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Abstract

This paper presents a novel deterministic
algorithm for implicit Semantic Role La-
beling. The system exploits a very sim-
ple but relevant discursive property, the ar-
gument coherence over different instances
of a predicate. The algorithm solves the
implicit arguments sequentially, exploit-
ing not only explicit but also the implicit
arguments previously solved. In addition,
we empirically demonstrate that the algo-
rithm obtains very competitive and robust
performances with respect to supervised
approaches that require large amounts of
costly training data.

1 Introduction

Traditionally, Semantic Role Labeling (SRL) sys-
tems have focused in searching the fillers of those
explicit roles appearing within sentence bound-
aries (Gildea and Jurafsky, 2000, 2002; Carreras
and Màrquez, 2005; Surdeanu et al., 2008; Hajič
et al., 2009). These systems limited their search-
space to the elements that share a syntactical re-
lation with the predicate. However, when the par-
ticipants of a predicate are implicit this approach
obtains incomplete predicative structures with null
arguments. The following example includes the
gold-standard annotations for a traditional SRL
process:

(1) [arg0 The network] had been expected to have [np
losses] [arg1 of as much as $20 million] [arg3 on base-
ball this year]. It isn’t clear how much those [np losses]
may widen because of the short Series.

The previous analysis includes annotations for
the nominal predicate loss based on the NomBank
structure (Meyers et al., 2004). In this case the
annotator identifies, in the first sentence, the argu-
ments arg0, the entity losing something, arg1, the

thing lost, and arg3, the source of that loss. How-
ever, in the second sentence there is another in-
stance of the same predicate, loss, but in this case
no argument has been associated with it. Tradi-
tional SRL systems facing this type of examples
are not able to fill the arguments of a predicate
because their fillers are not in the same sentence
of the predicate. Moreover, these systems also let
unfilled arguments occurring in the same sentence,
like in the following example:

(2) Quest Medical Inc said it adopted [arg1 a sharehold-
ers’ rights] [np plan] in which rights to purchase shares
of common stock will be distributed as a dividend to
shareholders of record as of Oct 23.

For the predicate plan in the previous sentence,
a traditional SRL process only returns the filler for
the argument arg1, the theme of the plan.

However, in both examples, a reader could eas-
ily infer the missing arguments from the surround-
ing context of the predicate, and determine that
in (1) both instances of the predicate share the
same arguments and in (2) the missing argument
corresponds to the subject of the verb that domi-
nates the predicate, Quest Medical Inc. Obviously,
this additional annotations could contribute posi-
tively to its semantic analysis. In fact, Gerber and
Chai (2010) pointed out that implicit arguments
can increase the coverage of argument structures
in NomBank by 71%. However, current automatic
systems require large amounts of manually anno-
tated training data for each predicate. The effort
required for this manual annotation explains the
absence of generally applicable tools. This prob-
lem has become a main concern for many NLP
tasks. This fact explains a new trend to develop
accurate unsupervised systems that exploit sim-
ple but robust linguistic principles (Raghunathan
et al., 2010).

In this work, we study the coherence of the
predicate and argument realization in discourse. In
particular, we have followed a similar approach to
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the one proposed by Dahl et al. (1987) who filled
the arguments of anaphoric mentions of nominal
predicates using previous mentions of the same
predicate. We present an extension of this idea
assuming that in a coherent document the differ-
ent ocurrences of a predicate, including both ver-
bal and nominal forms, tend to be mentions of
the same event, and thus, they share the same
argument fillers. Following this approach, we
have developed a deterministic algorithm that ob-
tains competitive results with respect to supervised
methods. That is, our system can be applied to any
predicate without training data.

The main contributions of this work are the fol-
lowing:

• We empirically prove that there exists a
strong discourse relationship between the im-
plicit and explicit argument fillers of the same
predicates.

• We propose a deterministic approach that ex-
ploits this discoursive property in order to ob-
tain the fillers of implicit arguments.

• We adapt to the implicit SRL problem a clas-
sic algorithm for pronoun resolution.

• We develop a robust algorithm, ImpAr, that
obtains very competitive results with respect
to existing supervised systems. We release
an open source prototype implementing this
algorithm1.

The paper is structured as follows. Section 2
discusses the related work. Section 3 presents in
detail the data used in our experiments. Section
4 describes our algorithm for implicit argument
resolution. Section 5 presents some experiments
we have carried out to test the algorithm. Section
6 discusses the results obtained. Finally, section
7 offers some concluding remarks and presents
some future research lines.

