1, its exponent is
smaller than 1 (for Zipf’s law). They pointed out
that the exponent of bigrams is about 0.66, and
that of 5-grams is about 0.59 in the Wall Street
Journal corpus (WSJ87). Believing their claim
that there exists a constantπk such thatfk(wk) ∝
rk(wk)−πk , we estimated the exponent ofk-grams
in an actual situation in the form of the following
lemma.

Lemma 5. Assuming thatfk(wk) ∝ rk(wk)−πk

holds for anyk-gram wordwk ∈ wk in a corpus
w following Zipf ’s law, the optimal exponent in
our model based on the least squares criterion is
calculated by

πk =
ln W

(k − 1) ln (ln W ) + ln W
.

Proof. We find the optimal exponentπk by mini-
mizing the sum of squared errors between the gra-

dients ofg−1
k (r) andr

1
πk on a log-log graph:∫ {

∂

∂y
(y + ln Pk(y))− ∂

∂y

(
1
πk

y

)}2

dy,

wherey = ln r.

In the case of unigrams (k = 1), the formula
exactly represents Zipf’s law. In the case ofk-
grams (k > 1), we found that the formula ap-
proaches Zipf’s law whenW approaches infinity,
i.e., limW→∞ πk = 1.

Let us consider the perplexity of ak-gram
model learned from a reduced corpus. We im-
mediately obtain the following corollary using
Lemma 5.

Corollary 6. For any distributionp′ on ak-gram
model learned from a corpusw′ reduced from the
original corpusw following Zipf ’s law, assuming
that fk(wk) ∝ rk(wk)−πk holds for anyk-gram
word wk ∈ wk and the optimal exponentπk in
Lemma 5, the perplexitŷPPk of the λ∗-restored
distribution p̂ of p′ fromw′ to w is calculated by

P̂Pk(W ′) =Hπk
(W ) exp

(
Bπk

(W ′)
Hπk

(W )

)
(

W −W ′

Hπk
(W )−Hπk

(W ′)

)1−Hπk
(W ′)

Hπk
(W )

,

where Ha(X) :=
∑X

x=1
1
xa and Ba(X) :=∑X

x=1
a ln x
xa .

Ha(X) is theX-th partial sum of the P-series
or hyper-harmonic series, which is a generaliza-
tion of the harmonic seriesH(X). Ba(X) is the
X-th partial sum of the Bertrand series (another
special form ofB(X)). When0 < a < 1, we can
easily calculateP̂Pk(W ′) by using the following
approximations:

Ha(X) ≈ (X + 1)1−a − 1
1− a

Ba(X) ≈ a

1− a
(X + 1)1−a ln(X + 1)

− a

(1− a)2
(X + 1)1−a +

a

(1− a)2
.

By putting the approximations ofHa(X) and
Ba(X) into the formula of Corollary 6, we ob-

tain an approximation̂PPk(W ′) ≈ O(W ′W ′1−πk
).

This implies thatP̂Pk(W ′) is approximately linear
on a log-log graph, whenπk is close to 1, i.e.,k is
relatively small andW is sufficiently large. Note
that we must use the approximation ofH(X), not
Ha(X), whena = 1.

The fact that the frequency ofk-grams follows
a power law leads us to an additional convenient
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property, since the process of generating a cor-
pus in our theory can be treated as a variant of
the coupon collector’s problem. In this problem,
we consider how many trials are needed for col-
lecting all coupons whose occurrence probabilities
follow some stable distribution. According to a
well-known result about power law distributions
(Boneh and Papanicolaou, 1996), we need a cor-
pus of sizekW k

1−πk
ln W whenπk < 1, andW ln2 W

whenπk = 1 for collecting all of thek-grams, the
number of which isW k. Using results in (Atso-
nios et al., 2011), we can easily obtain a lower and
upper bound of the actual vocabulary sizẽWk of
k-grams from the corpus sizeN and vocabulary
sizeW as

W̃k ≥ (πk + 1)
(

1− e
− (1−πk)N

Wk−1
−ln Wk−1

Wk

)
W̃k ≤ πk

πk − 1

(
N

Hπk
(W k)

) 1
πk− NW 1−πk

(πk − 1)Hπk
(W k)

.

