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Abstract

We present an unsupervised approach to
part-of-speech tagging based on projec-
tions of tags in a word-aligned bilingual
parallel corpus. In contrast to the exist-
ing state-of-the-art approach of Das and
Petrov, we have developed a substantially
simpler method by automatically identi-
fying “good” training sentences from the
parallel corpus and applying self-training.
In experimental results on eight languages,
our method achieves state-of-the-art re-
sults.

1 Unsupervised part-of-speech tagging

Currently, part-of-speech (POS) taggers are avail-
able for many highly spoken and well-resourced
languages such as English, French, German, Ital-
ian, and Arabic. For example, Petrov et al. (2012)
build supervised POS taggers for 22 languages us-
ing the TNT tagger (Brants, 2000), with an aver-
age accuracy of 95.2%. However, many widely-
spoken languages — including Bengali, Javanese,
and Lahnda — have little data manually labelled
for POS, limiting supervised approaches to POS
tagging for these languages.

However, with the growing quantity of text
available online, and in particular, multilingual
parallel texts from sources such as multilin-
gual websites, government documents and large
archives of human translations of books, news, and
so forth, unannotated parallel data is becoming
more widely available. This parallel data can be
exploited to bridge languages, and in particular,
transfer information from a highly-resourced lan-
guage to a lesser-resourced language, to build un-
supervised POS taggers.

In this paper, we propose an unsupervised ap-
proach to POS tagging in a similar vein to the
work of Das and Petrov (2011). In this approach,

a parallel corpus for a more-resourced language
having a POS tagger, and a lesser-resourced lan-
guage, is word-aligned. These alignments are ex-
ploited to infer an unsupervised tagger for the tar-
get language (i.e., a tagger not requiring manually-
labelled data in the target language). Our ap-
proach is substantially simpler than that of Das
and Petrov, the current state-of-the art, yet per-
forms comparably well.

2 Related work

There is a wealth of prior research on building un-
supervised POS taggers. Some approaches have
exploited similarities between typologically simi-
lar languages (e.g., Czech and Russian, or Telugu
and Kannada) to estimate the transition probabil-
ities for an HMM tagger for one language based
on a corpus for another language (e.g., Hana et al.,
2004; Feldman et al., 2006; Reddy and Sharoff,
2011). Other approaches have simultaneously
tagged two languages based on alignments in a
parallel corpus (e.g., Snyder et al., 2008).

A number of studies have used rag projection
to copy tag information from a resource-rich to
a resource-poor language, based on word align-
ments in a parallel corpus. After alignment, the
resource-rich language is tagged, and tags are pro-
jected from the source language to the target lan-
guage based on the alignment (e.g., Yarowsky and
Ngai, 2001; Das and Petrov, 2011). Das and
Petrov (2011) achieved the current state-of-the-art
for unsupervised tagging by exploiting high con-
fidence alignments to copy tags from the source
language to the target language. Graph-based la-
bel propagation was used to automatically produce
more labelled training data. First, a graph was
constructed in which each vertex corresponds to
a unique trigram, and edge weights represent the
syntactic similarity between vertices. Labels were
then propagated by optimizing a convex function
to favor the same tags for closely related nodes
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Model Coverage Accuracy
Many-to-1 alignments 88% 68%
1-to-1 alignments 68% 78%
1-to-1 alignments: Top 60k sents 91% 80%

Table 1: Token coverage and accuracy of many-
to-one and 1-to-1 alignments, as well as the top
60k sentences based on alignment score for 1-to-1
alignments, using directly-projected labels only.

while keeping a uniform tag distribution for un-
related nodes. A tag dictionary was then extracted
from the automatically labelled data, and this was
used to constrain a feature-based HMM tagger.
The method we propose here is simpler to that
of Das and Petrov in that it does not require con-
vex optimization for label propagation or a feature
based HMM, yet it achieves comparable results.

3 Tagset

Our tagger exploits the idea of projecting tag infor-
mation from a resource-rich to resource-poor lan-
guage. To facilitate this mapping, we adopt Petrov
et al.’s (2012) twelve universal tags: NOUN,
VERB, ADJ, ADV, PRON (pronouns), DET (de-
terminers and articles), ADP (prepositions and
postpositions), NUM (numerals), CONJ (conjunc-
tions), PRT (particles), “.” (punctuation), and X
(all other categories, e.g., foreign words, abbrevia-
tions). These twelve basic tags are common across
taggers for most languages.

Adopting a universal tagset avoids the need
to map between a variety of different, language-
specific tagsets. Furthermore, it makes it possi-
ble to apply unsupervised tagging methods to lan-
guages for which no tagset is available, such as
Telugu and Vietnamese.

4 A Simpler Unsupervised POS Tagger

Here we describe our proposed tagger. The key
idea is to maximize the amount of information
gleaned from the source language, while limit-
ing the amount of noise. We describe the seed
model and then explain how it is successively re-
fined through self-training and revision.

