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Abstract

Supervised NLP tools and on-line services
are often used on data that is very dif-
ferent from the manually annotated data
used during development. The perfor-
mance loss observed in such cross-domain
applications is often attributed to covari-
ate shifts, with out-of-vocabulary effects
as an important subclass. Many discrim-
inative learning algorithms are sensitive to
such shifts because highly indicative fea-
tures may swamp other indicative features.
Regularized and adversarial learning algo-
rithms have been proposed to be more ro-
bust against covariate shifts. We present
a new perceptron learning algorithm us-
ing antagonistic adversaries and compare
it to previous proposals on 12 multilin-
gual cross-domain part-of-speech tagging
datasets. While previous approaches do
not improve on our supervised baseline,
our approach is better across the board
with an average 4% error reduction.

1 Introduction

Most learning algorithms assume that training and
test data are governed by identical distributions;
and more specifically, in the case of part-of-speech
(POS) tagging, that training and test sentences
were sampled at random and that they are identi-
cally and independently distributed. Significance
is usually tested across data points in standard
NLP test sets. Such datasets typically contain run-
ning text rather than independently sampled sen-
tences, thereby violating the assumption that data
points are independently distributed and sampled
at random. More importantly, significance across

data points only says something about the likely-
hood of observing the same effect on more data
sampled the same way, but says nothing about
likely performance on sentences sampled from
different sources or different domains.

This paper considers the POS tagging problem,
i.e. where we have training and test data consist-
ing of sentences in which all words are assigned
a label y chosen from a finite set of class labels
{NOUN, VERB, DET,. . . }. We assume that we
are interested in performance across data sets or
domains rather than just performance across data
points, but that we do not know the target domain
in advance. This is often the case when we develop
NLP tools and on-line services. We will do cross-
domain experiments using several target domains
in order to compute significance across domains,
enabling us to say something about likely perfor-
mance on new domains.

Several authors have noted how POS tagging
performance is sensitive to cross-domain shifts
(Blitzer et al., 2006; Daume III, 2007; Jiang and
Zhai, 2007), and while most authors have as-
sumed known target distributions and pool unla-
beled target data in order to automatically correct
cross-domain bias (Jiang and Zhai, 2007; Fos-
ter et al., 2010), methods such as feature bag-
ging (Sutton et al., 2006), learning with random
adversaries (Globerson and Roweis, 2006) and
L∞-regularization (Dekel and Shamir, 2008) have
been proposed to improve performance on un-
known target distributions. These methods ex-
plicitly or implicitly try to minimize average or
worst-case expected error across a set of possi-
ble test distributions in various ways. These al-
gorithms are related because of the intimate rela-
tionship between adversarial corruption and reg-
ularization (Ghaoui and Lebret, 1997; Xu et al.,
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2009; Hinton et al., 2012). This paper presents a
new method based on learning with antagonistic
adversaries.
Outline. Section 2 introduces previous work on
robust perceptron learning, as well as the meth-
ods dicussed in the paper. Section 3 motivates
and introduces learning with antagonistic adver-
saries. Section 4 presents experiments on POS tag-
ging and discusses how to evaluate cross-domain
performance. Learning with antagonistic adver-
saries is superior to the other approaches across
10/12 datasets with an average error reduction of
4% over a supervised baseline.
Motivating example. The problem with
out-of-vocabulary effects can be illus-
trated using a small labeled data set:
{x1 = 〈1, 〈0, 1, 0〉〉,x2 = 〈1, 〈0, 1, 1〉〉,x3 =
〈0, 〈0, 0, 0〉〉,x4 = 〈1, 〈0, 0, 1〉〉}. Say we train
our model on x1−3 and evaluate it on the fourth
data point. Most discriminate learning algorithms
only update parameters when training examples
are misclassified. In this example, a model
initialized by zero weights would misclassify x1,
update the parameter associated with feature x2
at a fixed rate α, and the returned model would
then classify all data points correctly. Hence
the parameter associated with feature x3 would
never be updated, although this feature is also
correlated with class. If x2 is missing in our test
data (out-of-vocabulary), we end up classifying
all data points as negative. In this case, we would
wrongly predict that x4 is negative.