2 Related Work

The first attempt for the automatic annotation of
implicit semantic roles was proposed by Palmer
et al. (1986). This work applied selectional restric-
tions together with coreference chains, in a very
specific domain. In a similar approach, Whitte-
more et al. (1991) also attempted to solve implicit

1http://adimen.si.ehu.es/web/ImpAr

arguments using some manually described seman-
tic constraints for each thematic role they tried to
cover. Another early approach was presented by
Tetreault (2002). Studying another specific do-
main, they obtained some probabilistic relations
between some roles. These early works agree that
the problem is, in fact, a special case of anaphora
or coreference resolution.

Recently, the task has been taken up again
around two different proposals. On the one
hand, Ruppenhofer et al. (2010) presented a task
in SemEval-2010 that included an implicit argu-
ment identification challenge based on FrameNet
(Baker et al., 1998). The corpus for this task
consisted in some novel chapters. They covered
a wide variety of nominal and verbal predicates,
each one having only a small number of instances.
Only two systems were presented for this sub-
task obtaining quite poor results (F1 below 0,02).
VENSES++ (Tonelli and Delmonte, 2010) applied
a rule based anaphora resolution procedure and se-
mantic similarity between candidates and thematic
roles using WordNet (Fellbaum, 1998). The sys-
tem was tuned in (Tonelli and Delmonte, 2011)
improving slightly its performance. SEMAFOR
(Chen et al., 2010) is a supervised system that
extended an existing semantic role labeler to en-
large the search window to other sentences, replac-
ing the features defined for regular arguments with
two new semantic features. Although this system
obtained the best performance in the task, data
sparseness strongly affected the results. Besides
the two systems presented to the task, some other
systems have used the same dataset and evaluation
metrics. Ruppenhofer et al. (2011), Laparra and
Rigau (2012), Gorinski et al. (2013) and Laparra
and Rigau (2013) explore alternative linguistic and
semantic strategies. These works obtained signifi-
cant gains over previous approaches. Silberer and
Frank (2012) adapted an entity-based coreference
resolution model to extend automatically the train-
ing corpus. Exploiting this additional data, their
system was able to improve previous results. Fol-
lowing this approach Moor et al. (2013) present a
corpus of predicate-specific annotations for verbs
in the FrameNet paradigm that are aligned with
PropBank and VerbNet.

On the other hand, Gerber and Chai (2010,
2012) studied the implicit argument resolution on
NomBank. They uses a set of syntactic, semantic
and coreferential features to train a logistic regres-
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sion classifier. Unlike the dataset from SemEval-
2010 (Ruppenhofer et al., 2010), in this work the
authors focused on a small set of ten predicates.
But for those predicates, they annotated a large
amount of instances in the documents from the
Wall Street Journal that were already annotated
for PropBank (Palmer et al., 2005) and NomBank.
This allowed them to avoid the sparseness prob-
lems and generalize properly from the training
set. The results of this system were far better
than those obtained by the systems that faced the
SemEval-2010 dataset. This works represent the
deepest study so far of the features that charac-
terizes the implicit arguments 2. However, many
of the most important features are lexically depen-
dent on the predicate and cannot been generalized.
Thus, specific annotations are required for each
new predicate to be analyzed.

All the works presented in this section agree that
implicit arguments must be modeled as a particu-
lar case of coreference together with features that
include lexical-semantic information, to build se-
lectional preferences. Another common point is
the fact that these works try to solve each instance
of the implicit arguments independently, without
taking into account the previous realizations of
the same implicit argument in the document. We
propose that these realizations, together with the
explicit ones, must maintain a certain coherence
along the document and, in consequence, the filler
of an argument remains the same along the fol-
lowing instances of that argument until a stronger
evidence indicates a change. We also propose that
this feature can be exploited independently from
the predicate.

3 Datasets

In our experiments, we have focused on the dataset
developed in Gerber and Chai (2010, 2012). This
dataset (hereinafter BNB which stands for ”Be-
yond NomBank”) extends existing predicate an-
notations for NomBank and ProbBank.

BNB presented the first annotation work of im-
plicit arguments based on PropBank and Nom-
Bank frames. This annotation was an extension
of the standard training, development and testing
sections of Penn TreeBank that have been typi-
cally used for SRL evaluation and were already
annotated with PropBank and NomBank predicate

2Gerber and Chai (2012) includes a set of 81 different fea-
tures.

structures. The authors selected a limited set of
predicates. These predicates are all nominaliza-
tions of other verbal predicates, without sense am-
biguity, that appear frequently in the corpus and
tend to have implicit arguments associated with
their instances. These constraints allowed them to
model enough occurrences of each implicit argu-
ment in order to cover adequately all the possible
cases appearing in a test document. For each miss-
ing argument position they went over all the pre-
ceding sentences and annotated all mentions of the
filler of that argument. In tables 3 and 4 we show
the list of predicates and the resulting figures of
this annotation.