4.1 Seed Model

The first step is to construct a seed tagger from
directly-projected labels. Given a parallel corpus
for a source and target language, Algorithm 1 pro-
vides a method for building an unsupervised tag-
ger for the target language. In typical applications,
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the source language would be a better-resourced
language having a tagger, while the target lan-
guage would be lesser-resourced, lacking a tagger
and large amounts of manually POS-labelled data.

Algorithm 1 Build seed model
1: Tag source side.
2: Word align the corpus with Giza++ and re-
move the many-to-one mappings.

: Project tags from source to target using the re-
maining 1-to-1 alignments.

: Select the top n sentences based on sentence
alignment score.

: Estimate emission and transition probabilities.

: Build seed tagger T.

We eliminate many-to-one alignments (Step 2).
Keeping these would give more POS-tagged to-
kens for the target side, but also introduce noise.
For example, suppose English and French were
the source and target language, respectively. In
this case alignments such as English laws (NNS)
to French les (DT) lois (NNS) would be expected
(Yarowsky and Ngai, 2001). However, in Step 3,
where tags are projected from the source to target
language, this would incorrectly tag French les as
NN. We build a French tagger based on English—
French data from the Europarl Corpus (Koehn,
2005). We also compare the accuracy and cov-
erage of the tags obtained through direct projec-
tion using the French Melt POS tagger (Denis and
Sagot, 2009). Table 1 confirms that the one-to-one
alignments indeed give higher accuracy but lower
coverage than the many-to-one alignments. At
this stage of the model we hypothesize that high-
confidence tags are important, and hence eliminate
the many-to-one alignments.

In Step 4, in an effort to again obtain higher
quality target language tags from direct projection,
we eliminate all but the top n sentences based on
their alignment scores, as provided by the aligner
via IBM model 3. We heuristically set this cutoff
to 60k to balance the accuracy and size of the seed
model.! Returning to our preliminary English—
French experiments in Table 1, this process gives
improvements in both accuracy and coverage.’

'We considered values in the range 60-90k, but this
choice had little impact on the accuracy of the model.

2We also considered using all projected labels for the top
60k sentences, not just 1-to-1 alignments, but in preliminary
experiments this did not perform as well, possibly due to the
previously-observed problems with many-to-one alignments.



The number of parameters for the emission prob-
ability is |V| x |T'| where V is the vocabulary and
T is the tag set. The transition probability, on the
other hand, has only |T'|3 parameters for the tri-
gram model we use. Because of this difference
in number of parameters, in step 5, we use dif-
ferent strategies to estimate the emission and tran-
sition probabilities. The emission probability is
estimated from all 60k selected sentences. How-
ever, for the transition probability, which has less
parameters, we again focus on “better” sentences,
by estimating this probability from only those sen-
tences that have (1) token coverage > 90% (based
on direct projection of tags from the source lan-
guage), and (2) length > 4 tokens. These cri-
teria aim to identify longer, mostly-tagged sen-
tences, which we hypothesize are particularly use-
ful as training data. In the case of our preliminary
English—French experiments, roughly 62% of the
60k selected sentences meet these criteria and are
used to estimate the transition probability. For un-
aligned words, we simply assign a random POS
and very low probability, which does not substan-
tially affect transition probability estimates.

In Step 6 we build a tagger by feeding the es-
timated emission and transition probabilities into
the TNT tagger (Brants, 2000), an implementation
of a trigram HMM tagger.

4.2 Self training and revision

For self training and revision, we use the seed
model, along with the large number of target lan-
guage sentences available that have been partially
tagged through direct projection, in order to build
a more accurate tagger. Algorithm 2 describes
this process of self training and revision, and as-
sumes that the parallel source—target corpus has
been word aligned, with many-to-one alignments
removed, and that the sentences are sorted by
alignment score. In contrast to Algorithm 1, all
sentences are used, not just the 60k sentences with
the highest alignment scores.

We believe that sentence alignment score might
correspond to difficulty to tag. By sorting the sen-
tences by alignment score, sentences which are
more difficult to tag are tagged using a more ma-
ture model. Following Algorithm 1, we divide
sentences into blocks of 60k.

In step 3 the tagged block is revised by com-
paring the tags from the tagger with those ob-
tained through direct projection. Suppose source
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Algorithm 2 Self training and revision

1: Divide target language sentences into blocks
of n sentences.
Tag the first block with the seed tagger.
Revise the tagged block.
Train a new tagger on the tagged block.
Add the previous tagger’s lexicon to the new
tagger.
Use the new tagger to tag the next block.
Goto 3 and repeat until all blocks are tagged.

a

language word w; is aligned with target language
word w with probability p(w§|wy), T} is the tag
for w; using the tagger available for the source
language, and T is the tag for w’ using the tagger
learned for the target language. If p(w}|w?) > S,
where S is a threshold which we heuristically set
to 0.7, we replace T]t by T7°.

