
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 1597–1607,
Sofia, Bulgaria, August 4-9 2013. c©2013 Association for Computational Linguistics

Machine Translation Detection from Monolingual Web-Text

Yuki Arase
Microsoft Research Asia

No. 5 Danling St., Haidian Dist.
Beijing, P.R. China

yukiar@microsoft.com

Ming Zhou
Microsoft Research Asia

No. 5 Danling St., Haidian Dist.
Beijing, P.R. China

mingzhou@microsoft.com

Abstract

We propose a method for automatically
detecting low-quality Web-text translated
by statistical machine translation (SMT)
systems. We focus on the phrase salad
phenomenon that is observed in existing
SMT results and propose a set of computa-
tionally inexpensive features to effectively
detect such machine-translated sentences
from a large-scale Web-mined text. Un-
like previous approaches that require bilin-
gual data, our method uses only monolin-
gual text as input; therefore it is applicable
for refining data produced by a variety of
Web-mining activities. Evaluation results
show that the proposed method achieves
an accuracy of 95.8% for sentences and
80.6% for text in noisy Web pages.

1 Introduction

The Web provides an extremely large volume
of textual content on diverse topics and areas.
Such data is beneficial for constructing a large
scale monolingual (Microsoft Web N-gram Ser-
vices, 2010; Google N-gram Corpus, 2006) and
bilingual (Nie et al., 1999; Shi et al., 2006;
Ishisaka et al., 2009; Jiang et al., 2009) corpus
that can be used for training statistical models for
NLP tools, as well as for building a large-scale
knowledge-base (Suchanek et al., 2007; Zhu et al.,
2009; Fader et al., 2011; Nakashole et al., 2012).
With recent advances in statistical machine trans-
lation (SMT) systems and their wide adoption in
Web services through APIs (Microsoft Translator,
2009; Google Translate, 2006), a large amount
of text in Web pages is translated by SMT sys-
tems. According to Rarrick et al. (2011), their
Web crawler finds that more than 15% of English-
Japanese parallel documents are machine transla-
tion. Machine-translated sentences are useful if

they are of sufficient quality and indistinguish-
able from human-generated sentences; however,
the quality of these machine-translated sentences
is generally much lower than sentences generated
by native speakers and professional translators.
Therefore, a method to detect and filter such SMT
results is desired to best make use of Web-mined
data.

To solve this problem, we propose a method
for automatically detecting Web-text translated by
SMT systems1. We especially target machine-
translated text produced through the Web APIs
that is rapidly increasing. We focus on the phrase
salad phenomenon (Lopez, 2008), which char-
acterizes translations by existing SMT systems,
i.e., each phrase in a sentence is semantically
and syntactically correct but becomes incorrect
when combined with other phrases in the sentence.
Based on this trait, we propose features for eval-
uating the likelihood of machine-translated sen-
tences and use a classifier to determine whether
the sentence is generated by the SMT systems.

The primary contributions of the proposed
method are threefold. First, unlike previous stud-
ies that use parallel text and bilingual features,
such as (Rarrick et al., 2011), our method only
requires monolingual text as input. Therefore,
our method can be used in monolingual Web data
mining where bilingual information is unavailable.
Second, the proposed features are designed to be
computationally light so that the method is suit-
able for handling a large-scale Web-mined data.
Our method determines if an input sentence con-
tains phrase salads using a simple yet effective fea-
tures, i.e., language models (LMs) and automati-
cally obtained non-contiguous phrases that are fre-
quently used by people but difficult for SMT sys-
tems to generate. Third, our method computes fea-
tures using both human-generated text and SMT

1In this paper, the term machine-translated is used for in-
dicating translation by SMT systems.
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results to capture a phrase salad by contrasting
these features, which significantly improves detec-
tion accuracy.

We evaluate our method using Japanese and En-
glish datasets, including a human evaluation to as-
sess its performance. The results show that our
method achieves an accuracy of 95.8% for sen-
tences and 80.6% for noisy Web-text.