In this work we also use the corpus provided
for the CoNLL-2008 task. These corpora cover
the same BNB documents and include annotated
predictions for syntactic dependencies and Super-
Sense labels as semantic tags. Unlike Gerber and
Chai (2010, 2012) we do not use the constituent
analysis from the Penn TreeBank.

4 ImpAr algorithm

4.1 Discoursive coherence of predicates

Exploring the training dataset of BNB, we ob-
served a very strong discourse effect on the im-
plicit and explicit argument fillers of the predi-
cates. That is, if several instances of the same
predicate appear in a well-written discourse, it is
very likely that they maintain the same argument
fillers. This property holds when joining the dif-
ferent parts-of-speech of the predicates (nominal
or verbal) and the explicit or implicit realizations
of the argument fillers. For instance, we observed
that 46% of all implicit arguments share the same
filler with the previous instance of the same predi-
cate while only 14% of them have a different filler.
The remaining 40% of all implicit arguments cor-
respond to first occurrences of their predicates.
That is, these fillers can not be recovered from pre-
vious instances of their predicates.

The rationale behind this phenomena seems to
be simple. When referring to different aspects of
the same event, the writer of a coherent document
does not repeat redundant information. They re-
fer to previous predicate instances assuming that
the reader already recalls the involved participants.
That is, the filler of the different instances of a
predicate argument maintain a certain discourse
coherence. For instance, in example (1), all the ar-
gument positions of the second occurrence of the
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predicate loss are missing, but they can be easily
inferred from the previous instance of the same
predicate.

(1) [arg0 The network] had been expected to have [np
losses] [arg1 of as much as $20 million] [arg3 on base-
ball this year]. It isn’t clear how much those [np losses]
may widen because of the short Series.

Therefore, we propose to exploit this property
in order to capture correctly how the fillers of all
predicate arguments evolve through a document.

Our algorithm, ImpAr, processes the docu-
ments sentence by sentence, assuming that se-
quences of the same predicate (in its nominal or
verbal form) share the same argument fillers (ex-
plicit or implicit)3. Thus, for every core argument
argn of a predicate, ImpAr stores its previous
known filler as a default value. If the arguments
of a predicate are explicit, they always replace de-
fault fillers previously captured. When there is no
antecedent for a particular implicit argument argn,
the algorithm tries to find in the surrounding con-
text which participant is the most likely to be the
filler according to some salience factors (see Sec-
tion 4.2). For the following instances, without an
explicit filler for a particular argument position,
the algorithm repeats the same selection process
and compares the new implicit candidate with the
default one. That is, the default implicit argument
of a predicate with no antecedent can change ev-
ery time the algorithm finds a filler with a greater
salience. A damping factor is applied to reduce the
salience of distant predicates.

4.2 Filling arguments without explicit
antecedents

Filling the implicit arguments of a predicate has
been identified as a particular case of corefer-
ence, very close to pronoun resolution (Silberer
and Frank, 2012). Consequently, for those implicit
arguments that have not explicit antecedents, we
propose an adaptation of a classic algorithm for
deterministic pronoun resolution. This component
of our algorithm follows the RAP approach (Lap-
pin and Leass, 1994). When our algorithm needs
to fill an implicit predicate argument without an
explicit antecedent it considers a set of candidates
within a window formed by the sentence of the
predicate and the two previous sentences. Then,
the algorithm performs the following steps:

3Note that the algorithm could also consider sequences of
closely related predicates.

1. Apply two constraints to the candidate list:

(a) All candidates that are already explicit arguments
of the predicate are ruled out.

(b) All candidates commanded by the predicate in
the dependency tree are ruled out.

2. Select those candidates that are semantically consistent
with the semantic category of the implicit argument.

3. Assign a salience score to each candidate.

4. Sort the candidates by their proximity to the predicate
of the implicit argument.

5. Select the candidate with the highest salience value.

As a result, the candidate with the highest
salience value is selected as the filler of the im-
plicit argument. Thus, this filler with its corre-
sponding salience weight will be also considered
in subsequent instances of the same predicate.

