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Abstract

In this paper, we present a solution to one
aspect of the decipherment task: the pre-
diction of consonants and vowels for an
unknown language and alphabet. Adopt-
ing a classical Bayesian perspective, we
performs posterior inference over hun-
dreds of languages, leveraging knowledge
of known languages and alphabets to un-
cover general linguistic patterns of typo-
logically coherent language clusters. We
achieve average accuracy in the unsuper-
vised consonant/vowel prediction task of
99% across 503 languages. We further
show that our methodology can be used
to predict more fine-grained phonetic dis-
tinctions. On a three-way classification
task between vowels, nasals, and non-
nasal consonants, our model yields unsu-
pervised accuracy of 89% across the same
set of languages.

1 Introduction

Over the past centuries, dozens of lost languages
have been deciphered through the painstaking
work of scholars, often after decades of slow
progress and dead ends. However, several impor-
tant writing systems and languages remain unde-
ciphered to this day.

In this paper, we present a successful solution
to one aspect of the decipherment puzzle: auto-
matically identifying basic phonetic properties of
letters in an unknown alphabetic writing system.
Our key idea is to use knowledge of the phonetic
regularities encoded in known language vocabu-
laries to automatically build a universal probabilis-
tic model to successfully decode new languages.

Our approach adopts a classical Bayesian per-
spective. We assume that each language has
an unobserved set of parameters explaining its

observed vocabulary. We further assume that
each language-specific set of parameters was itself
drawn from an unobserved common prior, shared
across a cluster of typologically related languages.
In turn, each cluster derives its parameters from
a universal prior common to all language groups.
This approach allows us to mix together data from
languages with various levels of observations and
perform joint posterior inference over unobserved
variables of interest.

At the bottom layer (see Figure 1), our
model assumes a language-specific data generat-
ing HMM over words in the language vocabulary.
Each word is modeled as an emitted sequence of
characters, depending on a corresponding Markov
sequence of phonetic tags. Since individual letters
are highly constrained in their range of phonetic
values, we make the assumption of one-tag-per-
observation-type (e.g. a single letter is constrained
to be always a consonant or always a vowel across
all words in a language).

Going one layer up, we posit that the language-
specific HMM parameters are themselves drawn
from informative, non-symmetric distributions
representing a typologically coherent language
grouping. By applying the model to a mix of lan-
guages with observed and unobserved phonetic se-
quences, the cluster-level distributions can be in-
ferred and help guide prediction for unknown lan-
guages and alphabets.

We apply this approach to two small decipher-
ment tasks:

1. predicting whether individual characters in
an unknown alphabet and language represent
vowels or consonants, and

2. predicting whether individual characters in
an unknown alphabet and language represent
vowels, nasals, or non-nasal consonants.

For both tasks, our approach yields considerable
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success. We experiment with a data set consist-
ing of vocabularies of 503 languages from around
the world, written in a mix of Latin, Cyrillic, and
Greek alphabets. In turn for each language, we
consider it and its alphabet “unobserved” — we
hide the graphic and phonetic properties of the
symbols — while treating the vocabularies of the
remaining languages as fully observed with pho-
netic tags on each of the letters.

On average, over these 503 leave-one-language-
out scenarios, our model predicts consonant/vowel
distinctions with 99% accuracy. In the more chal-
lenging task of vowel/nasal/non-nasal prediction,
our model achieves average accuracy over 89%.

2 Related Work

The most direct precedent to the present work is
a section in Knight et al. (2006) on universal pho-
netic decipherment. They build a trigram HMM
with three hidden states, corresponding to conso-
nants, vowels, and spaces. As in our model, indi-
vidual characters are treated as the observed emis-
sions of the hidden states. In contrast to the present
work, they allow letters to be emitted by multiple
states.

Their experiments show that the HMM trained
with EM successfully clusters Spanish letters into
consonants and vowels. They further design a
more sophisticated finite-state model, based on
linguistic universals regarding syllable structure
and sonority. Experiments with the second model
indicate that it can distinguish sonorous conso-
nants (such as n, m, l, r) from non-sonorous con-
sonants in Spanish. An advantage of the linguis-
tically structured model is that its predictions do
not require an additional mapping step from unin-
terpreted hidden states to linguistic categories, as
they do with the HMM.