2 Related Work

Previous methods for detecting machine-
translated text are mostly designed for bilingual
corpus construction. Antonova and Misyurev
(2011) design a phrase-based decoder for
detecting machine-translated documents in
Russian-English Web data. By evaluating the
BLEU score (Papineni et al., 2002) of trans-
lated documents (by their decoder) against the
target-side documents, machine translation (MT)
results are detected. Rarrick et al. (2011) extract a
variety of features, such as the number of tokens
and character types, from sentences in both the
source and target languages to capture words that
are mis-translated by MT systems. With these
features, the likelihood of a bilingual sentence
pair being machine-translated can be determined.

Confidence estimation of MT results is also
a related area. These studies aim to precisely
replicate human judgment in terms of the qual-
ity of machine-translated sentences based on fea-
tures extracted using a syntactic parser (Corston-
Oliver et al., 2001; Gamon et al., 2005; Avramidis
et al., 2011) or essay scoring system (Parton
et al., 2011), assuming that their input is al-
ways machine-translated. In contrast, our method
aims at making a binary judgment to distin-
guish machine-translated sentences from a mix-
ture of machine-translated and human-generated
sentences. In addition, although methods for
confidence estimation can assume sentences of a
known source language and reference translations
as inputs, these are unavailable in our problem set-
ting.

Another related area is automatic grammatical
error detection for English as a second language
(ESL) learners (Leacock et al., 2010). We use
common features that are also used in this area.
They target specific error types commonly made
by ESL learners, such as errors in prepositions and
subject-verb agreement. In contrast, our method
does not specify error types and aims to de-

tect machine-translated sentences focusing on the
phrase salad phenomenon produced by SMT sys-
tems. In addition, errors generated by ESL learn-
ers and SMT systems are different. ESL learners
make spelling and grammar mistakes at the word
level but their sentence are generally structured
while SMT results are unstructured due to phrase
salads. Works on translationese detection (Baroni
and Bernardini, 2005; Kurokawa et al., 2009; Ilisei
et al., 2010) aim to automatically identify human-
translated text by professionals using text gener-
ated by native speakers. These are related, but our
work focuses on machine-translated text.

The closest to our approach is the method pro-
posed by Moore and Lewis (2010). It automat-
ically selects data for creating a domain-specific
LM. Specifically, the method constructs LMs us-
ing corpora of target and non-target domains and
computes a cross-entropy score of an input sen-
tence for estimating the likelihood that the input
sentence belongs to the target or non-target do-
mains. While the context is different, our work
uses a similar idea of data selection for the pur-
pose of detecting low-quality sentences translated
by SMT systems.

3 Proposed Method

When APIs of SMT services are used for machine-
translating an Web page, they typically insert
specific tags into the HTML source. Utilizing
such tags makes MT detection trivial. How-
ever, the actual situation is more complicated in
real Web data. When people manually copy and
paste machine-translated sentences, such tags are
lost. In addition, human-generated and machine-
translated sentences are often mixed together even
in a single paragraph. To observe the distribu-
tion of machine-translated sentences in such diffi-
cult cases, we examine 3K sentences collected by
our in-house Web crawler. Among them, exclud-
ing the pages with the tags of MT APIs, 6.7% of
them are found to be clearly machine translation.
Our goal is to automatically identify these sen-
tences that cannot be simply detected by the tags,
except when the sentences are of sufficient qual-
ity to be indistinguishable from human-generated
sentences.

3.1 Phrase Salad Phenomenon

Fig. 1 illustrates the phrase salad phenomenon that
characterizes a sentence translated by an existing
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| Of surprise | was up | foreigners flocked | overseas | as well, | they publicized not only | Japan, | saw an article from the news. |

Natural English: The news was broadcasted not only in Japan but also overseas, and it surprised foreigners who read the article.

Unnatural phrase sequence

Natural phrase|       |

Missing combinational word

Figure 1: The phrase salad phenomenon in a sentence translated by an SMT system; each (segmented) phrase is correct and

fluent, but dotted arcs show unnatural sequences of phrases and the boxed phrase shows an incomplete non-contiguous phrase.