This means that we can determine the rough
sparseness ofk-grams and adjust some of the pa-
rameters such as the gram sizek in learning statis-
tical language models.

3.3 Perplexity of Topic Models

In this section, we consider the perplexity of the
widely used topic model, Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003), by using the nota-
tion given in (Griffiths and Steyvers, 2004). LDA
is a probabilistic language model that generates a
corpus as a mixture of hidden topics, and it allows
us to infer two parameters: the document-topic
distribution θ that represents the mixture rate of
topics in each document, and the topic-word dis-
tribution ϕ that represents the occurrence rate of
words in each topic. For a given corpusw, the
model is defined as

θdi
∼ Dirichlet(α)

zi|θdi
∼ Multi(θdi

)
ϕzi ∼ Dirichlet(β)

wi|zi, ϕzi ∼ Multi(ϕzi),

where di and zi are respectively the document
that includes thei-th word wi and the hidden
topic that is assigned towi. In the case of infer-
ence by Gibbs sampling presented in (Griffiths and
Steyvers, 2004), we can sample a “good” topic as-
signmentzi for each wordwi with high probabil-
ity. Using the assignmentsz, we obtain the pos-
terior distributions of two parameters asθ̂d(z) ∝

n
(d)
z + α andϕ̂z(w) ∝ n

(w)
z + β, wheren

(d)
z and

n
(w)
z respectively represent the number of times

assigning topicz in documentd and the number
of times topicz is assigned to wordw.

Since an exact analysis is very hard, we will
place rough assumptions on̂ϕ andθ̂ to reduce the
complexity. The assumption placed onϕ̂ is that the
word distributionϕ̂z of each topicz follows Zipf’s
law. We think this is acceptable since we can re-
gard each topic as a corpus that follows Zipf’s law.
Sinceϕ̂z is normalized for each topic, we can as-
sume that for any two topics,z and z′, and any
two words,w andw′, ϕ̂z(w) ≈ ϕ̂z′(w′) holds if
rz(w) = rz′(w′), whererz(w) is the frequency

ranking ofw with respect ton(w)
z . Note that the

above assumption pertains to a posterior, and we
do not discuss the fact that a Pitman-Yor process
prior is better suited for a power law (Goldwater et
al., 2011).

The assumption placed on̂ϕ may not be reason-
able in the case of̂θ, because we can easily think
of a document with only one topic, and we usu-
ally use a small numberT of topics for LDA, e.g.,
T = 20. Thus, we consider two extreme cases.
One is where each document evenly has all topics,
and the other is where each document only has one
topic. Although these two cases might be unreal-
istic, the actual (theoretical) perplexity is expected
to be between their values. We believe that analyz-
ing such extreme cases is theoretically important,
since it would be useful for bounding the compu-
tational complexity and predictive performance.

We can regard the former case as a unigram
model, since the marginal predictive distribution∑T

z=1 θ̂d(z)ϕ̂z(w) ∝∑T
z=1

n
(w)
z +β

T
∝∼ f(w) is in-

dependent ofd; here we have used̂θd(z) = 1/T
from the assumption. In the latter case, we can
obtain an exact formula for the perplexity of LDA
when the topic assigned to each document follows
a discrete uniform distribution, as shown in the
next theorem. Note that a mixture of corpora fol-
lowing Zipf’s law can be approximately regarded
as following Zipf’s law, whenW is sufficiently
large.

Theorem 7. For any distributionp′ on the LDA
model withT topics learned from a corpusw′ re-
duced from the original corpusw following Zipf ’s
law, assuming that each document only has one
topic which is assigned based on a discrete uni-
form distribution, the perplexityP̂PMix of theλ∗-
restored distribution̂p of p′ fromw′ to w is calcu-
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Table 1: Details ofReuters , 20news , Enwiki ,
Zipf1 , andZipfMix .

vocab. size corpus size doc. size
Reuters 70,258 2,754,800 18,118
20news 192,667 4,471,151 19,997
Enwiki 409,902 16,711,226 51,231
Zipf1 69,786 2,754,800 18,118

ZipfMix 70,093 2,754,800 18,118

lated by

P̂PMix(W ′) =H(W/T ) exp
(

B(W ′/T )
H(W/T )

)
(

W −W ′

H(W/T )−H(W ′/T )

)1−H(W ′/T )
H(W/T )

Proof. We can prove this by using a similar argu-
ment to that of Theorem 3 for each topic.