Our model and experiments can be viewed as
complementary to the work of Knight et al., while
also extending it to hundreds of languages. We
use the simple HMM with EM as our baseline. In
lieu of a linguistically designed model structure,
we choose an empirical approach, allowing poste-
rior inference over hundreds of known languages
to guide the model’s decisions for the unknown
script and language.

In this sense, our model bears some similarity
to the decipherment model of Snyder et al. (2010),
which used knowledge of a related language (He-
brew) in an elaborate Bayesian framework to de-

cipher the ancient language of Ugaritic. While the
aim of the present work is more modest (discover-
ing very basic phonetic properties of letters) it is
also more widely applicable, as we don’t required
detailed analysis of a known related language.

Other recent work has employed a simi-
lar perspective for tying learning across lan-
guages. Naseem et al. (2009) use a non-parametric
Bayesian model over parallel text to jointly learn
part-of-speech taggers across 8 languages, while
Cohen and Smith (2009) develop a shared logis-
tic normal prior to couple multilingual learning
even in the absence of parallel text. In simi-
lar veins, Berg-Kirkpatrick and Klein (2010) de-
velop hierarchically tied grammar priors over lan-
guages within the same family, and Bouchard-
Côté et al. (2013) develop a probabilistic model of
sound change using data from 637 Austronesian
languages.

In our own previous work, we have developed
the idea that supervised knowledge of some num-
ber of languages can help guide the unsupervised
induction of linguistic structure, even in the ab-
sence of parallel text (Kim et al., 2011; Kim and
Snyder, 2012)1. In the latter work we also tack-
led the problem of unsupervised phonemic predic-
tion for unknown languages by using textual reg-
ularities of known languages. However, we as-
sumed that the target language was written in a
known (Latin) alphabet, greatly reducing the dif-
ficulty of the prediction task. In our present case,
we assume no knowledge of any relationship be-
tween the writing system of the target language
and known languages, other than that they are all
alphabetic in nature.

Finally, we note some similarities of our model
to some ideas proposed in other contexts. We
make the assumption that each observation type
(letter) occurs with only one hidden state (con-
sonant or vowel). Similar constraints have been
developed for part-of-speech tagging (Lee et al.,
2010; Christodoulopoulos et al., 2011), and the
power of type-based sampling has been demon-
strated, even in the absence of explicit model con-
straints (Liang et al., 2010).

3 Model

Our generative Bayesian model over the ob-
served vocabularies of hundreds of languages is

1We note that similar ideas were simultaneously proposed
by other researchers (Cohen et al., 2011).
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For example, the cluster Poisson parameter over
vowel observation types might be λ = 9 (indi-
cating 9 vowel letters on average for the cluster),
while the parameter over consonant observation
types might be λ = 20 (indicating 20 consonant
letters on average). These priors will be distinct
for each language cluster and serve to characterize
its general linguistic and typological properties.

We pause at this point to review the Dirich-
let distribution in more detail. A k−dimensional
Dirichlet with parameters α1 ...αk defines a distri-
bution over the k − 1 simplex with the following
density:

f(θ1 ... θk|α1 ... αk) ∝
∏

i

θαi−1
i

where αi > 0, θi > 0, and
∑

i θi = 1. The Dirich-
let serves as the conjugate prior for the Multino-
mial, meaning that the posterior θ1...θk|X1...Xn is
again distributed as a Dirichlet (with updated pa-
rameters). It is instructive to reparameterize the
Dirichlet with k + 1 parameters:

f(θ1 ... θk|α0, α
′
1 ... α

′
k) ∝

∏

i

θ
α0α′

i−1
i

where α0 =
∑

i αi, and α′
i = αi/α0. In this

parameterization, we have E[θi] = α′
i. In other

words, the parameters α′
i give the mean of the dis-

tribution, and α0 gives the precision of the dis-
tribution. For large α0 ≫ k, the distribution is
highly peaked around the mean (conversely, when
α0 ≪ k, the mean lies in a valley).