2 Robust perceptron learning

Our framework will be averaged perceptron learn-
ing (Freund and Schapire, 1999; Collins, 2002).
We use an additive update algorithm and aver-
age parameters to prevent over-fitting. In adver-
sarial learning, adversaries corrupt the data point
by applying transformations to data points. An-
tagonistic adversaries choose transformations in-
formed by the current model parameters w, but
random adversaries randomly select transforma-
tions from a predefined set of possible transforma-
tions, e.g. deletions of at most k features (Glober-
son and Roweis, 2006).
Feature bagging. In feature bagging (Sutton et al.,
2006), the data is represented by different bags of
features or different views, and the models learned
using different feature bags are combined by aver-
aging. We can reformulate feature bagging as an

adversarial learning problem. For each pass, the
adversary chooses a deleting transformation cor-
responding to one of the feature bags. In Sut-
ton et al. (2006), the feature bags simply divide
the features into two or more representations. In
an online setting feature bagging can be modelled
as a game between a learner and an adversary, in
which (a) the adversary can only choose between
deleting transformations, (b) the adversary cannot
see model parameters when choosing a transfor-
mation, and in which (c) the adversary only moves
in between passes over the data.1

Learning with random adversaries
(LRA). Globerson and Roweis (2006) let an
adversary corrupt labeled data during training
to learn better models of test data with missing
features. They assume that missing features
are randomly distributed and show that the
optimization problem is a second-order cone
program. LRA is an adversarial game in which
the two players are unaware of the other player’s
current move, and in particular, where the ad-
versary does not see model parameters and only
randomly corrupts the data points. Globerson
and Roweis (2006) formulate LRA as a batch
learning problem of minimizing worst case loss
under deleting transformations deleting at most
k features. This is related to regularization in the
following way: If model parameters are chosen
to minimize expected error in the absence of any
k features, we explicitly prevent under-weighting
more than n − k features, i.e. the model must be
able to classify data well in the absence of any k
features. The sparsest possible model would thus
assign weights to k + 1 parameters.
L∞-regularization hedges its bets even more than
adversarial learning by minimizing expected er-
ror with max ||w|| < C. In the online setting,
this corresponds to playing against an adversary
that clips any weight above a certain threshold C,
whether positive or negative (Dekel and Shamir,
2008). In geometric terms the weights are pro-
jected back onto the hyper-cube C. A related
approach, which is not explored in the experi-
ments below, is to regularize linear models toward
weights with low variance (Bergsma et al., 2010).

1Note that the batch version of feature bagging is an in-
stance of group L1 regularization (Jacob et al., 2009; Schmidt
and Murphy, 2010; Martins et al., 2011). Often group regu-
larization is about finding sparser models rather than robust
models. Sparse models can be obtained by grouping corre-
lated features; non-sparse models can be obtained by using
independent, exhaustive views.

641



1: X = {〈yi,xi〉}Ni=1, δ deletion rate
2: w0 = 0,v = 0, i = 0
3: for k ∈ K do
4: for n ∈ N do
5: ξ1 ← random.sample(P (1) = 1− δ)
6: ξ2 ← ||w|| < µ||w|| + σ||w||
7: ξ ← (ξ1 + ξ2)(0,1)
8: if sign(w · xn ◦ ξ) 6= yn then
9: wi+1 ← update(wi)

10: i← i+ 1
11: end if
12: v← v +wi

13: end for
14: end for
15: return w = v/(N ×K)

Figure 1: Learning with antagonistic adversaries

3 Learning with antagonistic adversaries

The intuition behind learning with antagonistic ad-
versaries is that the adversary should focus on the
most predictive features. In the prediction game,
this would allow the adversary to inflict more dam-
age, corrupting data points by removing good fea-
tures (rather than random ones). If the adversary
focuses on the most predictive features, she is im-
plicitly regularizing the model to obtain a more
equal distribution of weights.