The formula of the theorem is nearly identical
to the one of Theorem 3 for a1/T corpus. This
implies that the growth rate of the perplexity of
LDA models is larger than that of unigram mod-
els, whereas the perplexity of LDA models for
the original corpus is smaller than that of unigram
models. In fact, a similar argument to the one in
the approximate analysis in Section 3.1 leads to an
approximate formulaP̃PMix of P̂PMix as

P̃PMix(W ′) =

√
W

T
ln

W

T
exp

(lnW ′ − ln W )2

2 ln (W/T )
,

whenW is sufficiently large. That is,P̃PMix(W ′)
also has a quadratic behavior in a log-log graph,
i.e., P̃PMix(W ′) = O(W ′ln W ′

).

4 Experiments

We performed experiments on three real corpora
(Reuters , 20news , andEnwiki ) and two syn-
thetic corpora (Zipf1 and ZipfMix ) to verify
the correctness of our theory and to examine the
gap between theory and practice.Reuters and
20news here denote corpora extracted from the
Reuters-21578 and 20 Newsgroups data sets, re-
spectively.Enwiki is a1/100 corpus of the En-
glish Wikipedia.Zipf1 is a synthetic corpus gen-
erated by Zipf’s law, whose corpus is the same size
asReuters , andZipfMix is a mixture of 20 syn-
thetic corpora, sizes are 1/20th ofReuters . We
usedZipfMix only for the experiments on topic
models. Table 1 lists the details of all five corpora.

Fig. 1(a) shows the word frequency of
Reuters , 20news , Enwiki , andZipf1 versus
frequency ranking on a log-log graph. In all cor-
pora, we can regard each curve as linear with a
gradient close to 1. This means that all corpora
roughly follow Zipf’s law. Furthermore, since the
curve of Zipf1 is similar to that ofReuters ,
Zipf1 can be regarded as acceptable.

Fig. 1(b) plots the perplexity of unigram mod-
els learned fromReuters , 20news , Enwiki ,
and Zipf1 versus the size of reduced vocabu-
lary on a log-log graph. Each value is the aver-
age over different test sets of five-fold cross val-
idation. Theory1 is calculated using the for-
mula in Theorem 3. The graph shows that the
curve of Theory1 is nearly identical to that of
Zipf1 . Since the vocabulary sizeWτ of each test
set is small in this experiment, some errors appear
whenW ′ is large, i.e.,Wτ < W ′. This clearly
means that our theory is theoretically correct for
an ideal corpusZipf1 . ComparingZipf1 with
Reuters , however, we find that their perplex-
ities are quite different. The reason is that the
gap between the frequencies of low-ranking (high-
frequency) words is considerably large. For ex-
ample, the frequency of the 1st-rank word of
Reuters is f(w) = 136, 371, while that of
Zipf1 is f(w) = 234, 705. Our theory seems to
be suited for inferring the growth rate of perplexity
rather than the perplexity value itself.

As for the approximate formulãPP1 of Theo-
rem 3, we can surely regard the curve ofZipf1
as being roughly quadratic. The curves of real
corpora also have a similar tendency, although
their gradients are slightly steeper. This difference
might have been caused by the above-mentioned
errors. However, at least, we can ascertain the
important fact that the results for the corpora re-
duced by 1/100 are not so different from those of
the original corpora from the perspective of their
perplexity measures.

Fig. 1(c) plots the frequency ofk-grams (k ∈
{1, 2, 3}) in Reuters versus frequency ranking
on a log-log graph.TheoryFreq (1-3) are calcu-
lated usingCk in Lemma 4 andπk in Lemma 5.
A comparison ofTheoryFreq andZipf verifies
the correctness of our theory. However, comparing
Zipf andReuters , we see thatCk is poorly es-
timated when the gram size is large, whereasπk is
roughly correct. This may have happened because
we did not put any assumptions on the word se-