Self-training can suffer from over-fitting, in
which errors in the original model are repeated
and amplified in the new model (McClosky et al.,
2006). To avoid this, we remove the tag of
any token that the model is uncertain of, i.e., if
p(wh|wf) < Sand Tj # T} then T} = Null. So,
on the target side, aligned words have a tag from
direct projection or no tag, and unaligned words
have a tag assigned by our model.

Step 4 estimates the emission and transition
probabilities as in Algorithm 1. In Step 5, emis-
sion probabilities for lexical items in the previous
model, but missing from the current model, are
added to the current model. Later models therefore
take advantage of information from earlier mod-
els, and have wider coverage.

5 Experimental Results

Using parallel data from Europarl (Koehn, 2005)
we apply our method to build taggers for the same
eight target languages as Das and Petrov (2011)
— Danish, Dutch, German, Greek, Italian, Por-
tuguese, Spanish and Swedish — with English as
the source language. Our training data (Europarl)
is a subset of the training data of Das and Petrov
(who also used the ODS United Nations dataset
which we were unable to obtain). The evaluation
metric and test data are the same as that used by
Das and Petrov. Our results are comparable to
theirs, although our system is penalized by having
less training data. We tag the source language with
the Stanford POS tagger (Toutanova et al., 2003).



Danish Dutch German Greek Italian Portuguese Spanish Swedish Average
Seed model 83.7 81.1 83.6 77.8 78.6 84.9 81.4 78.9 81.3
Self training + revision  85.6 84.0 854 80.4 81.4 86.3 83.3 81.0 83.4
Das and Petrov (2011) 83.2 79.5 82.8 82.5 86.8 87.9 84.2 80.5 83.4

Table 2: Token-level POS tagging accuracy for our seed model, self training and revision, and the method
of Das and Petrov (2011). The best results on each language, and on average, are shown in bold.
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Figure 1: Overall accuracy, accuracy on known tokens, accuracy on unknown tokens, and proportion of

known tokens for Italian (left) and Dutch (right).

Table 2 shows results for our seed model, self
training and revision, and the results reported by
Das and Petrov. Self training and revision im-
prove the accuracy for every language over the
seed model, and gives an average improvement
of roughly two percentage points. The average
accuracy of self training and revision is on par
with that reported by Das and Petrov. On individ-
ual languages, self training and revision and the
method of Das and Petrov are split — each per-
forms better on half of the cases. Interestingly, our
method achieves higher accuracies on Germanic
languages — the family of our source language,
English — while Das and Petrov perform better on
Romance languages. This might be because our
model relies on alignments, which might be more
accurate for more-related languages, whereas Das
and Petrov additionally rely on label propagation.

Compared to Das and Petrov, our model per-
forms poorest on Italian, in terms of percentage
point difference in accuracy. Figure 1 (left panel)
shows accuracy, accuracy on known words, accu-
racy on unknown words, and proportion of known
tokens for each iteration of our model for Italian;
iteration O is the seed model, and iteration 31 is
the final model. Our model performs poorly on
unknown words as indicated by the low accuracy
on unknown words, and high accuracy on known

637

words compared to the overall accuracy. The poor
performance on unknown words is expected be-
cause we do not use any language-specific rules
to handle this case. Moreover, on average for the
final model, approximately 10% of the test data
tokens are unknown. One way to improve the per-
formance of our tagger might be to reduce the pro-
portion of unknown words by using a larger train-
ing corpus, as Das and Petrov did.

We examine the impact of self-training and re-
vision over training iterations. We find that for
all languages, accuracy rises quickly in the first
5-6 iterations, and then subsequently improves
only slightly. We exemplify this in Figure 1 (right
panel) for Dutch. (Findings are similar for other
languages.) Although accuracy does not increase
much in later iterations, they may still have some
benefit as the vocabulary size continues to grow.

6 Conclusion

We have proposed a method for unsupervised POS
tagging that performs on par with the current state-
of-the-art (Das and Petrov, 2011), but is substan-
tially less-sophisticated (specifically not requiring
convex optimization or a feature-based HMM).
The complexity of our algorithm is O(nlogn)
compared to O(n?) for that of Das and Petrov



(2011) where n is the size of training data.> We
made our code are available for download.*

In future work we intend to consider using a
larger training corpus to reduce the proportion of
unknown tokens and improve accuracy. Given
the improvements of our model over that of Das
and Petrov on languages from the same family
as our source language, and the observation of
Snyder et al. (2008) that a better tagger can be
learned from a more-closely related language, we
also plan to consider strategies for selecting an ap-
propriate source language for a given target lan-
guage. Using our final model with unsupervised
HMM methods might improve the final perfor-
mance too, i.e. use our final model as the ini-
tial state for HMM, then experiment with differ-
ent inference algorithms such as Expectation Max-
imization (EM), Variational Bayers (VB) or Gibbs
sampling (GS).?> Gao and Johnson (2008) compare
EM, VB and GS for unsupervised English POS
tagging. In many cases, GS outperformed other
methods, thus we would like to try GS first for our
model.
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