We draw random binary vectors with P (1) =
1 − δ as in adversarial learning, but deletions are
only effective if ξj = 0 and the weight wj is more
than a standard deviation (σ||w||) from the mean
of the current absolute weight distribution (µ||w||).
In other words, we only delete the predictive fea-
tures, with predictivity being relative to the current
mean weight.

The algorithm is presented in Figure 1. For each
data point, we draw a random binary vector ξ1
with δ chance of zeros. ξ2 is a vector with the
ith scalar zero if and only if the absolute value of
the weight wi in w is more than a standard devia-
tion higher than the current mean. The ith scalar
in ξ is only zero if the ith scalars in both ξ1 and ξ2
are zero. The corresponding features are a random
subset of the predictive features.2

2The approach taken is similar in spirit to confidence-
weighted learning (Dredze et al., 2008). The intuition behind
confidence-weighted learning is to more agressively update
rare features or features that we are less confident about. In
learning with antagonistic adversaries the adversaries delete
predictive features; that is, features that we are confident
about. When these features are deleted, we do not update
the corresponding weights. In relative terms, we therefore
update rare features more aggressively than common ones.
Note also that by doing so we regularize toward weights with
low variance (Bergsma et al., 2010).

4 Experiments

We consider part-of-speech (POS) tagging, i.e. the
problem of assigning syntactic categories to word
tokens in running text. POS tagging accuracy is
known to be very sensitive to domain shifts. Fos-
ter et al. (2011) report a POS tagging accuracy on
social media data of 84% using a tagger that ac-
chieves an accuracy of about 97% on newspaper
data. In the case of social media data, many errors
occur due to different spelling and capitalization
conventions. The main source of error, though, is
the increased out-of-vocabulary rate, i.e. the many
unknown words. While POS taggers can often re-
cover the part of speech of a previously unseen
word from the context it occurs in, this is harder
than for previously seen words.

We use the LXMLS toolkit3 as our baseline
with the default feature model, but use the PTB
tagset rather than the Google tagset (Petrov et
al., 2011) used by default in the LXMLS toolkit.
We use four groups of datasets. The first group
comes from the English Web Treebank (EWT),4

also used in the Parsing the Web shared task
(Petrov and McDonald, 2012). We train our tag-
ger on Sections 2–21 of the WSJ data in the Penn-
III Treebank (PTB), Ontonotes 4.0 release. The
EWT contains development and test data for five
domains: answers (from Yahoo!), emails (from
the Enron corpus), BBC newsgroups, Amazon re-
views, and weblogs. We use the emails develop-
ment section for development and test on the re-
maining four test sets. We also do experiments
with additional data from PTB. For these experi-
ments we use the 0th even split of the biomedical
section (PTB-biomedical) as development data,
the 9th split and the chemistry section (PTB-
chemistry) as test data, and the remaining biomed-
ical data (splits 1–8) as training data. This data
was also used for developing and testing in the
CoNLL 2007 Shared Task (Nivre et al., 2007).

Our third group of datasets also comes from
Ontonotes 4.0.5 We use the Chinese Ontonotes
(CHO) data, covering five different domains. We
use newswire for training data and randomly sam-
pled broadcasted news for development. Finally
we do experiments with the Danish section of the
Copenhagen Dependency Treebank (CDT). For
CDT we rely on the treebank meta-data and sin-

3https://github.com/gracaninja/lxmls-toolkit
4LDC Catalog No.: LDC2012T13.
5LDC Catalog No.: LDC2011T03.
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SP Our L∞ LRA
EWT-answers 86.04 86.06 85.90 86.06
EWT-newsgroups 87.70 87.92 87.78 87.66
EWT-reviews 85.96 86.10 85.80 86.00
EWT-weblogs 87.59 87.89 87.60 87.54
PTB-biomedical 95.05 95.26 95.46 94.43
PTB-chemistry 90.32 90.60 90.56 90.58
CHO-broadcast 78.38 78.42 78.27 78.28
CHO-magazines 78.50 78.57 76.80 78.29
CHO-weblogs 79.64 79.76 79.24 79.37
CDT-law 93.96 95.64 93.91 94.25
CDT-literature 93.93 94.19 94.15 94.15
CDT-magazines 94.95 95.06 94.71 95.04
Wilcoxon p <0.01
macro-av. err.red 4.0 -1.2 -0.2

Table 1: Results (in %).

gle out the newspaper section as training data and
use held-out newspaper data for development.