SMT system. Each phrase, a sequence of con-
secutive words, is fluent and grammatically cor-
rect; however, the fluency and grammar correct-
ness are both poor in inter-phrases. In addition, a
phrase salad becomes obvious by observing dis-
tant phrases. For example, the boxed phrase in
Fig. 1 is a part of the non-contiguous phrase “not
only ? but also2;” however, it lacks the latter part
of the phrase (“but also”) that is also necessary
for composing a meaning. Such non-contiguous
phrases are difficult for most SMT systems to gen-
erate, since these phrases require insertion of sub-
phrases in distant parts of the sentence.

Based on the observation of these characteris-
tics, we define features to capture a phrase salad
by examining local and distant phrases. These
features evaluate (1) fluency (Sec. 3.2), (2) gram-
maticality (Sec. 3.3), and (3) completeness of
non-contiguous phrases in a sentence (Sec. 3.4).
Furthermore, humans can distinguish machine-
translated text because they have prior knowledge
of how a human-generated sentence would look
like, which has been accumulated by observing a
lot of examples through their life. This knowl-
edge makes phrase-salads, e.g., missing objects
and influent sequence of words, obvious for hu-
mans since they rarely appear on human-generated
sentences. Based on this assumption, we ex-
tract these features using both human-generated
and machine-translated text. Features extracted
from human-generated text represent the similar-
ity to human-generated text. Likewise, features
extracted from machine-translated text depict the
similarity to machine-translated text. By contrast-
ing these feature weights, we can effectively cap-
ture phrase salads in the sentence.

3.2 Fluency Feature

In a machine-translated sentence, fluency becomes
poor among phrases where a phrase salad occurs.
We capture this influency using two independent
LM scores; fw,H and fw,MT . The former LM is

2We use the symbol ? to represent a gap in which any
word or phrase can be placed.

trained with human-generated sentences and the
latter one is trained with machine-translated sen-
tences. We input a sentence into both of the LMs
and use the scores as the fluency features.

3.3 Grammaticality Feature

In a sentence with phrase salads, its grammatical-
ity is poor because tense and voice become in-
consistent among phrases. We capture this using
LMs trained with part-of-speech (POS) sequences
of human-generated and machine-translated sen-
tences, and the features of fpos,H and fpos,MT are
respectively computed. In a similar manner with a
word-based LM, such grammatical inconsistency
among phrases is detectable when computing a
POS LM score, since the score becomes worse
when an N -gram covers inter-phrases where a
phrase salad occurs. This approach achieves com-
putational efficiency since it only requires a POS
tagger.

Since a phrase salad may occur among distant
phrases of a sentence, it is also effective to evalu-
ate combinations of phrases that cannot be cov-
ered by the span of N -gram. For this purpose,
we make use of function words that sparsely ap-
pear in a sentence where their combinations are
syntactically constrained. For example, the same
preposition rarely appears many times in a human-
generated sentence, while it does in a machine-
translated sentence due to the phrase salad. Simi-
lar to the POS LM, we first analyze sentences gen-
erated by human or SMT by a POS tagger, extract
sequences of function words, and finally train LMs
with the sequences. We use these LMs to obtain
scores that are used as features ffw,H and ffw,MT .

3.4 Gappy-Phrase Feature

There are a lot of common non-contiguous phrases
that consist of sub-phrases (contiguous word
string) and gaps, which we refer to as gappy-
phrases (Bansal et al., 2011). We specifically use
gappy-phrases of 2-tuple, i.e., phrases consisting
of two sub-phrases and one gap in the middle.
Let us take an English example “not only ? but
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Sequences
World population not only grows , but grows old .
A press release not only informs but also teases .
Hazelnuts are not only for food , but also fuel .
The coalition must not only listen but also act .

Table 1: Example of a sequence database

also.” When a sentence contains the phrase “not
only,” the phrase “but also” is likely to appear in
human-generated setences. Such a gappy-phrase
is difficult for SMT systems to correctly generate
and causes a phrase salad. Therefore, we define a
feature to evaluate how likely a sentence contains
gappy-phrases in a complete form without missing
sub-phrases. This feature is effective to comple-
ment LMs that capture characteristics inN -grams.