Thus, the Dirichlet parameters of a language
cluster characterize both the average HMMs of in-
dividual languages within the cluster, as well as
how much we expect the HMMs to vary from
the mean. In the case of emission distribu-
tions, we assume symmetric Dirichlet priors — i.e.
one-parameter Dirichlets with densities given by
f(θ1 ...θk|β) ∝

∏
θ
(β−1)
i . This assumption is nec-

essary, as we have no way to identify characters
across languages in the decipherment scenario,
and even the number of consonants and vowels
(and thus multinomial/Dirichlet dimensions) can
vary across the languages of a cluster. Thus, the
mean of these Dirichlets will always be a uniform
emission distribution. The single Dirichlet emis-
sion parameter per cluster will specify whether
this mean is on a peak (large β) or in a valley
(small β). In other words, it will control the ex-
pected sparsity of the resulting per-language emis-
sion multinomials.

In contrast, the transition Dirichlet parameters
may be asymmetric, and thus very specific and
informative. For example, one cluster may have
the property that CCC consonant clusters are ex-
ceedingly rare across all its languages. This prop-
erty would be expressed by a very small mean
α′

CCC ≪ 1 but large precision α0. Later we shall
see examples of learned transition Dirichlet pa-
rameters.

3.3 Cluster Generation

The generation of the cluster parameters (Algo-
rithm 1) defines the highest layer of priors for our
model. As Dirichlets lack a standard conjugate
prior, we simply use uniform priors over the in-
terval [0, 500]. For the cluster Poisson parameters,
we use conjugate Gamma distributions with vague
priors.3

4 Inference

In this section we detail the inference proce-
dure we followed to make predictions under our
model. We run the procedure over data from
503 languages, assuming that all languages but
one have observed character and tag sequences:
w1, w2, . . . , t1, t2, . . . Since each character type w
is assumed to have a single tag category, this is
equivalent to observing the character token se-
quence along with a character-type-to-tag map-
ping tw. For the target language, we observe only
character token sequence w1, w2, . . .

We assume fixed and known parameter val-
ues only at the cluster generation level. Unob-
served variables include (i) the cluster parameters
α, β, λ, (ii) the cluster assignments z, (iii) the per-
language HMM parameters θ, φ for all languages,
and (iv) for the target language, the tag tokens
t1, t2, . . . — or equivalently the character-type-to-
tag mappings tw — along with the observation
type-counts Nt.

4.1 Monte Carlo Approximation

Our goal in inference is to predict the most likely
tag tw,ℓ for each character type w in our target lan-
guage ℓ according to the posterior:

f (tw,ℓ |w, t−ℓ)

=

ˆ

f (tℓ, z, α, β |w, t−ℓ) dΘ (1)

3(1,19) for consonants, (1,10) for vowels, (0.2, 15) for
nasals, and (1,16) for non-nasal consonants.

1530



where Θ = (t−w,ℓ, z, α, β), w are the observed
character sequences for all languages, t−ℓ are the
character-to-tag mappings for the observed lan-
guages, z are the language-to-cluster assignments,
and α and β are all the cluster-level transition and
emission Dirichlet parameters.

Sampling values (tℓ, z, α, β)
N
n=1 from the inte-

grand in Equation 1 allows us to perform the stan-
dard Monte Carlo approximation:

f (tw,ℓ = t |w, t−ℓ)

≈ N−1
N∑

n=1

I (tw,ℓ = t in sample n) (2)

To maximize the Monte Carlo posterior, we sim-
ply take the most commonly sampled tag value
for character type w in language ℓ. Note that
we leave out the language-level HMM parame-
ters (θ, φ) as well as the cluster-level Poisson pa-
rameters λ from Equation 1 (and thus our sample
space), as we can analytically integrate them out
in our sampling equations.

4.2 Gibbs Sampling
To sample values (tℓ, z, α, β) from their poste-
rior (the integrand of Equation 1), we use Gibbs
sampling, a Monte Carlo technique that constructs
a Markov chain over a high-dimensional sample
space by iteratively sampling each variable condi-
tioned on the currently drawn sample values for
the others, starting from a random initialization.
The Markov chain converges to an equilibrium
distribution which is in fact the desired joint den-
sity (Geman and Geman, 1984). We now sketch
the sampling equations for each of our sampled
variables.