We observe two characteristics about our
datasets: (a) The class distributions are relatively
stable across domains. For CDT, for example,
we see almost identical distributions of parts of
speech, except literature has more prepositions.
(b) The OOV rate is significantly higher across do-
mains than within domains. This holds even for
the PTB datasets, where the OOV rate is 14.6% on
the biomedical test data, but 43.3% on the chem-
istry test data. These two observations confirm
that cross-domain data is primarily biased by co-
variate shifts.

All learning algorithms do the same number of
passes over each training data set. The number
of iterations was set optimizing baseline system
performance on development data. For EWT and
CHO, we do 10 passes over the data. For PTB,
we do 15 passes over the data, and for CDT, we
do 25 passes over the data. The deletion rate in
adversarial learning was fixed to 0.1% (optimized
on the EWT emails data; not optimized on PTB,
CHO or CDT). In L∞-regularization, the parame-
ter C was optimized the same way and set to 20.
Results are averages over five runs.

4.1 Results
The results are presented in Table 1. Learn-
ing with antagonistic adversaries performs signifi-
cantly better than structured perceptron (SP) learn-
ing, L∞-regularization and LRA across the board.
We follow Demsar (2006) in computing signif-
icance across datasets using a Wilcoxon signed
rank test. This is a strong result given that our al-
gorithm is as computationally efficient as SP and
does not pool unlabeled data to adapt to a spe-
cific target distribution. What we see is that let-

ting an antagonistic adversary corrupt our labeled
data - somewhat surprisingly, maybe - leads to bet-
ter cross-domain performance. L∞-regularization
leads to worse performance, and LRA performs
very similar to SP on average. Improvements
to LRA have also been explored in Trafalis and
Gilbert (2007) and Dekel and Shamir (2008).
We note that on the in-domain dataset (PTB-
biomedical), L∞-regularization performs best, but
our approach also performs better than the struc-
tured perceptron baseline on this dataset.

4.2 Analysis

The number of zero weights or very small weights
is significantly lower for learning with antagonis-
tic adversaries than for the baseline structured per-
ceptron. So our models become less sparse. On
the other hand, we have more parameters with av-
erage weights in our models. Weights are in other
words better distributed. We also observe that pa-
rameters are updated slightly more with antago-
nistic adversaries. In our PTB experiments, for
example, the mean weight is 14.2 in structured
perceptron learning, but 14.5 with antagonistic ad-
versaries. On the other hand, weight variance is
slightly lower; recall the connection to variance
regularization (Bergsma et al., 2010). Note that
L∞-regularization with C = 20 corresponds to
clipping all weights above 20, i.e. roughly a third
of the weights in this case. To validate our intu-
itions about what is going on, we also tried to in-
crease the deletion rate. If δ is increased to 1%,
the mean weight goes up to 19.2. The adversarial
model is less sparse than the baseline model.

A last observation is that the structured percep-
tron baseline model expectedly fits the training
data better than the robust models. On CDT, the
structured perceptron has an accuracy of 98.26%
on held-out training data, whereas our model has
an accuracy of only 97.85%. The L∞-regularized
has an accuracy of 97.82%, whereas LRA has an
accuracy of 98.18%.

5 Conclusion

We presented a discriminative learning algorithms
for cross-domain structured prediction that seems
more robust to covariate shifts than previous ap-
proaches. Our approach was superior to previous
approaches across 12 multilingual cross-domain
POS tagging datasets, with an average error reduc-
tion of 4% over a structured perceptron baseline.
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