Sequential Pattern Mining It is costly to man-
ually collect a lot of such gappy-phrases. There-
fore, we regard the task as sequential pattern min-
ing and apply PrefixSpan proposed by Pei et al.
(2001), which is a widely used sequential pattern
mining method3.

Given a set of sequences and a user-specified
min support ∈ N threshold, the sequential pattern
mining finds all frequent subsequences whose oc-
currence frequency is no less than min support.
For example, given a sequence database like Ta-
ble 1, the sequential pattern mining finds all fre-
quent subsequences, e.g., “not only,” “not only ?
but also,” “not ? but ?,” and etc.

To capture a phrase salad by contrasting appear-
ance of gappy-phrases in human-generated and
machine-translated text, we independently extract
gappy-phrases from each of them using PrefixS-
pan. We then compute features fg,H and fg,MT

using the obtained phrases.

Observation of Extracted Gappy-Phrases
Based on a preliminary experiment, we set
the parameter min support of PrefixSpan to
100 for computational efficiency. We extract
gappy-phrases (of 2-tuple) from our develop-
ment dataset described in Sec. 4.1 that includes
254K human-generated and 134K machine-
translated sentences in Japanese, and 210K
human-generated and 159K machine-translated
sentences in English.

Regarding the Japanese dataset, we obtain
about 104K and 64K gappy-phrases from human-

3Due to the severe space limitation, readers are referred to
that paper.

generated and machine-translated sentences, re-
spectively. According to our observation of the
extracted phrases, 21K phrases commonly ap-
pear in human-generated and machine-translated
sentences. Many of these common phrases are
incomplete forms of gappy-phrases that lack se-
mantic meaning to humans, such as “not only ?
the” and “not only ? and.” On the other hand,
complete forms of gappy-phrases that preserve se-
mantic meaning exclusively appear in phrases ex-
tracted from human-generated sentences. We also
obtain about 74K and 42K phrases from human-
generated and machine-translated sentences in the
English dataset (21K of them are common).

Phrase Selection As a result of sequential
pattern mining, we can gather a huge num-
ber of gappy-phrases from human-generated and
machine-translated text, but as we described
above, many of them are common. In addition,
it is computationally expensive to use all of them.
Therefore, our method selects useful phrases for
detecting machine-translated sentences.

Although there are several approaches for fea-
ture selection, e.g., (Sebastiani, 2002), we use a
method that is suitable for handling a large num-
ber of feature candidates. Specifically, we evaluate
gappy-phrases based on the information gain that
measures the amount of information in bits ob-
tained for class prediction when knowing the pres-
ence or absence of a phrase and the corresponding
class distribution. This corresponds to measuring
an expected reduction in entropy, i.e., uncertainty
associated with a random factor. The information
gain G ∈ R for a gappy-phrase g is defined as

G(g)
.
= H(C)− P (X1

g )H(C|X1
g )

−P (X0
g )H(C|X0

g ),

where H(C) represents the entropy of the classifi-
cation, C is a stochastic variable taking a class,Xg

is a stochastic variable representing the presence
(X1

g ) or absence (X0
g ) of the phrase g, P (Xg) rep-

resents the probability of presence or absence of
the phrase g, and H(C|Xg) is the conditional en-
tropy due to the phrase g. We use top-k phrases
based on the information gain G. Specifically, we
use the top 40% of phrases to compute the feature
values. Table 2 shows examples of gappy-phrases
extracted from human-generated and machine-
translated text in our development dataset and re-
main after feature selection.
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in the early ? period after ? after the
known as ? to and also ? and

Human more ? than MT and ? but the
not only ? but also no ? not
with ? as well as not ? not

Table 2: Example of gappy-phrases extracted from human-

generated and machine-translated text; phrases preserving se-

mantic meaning are extracted only from human-generated

text.

The gappy-phrases depend on each other, and
the more phrases extracted from human-generated
(machine-translated) text are found in a sentence,
the more likely the sentence is human-generated
(machine-translated). Therefore, we compute the
feature as

fc(s) =
∑

i∈k
wiδ(i, s),

where wi is a weight of the i-th phrase, and δ(i, s)
is a Kronecker’s delta function that takes 1 if the
sentence s includes the i-th phrase and takes 0 oth-
erwise. We may set the weight wi according to the
importance of the phrase, such as the information
gain. In this work, we set wi to 1 for simplicity.