Sampling tw,ℓ

To sample the tag assignment to character w in
language ℓ, we need to compute:

f (tw,ℓ |w, t−w,ℓ, t−ℓ, z, α, β) (3)

∝ f (wℓ, tℓ, Nℓ | αk, βk,Nk−ℓ) (4)

where Nℓ are the types-per-tag counts implied by
the mapping tℓ, k is the current cluster assignment
for the target language (zℓ = k), αk and βk are the
cluster parameters, and Nk−ℓ are the types-per-tag
counts for all languages currently assigned to the
cluster, other than language ℓ.

Applying the chain rule along with our model’s
conditional independence structure, we can further

re-write Equation 4 as a product of three terms:

f(Nℓ|Nk−ℓ) (5)

f(t1, t2, . . . |αk) (6)

f(w1, w2, . . . |Nℓ, t1, t2, . . . , βk) (7)

The first term is the posterior predictive distribu-
tion for the Poisson-Gamma compound distribu-
tion and is easy to derive. The second term is the
tag transition predictive distribution given Dirich-
let hyperparameters, yielding a familiar Polya urn
scheme form. Removing terms that don’t depend
on the tag assignment tℓ,w gives us:

∏
t,t′

(
αk,t,t′ + n(t, t′)

)[n′(t,t′)]

∏
t

(∑
t′ αk,t,t′ + n(t)

)[n′(t)]

where n(t) and n(t, t′) are, respectively, unigram
and bigram tag counts excluding those containing
character w. Conversely, n′(t) and n′(t, t′) are,
respectively, unigram and bigram tag counts only
including those containing character w. The no-
tation a[n] denotes the ascending factorial: a(a +
1) · · · (a+n−1). Finally, we tackle the third term,
Equation 7, corresponding to the predictive dis-
tribution of emission observations given Dirichlet
hyperparameters. Again, removing constant terms
gives us:

β
[n(w)]
k,t∏

t′ Nℓ,t′β
[n(t′)]
k,t′

where n(w) is the unigram count of character w,
and n(t′) is the unigram count of tag t, over all
characters tokens (including w).

Sampling αk,t,t′

To sample the Dirichlet hyperparameter for cluster
k and transition t → t′, we need to compute:

f(αk,t,t′ |t, z)
∝ f(t, z|αz,t,t′)

= f(tk|αz,t,t′)

where tk are the tag sequences for all languages
currently assigned to cluster k. This term is a pre-
dictive distribution of the multinomial-Dirichlet
compound when the observations are grouped into
multiple multinomials all with the same prior.
Rather than inefficiently computing a product of
Polya urn schemes (with many repeated ascending
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factorials with the same base), we group common
terms together and calculate:

∏
j=1(αk,t,t′ + k)n(j,k,t,t

′)

∏
j=1(

∑
t′′ αk,t,t′′ + k)n(j,k,t)

where n(j, k, t) and n(j, k, t, t′) are the numbers
of languages currently assigned to cluster k which
have more than j occurrences of unigram (t) and
bigram (t, t′), respectively.

This gives us an efficient way to compute un-
normalized posterior densities for α. However, we
need to sample from these distributions, not just
compute them. To do so, we turn to slice sam-
pling (Neal, 2003), a simple yet effective auxiliary
variable scheme for sampling values from unnor-
malized but otherwise computable densities.

The key idea is to supplement the variable
x, distributed according to unnormalized density
p̃(x), with a second variable u with joint density
defined as p(x, u) ∝ I(u < p̃(x)). It is easy
to see that p̃(x) ∝

´

p(x, u)du. We then itera-
tively sample u|x and x|u, both of which are dis-
tributed uniformly across appropriately bounded
intervals. Our implementation follows the pseudo-
code given in Mackay (2003).

Sampling βk,t

To sample the Dirichlet hyperparameter for cluster
k and tag t we need to compute:

f(βk,t|t,w, z,N)

∝ f(w|t, z, βk,t,N)

∝ f(wk|tk, βk,t,Nk)

where, as before, tk are the tag sequences for
languages assigned to cluster k, Nk are the tag
observation type-counts for languages assigned
to the cluster, and likewise wk are the char-
acter sequences of all languages in the cluster.
Again, we have the predictive distribution of
the multinomial-Dirichlet compound with multi-
ple grouped observations. We can apply the same
trick as above to group terms in the ascending fac-
torials for efficient computation. As before, we
use slice sampling for obtaining samples.