803



100 101 102 103 104 105 106

Frequency Ranking

100

101

102

103

104

105

106

107

Fr
e
q
u
e
n
cy

Reuters
20news
Enwiki
Zipf1

(a) Frequency of unigrams

100 101 102 103 104 105 106

Reduced Vocabulary Size

103

104

105

T
e
st

-s
e
t 

P
e
rp

le
x
it

y

Reuters
20news
Enwiki
Zipf1
Theory1

(b) Perplexity of unigram models

100 101 102 103 104 105

Frequency Ranking

101

102

103

104

105

Fr
e
q
u
e
n
cy

Reuters
Zipf1
TheoryFreq1
Reuters2
Zipf2
TheoryFreq2
Reuters3
Zipf3
TheoryFreq3

(c) Frequency ofk-grams

1 2 3 4 5 6 7 8 9 10
Gram Size

0.4

0.6

0.8

1.0

1.2

E
x
p
o
n
e
n
t

Reuters
TheoryExp

(d) Exponent of a power law overk-
grams

100 101 102 103 104 105 106 107

Reduced Vocabulary Size

102

103

104

105

106

Te
st
-s
e
t 
Pe
rp
le
x
it
y

Reuters
Zipf1
Theory1
Reuters2
Zipf2
Theory2
Reuters3
Zipf3
Theory3

(e) Perplexity ofk-gram models

100 101 102 103 104 105 106

Reduced Vocabulary Size

103

104

105

Te
st
-s
e
t 
Pe

rp
le
x
it
y

Reuters
20news
Enwiki
Zipf1
Theory1
ZipfMix
TheoryMix
TheoryAve

(f) Perplexity of topic models

Figure 1: (a) Word frequency ofReuters , 20news , Enwiki , andZipf1 versus frequency ranking.
(b) Perplexity of unigram models learned fromReuters , 20news , Enwiki , andZipf1 versus size of
reduced vocabulary.Theory1 is calculated using the formula in Theorem 3. (c) Frequency ofk-grams
(k ∈ {1, 2, 3}) in Reuters andZipf1 versus frequency ranking. The suffix digit of each label means
its gram size.TheoryFreq (1-3) are calculated using Lemma 4 and Lemma 5. (d) Exponent of a power
law overk-grams inReuters versus gram size.TheoryGrad is calculated usingπk in Lemma 5. (e)
Perplexity ofk-gram models learned fromReuters versus size of reduced vocabulary.Theory2 and
Theory3 are calculated using the formula in Corollary 6. (f) Perplexity of topic models learned from
Reuters , 20news , Enwiki , Zipf1 , andZipfMix versus size of reduced vocabulary.TheoryMix is
calculated using the formula in Theorem 7.

quences in our simple model. The frequencies of
high-orderk-grams tend to be lower than in real-
ity. We might need to place a hierarchical assump-
tion on the a power law, as in done in hierarchical
Pitman-Yor processes (Wood et al., 2011).

Fig. 1(d) plots the exponent of the power law
over k-grams inReuters versus the gram size
on a normal graph. We estimated each exponent
of Reuters by using the least-squares method.
TheoryGrad is calculated usingπk in Lemma 5.
Surprisingly, the real exponents ofReuters are
almost the same as the theoretical estimateπk

based on our “stupid” model that does not care
about the order of words. Note that we do not use
any information other than the vocabulary sizeW
and the gram sizek for estimatingπk.

Fig. 1(e) plots the perplexity ofk-gram mod-
els (k ∈ {1, 2, 3}) learned fromReuters versus
the size of reduced vocabulary on a log-log graph.

Theory2 andTheory3 are calculated using the
formula in Corollary 6. In the case of bigrams,
the perplexities ofTheory2 are almost the same
as that ofZipf2 when the size of reduced vocab-
ulary is large. However, in the case of trigrams,
the perplexities ofTheory3 are far from those of
Zipf3 . This difference may be due to the sparse-
ness of trigrams inZipf3 . To verify the correct-
ness of our theory for higher orderk-gram models,
we need to make assumptions that include backoff
and smoothing.