3.5 Classification
Table 3 summarizes the features employed in
our method. In addition to the discussed fea-
tures, we use the length of a sentence as a fea-
ture flen to avoid the bias of LM-based fea-
tures that favor shorter sentences. The proposed
method takes a monolingual sentence from Web
data as input and computes a feature vector of
f = (fw,H , . . . , flen) ∈ R9. Each feature is fi-
nally normalized to have a zero-mean and unit
variance distribution. In the feature space, a
support vector machine (SVM) classifier (Vap-
nik, 1995) is used to determine the likelihoods
of machine-translated and human-generated sen-
tences.

4 Experiments

We evaluate our method using both Japanese and
English datasets from various aspects and investi-
gate its characteristics. In this section, we describe
our experiment settings.

4.1 Data Preparation
For the purpose of evaluation, we use human-
generated and machine-translated sentences for

Feature Notation
Fluency fw,H , fw,MT

Grammaticality fpos,H , fpos,MT

ffw,H , ffw,MT

Gappy-phrase fg,H , fg,MT

Length flen

Table 3: List of proposed features and their notations

constructing LMs, extracting gappy-phrases, and
training a classifier. These sentences should
be ensured to be human-generated or machine-
translated, and the human-generated and machine-
translated sentences express the same content for
fairness of evaluation to avoid effects due to vo-
cabulary difference.

As a dataset that meets these requirements, we
use parallel text in public websites (this is for fair
evaluation and our method can be trained using
nonparallel text on an actual deployment). Eight
popular sites having Japanese and English paral-
lel pages are crawled, whose text is manually veri-
fied to be human-generated. The main textual con-
tent of these 131K parallel pages are extracted,
and the sentences are aligned using (Ma, 2006).
As illustrated in Fig. 2, the text in one language
is fed to the Bing translator, Google Translate,
and an in-house SMT system4 implemented based
on (Chiang, 2005) by ourselves for obtaining sen-
tences translated by SMT systems. Due to a severe
limitation on the number of requests to the APIs,
we randomly subsample sentences before sending
them to these SMT systems. We use text in the
other language as human-generated sentences5.

In this manner, we prepare 508K human-
generated and 268K machine-translated sentences
as a Japanese dataset, and 420K human-generated
and 318K machine-translated sentences as an En-
glish dataset. We split each of them into two even
datasets and use one for development and the other
for evaluation.

4.2 Experiment Setting

For the fluency and grammaticality features, we
train 4-gram LMs using the development dataset
with the SRI toolkit (Stolcke, 2002). To obtain
the POS information, we use Mecab (Kudo et al.,
2004) for Japanese and a POS tagger developed by
Toutanova et al. (2003) for English. We evaluate

4A preliminary evaluation of the in-house SMT system
shows that it has comparable quality with Bing translator.

5These are a mixture of sentences generated by native
speakers and professional translators/editors.
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Figure 2: Experimental data preparation; text in one lan-

guage is fed to SMT systems and the other is used as human-

generated sentences.

the effect of the sizes of N -grams and develop-
ment dataset in the experiments.

Using the proposed features, we train an SVM
classifier for detecting machine-translated sen-
tences. We use an implementation of LIB-
SVM (Chang and Lin, 2011) with a radial basis
function kernel due to the relatively small number
of features in the proposed method. We set appro-
priate parameters by grid search in a preliminary
experiment.

We evaluate the performance of MT detection
based on accuracy6 that is a broadly used evalua-
tion metric for classification problems:

accuracy =
nTP + nTN

n
,

where nTP and nTN are the numbers of true-
positives and true-negatives, respectively, and n
is the total number of exemplars. The accuracy
scores that we report in Sec. 5 are all based on 10-
fold cross validation.