Now, we explain each step in more detail using
example (2). In this example, arg0 is missing for
the predicate plan:

(2) Quest Medical Inc said it adopted [arg1 a sharehold-
ers’ rights] [np plan] in which rights to purchase shares
of common stock will be distributed as a dividend to
shareholders of record as of Oct 23.

Filtering. In the first step, the algorithm fil-
ters out the candidates that are actual explicit argu-
ments of the predicate or have a syntactic depen-
dency with the predicate, and therefore, they are in
the search space of a traditional SRL system.

In our example, the filtering process would re-
move [a shareholders’ rights] because it is already
the explicit argument arg1, and [in which rights
to purchase shares of common stock will be dis-
tributed as a dividend to shareholders of record as
of Oct 23] because it is syntactically commanded
by the predicate plan.

Semantic consistency. To determine the se-
mantic coherence between the potential candidates
and a predicate argument argn, we have exploited
the selectional preferences in the same way as
in previous SRL and implicit argument resolution
works. First, we have designed a list of very
general semantic categories. Second, we have
semi-automatically assigned one of them to every
predicate argument argn in PropBank and Nom-
Bank. For this, we have used the semantic an-
notation provided by the training documents of
the CoNLL-2008 dataset. This annotation was
performed automatically using the SuperSense-
Tagger (Ciaramita and Altun, 2006) and includes
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named-entities and WordNet Super-Senses4. We
have also defined a mapping between the semantic
classes provided by the SuperSenseTagger and our
seven semantic categories (see Table 1 for more
details). Then, we have acquired the most com-
mon categories of each predicate argument argn.
ImpAr algorithm also uses the SuperSenseTagger
over the documents to be processed from BNB
to check if the candidate belongs to the expected
semantic category of the implicit argument to be
filled.

Following the example above, [Quest Medi-
cal Inc] is tagged as an ORGANIZATION by the
SuperSenseTagger. Therefore, it belongs to our
semantic category COGNITIVE. As the seman-
tic category for the implicit argument arg0 for
the predicate plan has been recognized to be also
COGNITIVE, [Quest Medical Inc] remains in the
list of candidates as a possible filler.

Semantic category Name-entities Super-Senses

COGNITIVE

PERSON noun.person
ORGANIZATION noun.group
ANIMAL noun.animal
... ...

TANGIBLE
PRODUCT noun.artifact
SUBSTANCE noun.object
... ...

EVENTIVE
GAME noun.act
DISEASE noun.communication
... ...

RELATIVE
noun.shape
noun.attribute
...

LOCATIVE LOCATION noun.location
TIME DATE noun.time

MESURABLE
QUANTITY noun.quantity
PERCENT
...

Table 1: Links between the semantic categories and some
name-entities and super-senses.

Salience weighting. In this process, the algo-
rithm assigns to each candidate a set of salience
factors that scores its prominence. The sentence
recency factor prioritizes the candidates that oc-
cur close to the same sentence of the predicate.
The subject, direct object, indirect object and non-
adverbial factors weight the salience of the candi-
date depending on the syntactic role they belong
to. Additionally, the head of these syntactic roles
are prioritized by the head factor. We have used
the same weights, listed in table 2, proposed by
Lappin and Leass (1994).

In the example, candidate [Quest Medical Inc]
is in the same sentence as the predicate plan, it

4Lexicographic files according to WordNet terminology.

Factor type weight
Sentence recency 100
Subject 80
Direct object 50
Indirect object 40
Head 80
Non-adverbial 50

Table 2: Weights assigned to each salience factor.

belongs to a subject, and, indeed, it is the head
of that subject. Hence, the salience score for this
candidate is: 100 + 80 + 80 = 260.

4.3 Damping the salience of the default
candidate

As the algorithm maintains the default candidate
until an explicit filler appears, potential errors pro-
duced in the automatic selection process explained
above can spread to distant implicit instances, spe-
cially when the salience score of the default can-
didate is high. In order to reduce the impact of
these errors we have included a damping factor
that is applied sentence by sentence to the salience
value of the default candidate. ImpAr applies that
damping factor, r, as follows. It assumes that, in-
dependently of the initial salience assigned, 100
points of the salience score came from the sen-
tence recency factor. Then, the algorithm changes
this value multiplying it by r. So, given a salience
score s, the value of the score in a following sen-
tence, s′, is:

s′ = s− 100 + 100 · r
Obviously, the value of r must be defined with-

out harming excessively those cases where the de-
fault candidate has been correctly identified. For
this, we studied in the training dataset the cases
of implicit arguments filled with the default can-
didate. Figure 1 shows that the influence of the
default filler is much higher in near sentences that
in more distance ones.