Fig. 1(f) plots the perplexity of LDA models
with 20 topics learned fromReuters , 20news ,
Enwiki , Zipf1 , andZipfMix versus the size of
reduced vocabulary on a log-log graph. We used
a collapsed Gibbs sampler with 100 iterations to
infer the parameters and set the hyper parameters,
α = 0.1 andβ = 0.1. In evaluating the perplexity,
we estimated a posterior document-topic distribu-
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Table 2: Computational time and memory size
for LDA learning on the original corpus, (1/10)-
reduced corpus, and (1/20)-reduced corpus of
Reuters .

corpus time memory perplexity
original 4m3.80s 71,548KB 500
(1/10) 3m55.70s 46,648KB 550
(1/20) 3m42.63s 34,024KB 611

tion θ̂d by using the first half of each test document
and calculated the perplexity on the second half,
as is done in (Asuncion et al., 2009). Each value
is the average over different test sets of five-fold
cross validation. Theory1 and TheoryMix
are calculated using the formulae in Theorem 3
and Theorem 7, respectively. ComparingZipf1
with Theory1 , andZipfMix with TheoryMix ,
we find that our theory of the extreme cases
discussed in Section 3.3 is theoretically cor-
rect. TheoryAve is the average ofTheory1
and TheoryMix . Comparing Reuters and
TheoryAve , we see that their curves are almost
the same. If theoretical perplexitŷPP has a
similar tendency as real perplexityPP on a
log-log graph, i.e.,ln PP(W ′) ≈ ln P̂P(W ′) + c
for some constantc, we can approximate
its deterioration rate asPP(W ′)/PP(W ) ≈
exp (ln P̂P(W ′) + c)/ exp (ln P̂P(W ) + c) =
P̂P(W ′)/P̂P(W ). Therefore, we can use
TheoryAve as a heuristic function for estimat-
ing the perplexity of topic models. Since we
can calculate an inverse ofTheoryAve from
the bisection or Newton-Raphson method, we
can maximize the reduction rate and ensure an
acceptable perplexity based on a user-specified
deterioration rate. According to the fact that the
three real corpora with different sizes have a
similar tendency, it is expected that we can use
our theory for a larger corpus.

Finally, let us examine the computational costs
for LDA learning. Table 2 shows computa-
tional time and memory size for LDA learning
on the original corpus, (1/10)-reduced corpus, and
(1/20)-reduced corpus ofReuters . Comparing
the memory used in the learning with the origi-
nal corpus and with the (1/10)-reduced corpus of
Reuters , we find that the learning on the (1/10)-
reduced corpus used 60% of the memory used by
the learning on the original corpus. While the
computational time decreased a little, we believe
that reducing the memory size helps to reduce

computational time for a larger corpus in the sense
that it can relax the constraint for in-memory com-
puting. Although we did not examine the accuracy
of real tasks in this paper, there is an interesting
report that the word error rate of language mod-
els follows a power law with respect to perplexity
(Klakow and Peters, 2002). Thus, we conjecture
that the word error rate also has a similar tendency
as perplexity with respect to the reduced vocabu-
lary size.

5 Conclusion

We studied the relationship between perplexity
and vocabulary size of reduced corpora. We de-
rived trade-off formulae for the perplexity ofk-
gram models and topic models with respect to the
size of reduced vocabulary and showed that each
formula approximately has a simple behavior on a
log-log graph under certain conditions. We veri-
fied the correctness of our theory on synthetic cor-
pora and examined the gap between theory and
practice on real corpora. We found that the es-
timation of the perplexity growth rate is reason-
able. This means that we can maximize the reduc-
tion rate, thereby ensuring an acceptable perplex-
ity based on a user-specified deterioration rate.
Furthermore, this suggests the possibility that we
can theoretically derive empirical parameters, or
“rules of thumb”, for different NLP problems, as-
suming that a corpus follows Zipf’s law. We be-
lieve that our theoretical estimation has the advan-
tages of computational efficiency and scalability
especially for very large corpora, although exper-
imental estimations such as cross-validation may
be more accurate.

In the future, we want to find out the cause of
the gap between theory and practice and extend
our theory to bridge the gap, in the same way that
we can construct equations of motion with air re-
sistance in the example of the landing point of
a ball in Section 1. For example, promising re-
search directions include using a general law such
as the Zipf-Mandelbrot law (Mandelbrot, 1965), a
sophisticated model that cares the order of words
such as hierarchical Pitman-Yor processes (Wood
et al., 2011), and smoothing/backoff methods to
handle the sparseness problem.
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