4.3 Comparison Method
We compare our method with the method
of (Moore and Lewis, 2010) (Cross-Entropy). Al-
though the Cross-Entropy method is designed for
the task of domain adaptation of an LM, our prob-
lem is a variant of their original problem and
thus their method is directly relevant. In our
context, the method computes the cross-entropy
scores IMT (s) and IH(s) of an input sentence
s against LMs trained on machine-translated and
human-generated sentences. Cross-entropy and
perplexity are monotonically related, as perplex-
ity of s according to an LM M is simply ob-

6Although we also examine precision and recall of clas-
sification results, they are similar to accuracy reported in this
paper.

Method Accuracy
Cross-Entropy 90.7
Lexical Feature 87.8

Proposed feature Word LMs 94.1
POS LMs 91.3
FW LMs 82.7

GPs 85.7

Table 4: Accuracy (%) of individual features and compari-

son methods

tained by bIM (s) where IM (s) is cross-entropy
score and b is a base with regard to which the
cross-entropy is measured. The method scores
the sentence according to the cross-entropy differ-
ence, i.e., IMT (s)− IH(s), and decides that the
sentence is machine-translated when the score is
lower than a predefined threshold. The classifica-
tion is performed by 10-fold cross validation. We
find the best performing threshold on a training set
and evaluate the accuracy with a test set using the
determined threshold.

Additionally, we compare our method to a
method that uses a feature indicating presence or
absence of unigrams, which we call Lexical Fea-
ture. This feature is commonly used for transla-
tionese detection and shows the best performance
as a single feature in (Baroni and Bernardini,
2005). It is also used by Rarrick et al. (2011) and
shows the best performance by itself in detecting
machine-translated sentences in English-Japanese
translation in the setting of bilingual input. We
implement the feature and use it against a mono-
lingual input to fit our problem setting.

5 Results and Discussions

In this section, we analyze and discuss the experi-
ment results in detail.

5.1 Accuracy on Japanese Dataset

We evaluate the sentence-level and document-
level accuracy of our method using the Japanese
dataset. Specifically, we evaluate effects of indi-
vidual features and their combinations, compare
with human annotations, and assess performance
variations across different sentence lengths and
various settings on LM training.

Effect of Individual Feature Table 4 shows the
accuracy scores of individual features and com-
parison methods. We refer to features for flu-
ency (fw,H , fw,MT ) as Word LMs, grammatical-
ity using POS LMs (fpos,H , fpos,MT ) as POS LMs
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Method Accuracy
Word LMs + GPs 94.7

Word LMs + POS LMs 95.1
Word LMs + POS LMs + GPs 95.4

Word LMs + POS LMs + FW LMs 95.5
All 95.8

Table 5: Accuracy (%) of feature combinations; there are

significant differences (p � .01) against the accuracy score

of Word LMs.

and function word LMs (ffw,H , ffw,MT ) as FW
LMs, respectively, and for completeness of gappy-
phrases (fg,H , fg,MT ) as GPs. The Word LMs
show the best accuracy that outperforms Cross-
Entropy by 3.4% and Lexical Feature by 6.3%.
This high accuracy is achieved by contrasting flu-
ency in human-generated and machine-translated
text to capture the phrase salad phenomenon. The
accuracy of Word LM trained only on human-
generated sentences is limited to 65.5%. On the
other hand, the accuracy of Word LM trained on
machine-translated sentences shows a better per-
formance (84.4%). By combining these into a
single feature vector f = (fw,H , fw,MT , flen), the
accuracy is largely improved.

It is interesting that Lexical Feature achieves
a high accuracy of 87.8% despite its simplicity.
Since Lexical Feature is a bag-of-words model,
it can consider distant words in a sentence. This
is effective for capturing a phrase salad that oc-
curs among distant phrases, which N -gram can-
not cover. As for Cross-Entropy, a simple sub-
traction of cross-entropy scores cannot well con-
trast the fluency in human-generated and machine-
translated text and results in poorer accuracy than
Word LMs.

The accuracy of POS LMs (91.3%) is slightly
lower than that of Word LMs due to the limited
vocabulary, i.e., the number of POSs. The accu-
racy of FW LMs and GPs are even lower. This
is convincing since these features cannot have rea-
sonable values when a sentence does not include a
function word and gappy-phrase. However, these
features are complementary to Word LMs as we
will see in the next paragraph.