Sampling zℓ

Finally, we consider sampling the cluster assign-
ment zℓ for each language ℓ. We calculate:

f(zℓ = k|w, t,N, z−ℓ, α, β)

∝ f(wℓ, tℓ, Nℓ|αk, βk,Nk−ℓ)

= f(Nℓ|Nk−ℓ)f(tℓ|αk)f(wℓ|tℓ, Nℓ, βk)

The three terms correspond to (1) a standard pre-
dictive distributions for the Poisson-gamma com-
pound and (2) the standard predictive distribu-
tions for the transition and emission multinomial-
Dirichlet compounds.

5 Experiments

To test our model, we apply it to a corpus of 503
languages for two decipherment tasks. In both
cases, we will assume no knowledge of our tar-
get language or its writing system, other than that
it is alphabetic in nature. At the same time, we
will assume basic phonetic knowledge of the writ-
ing systems of the other 502 languages. For our
first task, we will predict whether each character
type is a consonant or a vowel. In the second task,
we further subdivide the consonants into two ma-
jor categories: the nasal consonants, and the non-
nasal consonants. Nasal consonants are known to
be perceptually very salient and are unique in be-
ing high frequency consonants in all known lan-
guages.

5.1 Data
Our data is drawn from online electronic transla-
tions of the Bible (http://www.bible.is,
http://www.crosswire.org/index.
jsp, and http://www.biblegateway.
com). We have identified translations covering
503 distinct languages employing alphabetic
writing systems. Most of these languages (476)
use variants of the Latin alphabet, a few (26)
use Cyrillic, and one uses the Greek alphabet.
As Table 1 indicates, the languages cover a very
diverse set of families and geographic regions,
with Niger-Congo languages being the largest
represented family.4 Of these languages, 30 are
either language isolates, or sole members of their
language family in our data set.

For our experiments, we extracted unique word
types occurring at least 5 times from the down-
loaded Bible texts. We manually identified vowel,
nasal, and non-nasal character types. Since the let-
ter “y” can frequently represent both a consonant
and vowel, we exclude it from our evaluation. On
average, the resulting vocabularies contain 2,388
unique words, with 19 consonant characters, two
2 nasal characters, and 9 vowels. We include the
data as part of the paper.

4In fact, the Niger-Congo grouping is often considered
the largest language family in the world in terms of distinct
member languages.
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Language Family #lang
Niger-Congo 114
Austronesian 67
Oto-Manguean 41
Indo-European 39
Mayan 34
Quechuan 17
Afro-Asiatic 17
Uto-Aztecan 16
Altaic 16
Trans-New Guinea 15
Nilo-Saharan 14
Sino-Tibetan 13
Tucanoan 9
Creole 8
Chibchan 6
Maipurean 5
Tupian 5
Nakh-Daghestanian 4
Uralic 4
Cariban 4
Totonacan 4
Mixe-Zoque 3
Jivaroan 3
Choco 3
Guajiboan 2
Huavean 2
Austro-Asiatic 2
Witotoan 2
Jean 2
Paezan 2
Other 30

Table 1: Language families in our data set. The
Other category includes 9 language isolates and
21 language family singletons.

5.2 Baselines and Model Variants

As our baseline, we consider the trigram HMM
model of Knight et al. (2006), trained with EM. In
all experiments, we run 10 random restarts of EM,
and pick the prediction with highest likelihood.
We map the induced tags to the gold-standard tag
categories (1-1 mapping) in the way that maxi-
mizes accuracy.

We then consider three variants of our model.
The simplest version, SYMM, disregards all in-
formation from other languages, using simple
symmetric hyperparameters on the transition and
emission Dirichlet priors (all hyperparameters set
to 1). This allows us to assess the performance of

Model Cons vs Vowel C vs V vs N

A
ll

EM 93.37 74.59
SYMM 95.99 80.72
MERGE 97.14 86.13
CLUST 98.85 89.37

Is
ol

at
es EM 94.50 74.53

SYMM 96.18 78.13
MERGE 97.66 86.47
CLUST 98.55 89.07

N
on

-L
at

in EM 92.93 78.26
SYMM 95.90 79.04
MERGE 96.06 83.78
CLUST 97.03 85.79

Table 2: Average accuracy for EM baseline and
model variants across 503 languages. First panel:
results on all languages. Second panel: results for
30 isolate and singleton languages. Third panel:
results for 27 non-Latin alphabet languages (Cyril-
lic and Greek). Standard Deviations across lan-
guages are about 2%.

our Gibbs sampling inference method for the type-
based HMM, even in the absence of multilingual
priors.