Effect of Feature Combination Table 5 shows
the accuracy when combining features. Sign tests
show that the accuracy scores of these feature
combinations are significantly different (p� .01)
against the accuracy of Word LMs. The results
show that the features complement each other. The

Error Ratio Accuracy
(%) Word

LMs
All

Has wrong content words 37.8 93.1 95.0
Misses content words 12.2 91.8 96.5
Has wrong function words 19.7 92.7 97.1
Misses function words 13.0 93.3 95.6
Has wrong inflections 10.8 97.3 98.7

Table 6: Distribution (%) of machine translation errors and

accuracy (%) of proposed method on the different errors

combination of all features reaches an accuracy
of 95.8%, which improves the accuracy of Word
LMs by 1.7%. This result supports that FW LMs
and GPs are effective to capture a phrase salad oc-
curring in distant phrases and complement the ev-
idence in N -grams that is captured by LMs. This
effect becomes more obvious in the human evalu-
ation.

We also evaluate the accuracy of the proposed
method at a document level. Due to the high accu-
racy at the sentence-level, we use a voting method
to judge a document, i.e., deciding if the docu-
ment is machine-translated when γ% of its sen-
tences are judged as machine-translated. We use
all features and find that our method achieves 99%
precision and recall with γ = 50.

Human Evaluation To further investigate the
characteristics of our method, we conduct a human
evaluation. We sample Japanese sentences and ask
three native speakers to 1) judge whether a sen-
tence is human-generated or machine-translated
and 2) list errors that the sentence contains. Re-
garding the task 1), we allow the annotators to as-
sign “hard to determine” for difficult cases. We al-
locate about 230 sentences for each annotator (in
total 700 sentences) without overlapping annota-
tion sets.

The accuracy of annotations is found to be
88.2%, which shows that our method is even su-
perior to native speakers. Agreement between the
annotators and our method (with all features) is
85.1%. As we interview the annotators, we find
that human annotations are strongly affected by
the annotators’ domain knowledge. For example,
technical sentences are more often misclassified
by the annotators.

Table 6 shows the distribution of errors on
machine-translated sentences found by the anno-
tators (on sentences that they correctly classified)
with the accuracy of Word LMs and all features on
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Figure 3: Accuracy (%) across different sentence lengths

(the primary axis) and distribution (%) of sentence lengths in

the evaluation dataset (the secondly axis)

these sentences (a sentence may contain multiple
errors). It indicates that the accuracy of Word LMs
is improved by feature combination; from 1.4% on
sentences of “Has wrong inflections” to 4.7% on
sentences of “Misses content words”.

Effect of Sentence Length The accuracy of the
proposed method is significantly affected by sen-
tence length (the number of words in a sentence).
Fig. 3 shows the accuracy of the proposed method
(with all features) and comparison methods w.r.t.
sentence lengths (with the primary axis), as well
as the distribution of sentence lengths in the eval-
uation dataset (with the secondly axis). We ag-
gregate the classification results on each cross-
validation (test results). It also shows the accu-
racy of human annotations w.r.t. sentence lengths,
which we obtain for the 700 sentences in the hu-
man evaluation. The accuracy drops on all meth-
ods when sentences are short; the accuracy of our
method is 91.6% when a sentence contains less
than or equal to 10 words. The proposed method
shows the similar trend with the human annota-
tions, and even the accuracy of human annota-
tions significantly drops on such short sentences.
This result indicates that SMT results on short
sentences tend to be of sufficient quality and in-
distinguishable from human-generated sentences.
Since such high-quality machine-translations do
not harm the quality of Web-mined data, we do
not need to detect them.

Effect of Setting on LM Training We evalu-
ate the performance variation w.r.t. the sizes of
N -grams and development dataset. Fig. 4 shows
the accuracy of the LM based features and feature
combination when changing sizes of N -grams.
The performance of Word LMs is stabilized after
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Figure 4: Effect of the sizes of N -grams on MT detection
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3-gram while that of POS LMs is still improved
at 4-gram. This is because POS LMs need more
evidence to compensate for their limited vocabu-
lary. FW LMs become stable at 3-gram because
the possible number of function words in a sen-
tence should be small.

When we change the size of the development
dataset with 10% increments, the accuracy curve is
stabilized when the size is 40% of all set. Consid-
ering the fact that the overall development dataset
is small, it shows that our method is deployable
with a small dataset.

5.2 Accuracy on English Dataset

To investigate the applicability of our method to
other languages, we apply the same method to
the English dataset. Because English is a config-
urational language, function words are less flex-
ible than case markers in Japanese. Therefore,
SMT systems may better handle English function
words, which potentially decreases the effect of
FW LMs in our method. In addition, because En-
glish is a morphologically poor language, the ef-
fect of POS LMs may be reduced.

Nevertheless, in our experiment, all features
are shown to be effective even with the English
dataset. The combination of all features achieves
the best performance, with an accuracy of 93.1%,
which outperforms Cross-Entropy by 1.9%, and
Lexical Feature by 8.5%. Even though improve-
ments by POS LMs and FW LMs are smaller than
Japanese case, their effects are still positive. We
also find that GPs stably contribute to the accu-
racy. These results show the applicability of our
method to other languages.

5.3 Accuracy on Raw Web Pages

To avoid unmodeled factors affecting the evalua-
tion, we have carefully removed noise from our
experiment datasets. However, real Web pages are
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more complex; there are often instances of sen-
tence fragments, such as captions and navigational
link text. To evaluate the accuracy of our method
on real Web pages, we conduct experiments using
the dataset generated by Rarrick et al. (2011) that
contains randomly crawled Web pages annotated
by two annotators to judge if a page is human-
generated or machine-translated. We use Japanese
sentences extracted from 69 pages (43 human-
generated and 26 machine-translated pages) where
the annotators’ judgments agree; 3, 312 sentences
consisting of 1, 399 machine-translated and 1, 913
human-generated sentences. To replicate the sit-
uation in real Web pages, we conduct a minimal
preprocessing, i.e., simply removing HTML tags,
and then feed all the remaining text to our method.

An SVM classifier is trained with features ob-
tained by the LMs and gappy-phrases computed
from the data described in Sec. 4.1. Our method
shows 80.6% accuracy at a sentence level and
82.4% accuracy at a document level using the vot-
ing method. One factor for this performance dif-
ference is again sentence lengths, as SMT results
of short phrases in Web pages can be of high-
quality. Another factor is the noise in Web pages.
We find that experimental pages contain lots of
non-sentences, such as fragments of scripts and
product codes. The results show that we need a
preprocessing to remove typical noise in Web text
before SMT detection to handle noisy Web pages.

5.4 Quality of Cleaned Data

Finally, we briefly demonstrate the effect of
machine-translation filtering in an end-to-end sce-
nario, taking LM construction as an example.
We construct LMs reusing the Japanese evalua-
tion dataset described in Sec. 4.1 where machine-
translated sentences are removed by the pro-
posed method (LM-Proposed), Lexical Feature
(LM-LF), and Cross-Entropy (LM-CE), as well
as an LM with all sentences, i.e., with machine-
translated sentences (LM-All). As a result of 5-
fold cross-validation, LM-Proposed has 17.8%,
17.1%, and 16.3% lower perplexities on average
compared to LM-All, LM-LF, and LM-CE, re-
spectively. These results show that our method
is useful for improving the quality of Web-mined
data.

6 Conclusion

We propose a method for detecting machine-
translated sentences from monolingual Web-text
focusing on the phrase salad phenomenon pro-
duced by existing SMT systems. The experimen-
tal results show that our method achieves an accu-
racy of 95.8% for sentences and 80.6% for noisy
Web text.

We plan to extend our method to detect
machine-translated sentences produced by differ-
ent MT systems, e.g., a rule-based system, and
develop a unified framework for cleaning various
types of noise in Web-mined data. In addition, we
will investigate the effect of source and target lan-
guages on translation in terms of MT detection. As
Lopez (2008) describes, a phrase-salad is a com-
mon phenomenon that characterizes current SMT
results. Therefore, we expect that our method is
basically effective on different language pairs. We
will conduct experiments to evaluate performance
difference using various language pairs.
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