We next consider a variant of our model,
MERGE, that assumes that all languages reside in
a single cluster. This allows knowledge from the
other languages to affect our tag posteriors in a
generic, language-neutral way.

Finally, we consider the full version of our
model, CLUST, with 20 language clusters. By al-
lowing for the division of languages into smaller
groupings, we hope to learn more specific param-
eters tailored for typologically coherent clusters of
languages.

6 Results

The results of our experiments are shown in Ta-
ble 2. In all cases, we report token-level accuracy
(i.e. frequent characters count more than infre-
quent characters), and results are macro-averaged
over the 503 languages. Variance across languages
is quite low: the standard deviations are about 2
percentage points.

For the consonant vs. vowel prediction task,
all tested models perform well. Our baseline, the
EM-based HMM, achieves 93.4% accuracy. Sim-
ply using our Gibbs sampler with symmetric priors
boosts the performance up to 96%. Performance
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Figure 4: Inferred Dirichlet transition hyperparameters for bigram CLUST on three-way classification
task with four latent clusters. Row gives starting state, column gives target state. Size of red blobs are
proportional to magnitude of corresponding hyperparameters.

Language Family Portion #langs Ent.

Indo-European
0.38 26 2.26
0.24 41 3.19
0.21 38 3.77

Quechuan 0.89 18 0.61
Mayan 0.64 33 1.70
Oto-Manguean 0.55 31 1.99
Maipurean 0.25 8 2.75
Tucanoan 0.2 45 3.98
Uto-Aztecan 0.4 25 2.85
Altaic 0.44 27 2.76

Niger-Congo

1 2 0.00
0.78 23 1.26
0.74 27 1.05
0.68 22 1.22
0.67 33 1.62
0.5 18 2.21

0.24 25 3.27

Austronesian
0.91 22 0.53
0.71 21 1.51
0.24 17 3.06

Table 3: Plurality language families across 20
clusters. The columns indicate portion of lan-
guages in the plurality family, number of lan-
guages, and entropy over families.

with a bigram HMM with four language clus-
ters. Examining just the first row, we see that
the languages are partially grouped by their pref-
erence for the initial tag of words. All clus-
ters favor languages which prefer initial conso-
nants, though this preference is most weakly ex-
pressed in cluster 3. In contrast, both clusters
2 and 4 have very dominant tendencies towards
consonant-initial languages, but differ in the rel-
ative weight given to languages preferring either
vowels or nasals initially.

Finally, we examine the relationship between
the induced clusters and language families in Ta-
ble 3, for the trigram consonant vs. vowel CLUST

model with 20 clusters. We see that for about
half the clusters, there is a majority language fam-
ily, most often Niger-Congo. We also observe
distinctive clusters devoted to Austronesian and
Quechuan languages. The largest two clusters are
rather indistinct, without any single language fam-
ily achieving more than 24% of the total.

8 Conclusion

In this paper, we presented a successful solution
to one aspect of the decipherment task: the predic-
tion of consonants and vowels for an unknown lan-
guage and alphabet. Adopting a classical Bayesian
perspective, we develop a model that performs
posterior inference over hundreds of languages,
leveraging knowledge of known languages to un-
cover general linguistic patterns of typologically
coherent language clusters. Using this model, we
automatically distinguish between consonant and
vowel characters with nearly 99% accuracy across
503 languages. We further experimented on a
three-way classification task involving nasal char-
acters, achieving nearly 90% accuracy.

Future work will take us in several new direc-
tions: first, we would like to move beyond the as-
sumption of an alphabetic writing system so that
we can apply our method to undeciphered syllabic
scripts such as Linear A. We would also like to
extend our methods to achieve finer-grained reso-
lution of phonetic properties beyond nasals, con-
sonants, and vowels.
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