We tried to mimic a damping factor following
this distribution. That is, to maintain high score
salience for the near sentences while strongly de-
creasing them in the subsequent ones. In this way,
if the filler of the implicit argument is wrongly
identified, the error only spreads to the nearest in-
stances. If the identification is correct, a lower
score for more distance sentences is not too harm-
ful. The distribution shown in figure 1 follows
an exponential decay, therefore we have described
the damping factor as a curve like the following,
where α must be a value within 0 and 1:
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Figure 1: Distances between the implicit argument and the
default candidate. The y axis indicate the percentage of cases
occurring in each sentence distance, expressed in x

r = αd

In this function, d stands for the sentence dis-
tance and r for the damping factor to apply in that
sentence. In this paper, we have decided to set the
value of α to 0.5.

r = 0.5d

This value maintains the influence of the default
fillers with high salience in near sentences. But it
decreases that influence strongly in the following.

In order to illustrate the whole process we will
use the previous example. In that case, [Quest
Medical Inc] is selected as the arg0 of plan with
a salience score of 260. Therefore [Quest Medi-
cal Inc] becomes the default arg0 of plan. In the
following sentence the damping factor is:

0.5 = 0.51

Therefore, its salience score changes to 260 −
100+100·0.5 = 210. Then, the algorithm changes
the default filler for arg0 only if it finds a candi-
date that scores higher in their current context. At
two sentence distance, the resulting score for the
default filler is 260 − 100 + 100 · 0.25 = 185. In
this way, at more distance sentences, the influence
of the default filler of arg0 becomes smaller.

5 Evaluation

In order to evaluate the performance of the Im-
pAr algorithm, we have followed the evaluation
method presented by Gerber and Chai (2010,
2012). For every argument position in the gold-
standard the scorer expects a single predicted con-
stituent to fill in. In order to evaluate the correct
span of a constituent, a prediction is scored using
the Dice coefficient:

2|Predicted ∩ True|
|Predicted| + |True|

The function above relates the set of tokens that
form a predicted constituent, Predicted, and the
set of tokens that are part of an annotated con-
stituent in the gold-standard, True. For each
missing argument, the gold-standard includes the
whole coreference chain of the filler. Therefore,
the scorer selects from all coreferent mentions the
highest Dice value. If the predicted span does not
cover the head of the annotated filler, the scorer re-
turns zero. Then, Precision is calculated by the
sum of all prediction scores divided by the number
of attempts carried out by the system. Recall is
equal to the sum of the prediction scores divided
by the number of actual annotations in the gold-
standard. F-measure is calculated as the harmonic
mean of recall and precision.

Traditionally, there have been two approaches
to develop SRL systems, one based on constituent
trees and the other one based on syntactic depen-
dencies. Additionally, the evaluation of both types
of systems has been performed differently. For
constituent based SRL systems the scorers eval-
uate the correct span of the filler, while for depen-
dency based systems the scorer just check if the
systems are able to capture the head token of the
filler. As shown above, previous works in implicit
argument resolution proposed a metric that in-
volves the correct identification of the whole span
of the filler. ImpAr algorithm works with syntac-
tic dependencies and therefore it only returns the
head token of the filler. In order to compare our
results with previous works, we had to apply some
simple heuristics to guess the correct span of the
filler. Obviously, this process inserts some noise
in the final evaluation.

We have performed a first evaluation over the
test set used in (Gerber and Chai, 2010). This
dataset contains 437 predicate instances but just
246 argument positions are implicitly filled. Table
3 includes the results obtained by ImpAr, the re-
sults of the system presented by Gerber and Chai
(2010) and the baseline proposed for the task. Best
results are marked in bold5. For all predicates,
ImpAr improves over the baseline (19.3 points
higher in the overall F1). Our system also out-
performs the one presented by Gerber and Chai
(2010). Interestingly, both systems present very
different performances predicate by predicate. For

5No proper significance test can be carried out without the
the full predictions of all systems involved.
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Baseline Gerber & Chai ImpAr
#Inst. #Imp. F1 P R F1 P R F1

sale 64 65 36.2 47.2 41.7 44.2 41.2 39.4 40.3
price 121 53 15.4 36.0 32.6 34.2 53.3 53.3 53.3
investor 78 35 9.8 36.8 40.0 38.4 43.0 39.5 41.2
bid 19 26 32.3 23.8 19.2 21.3 52.9 51.0 52.0
plan 25 20 38.5 78.6 55.0 64.7 40.7 40.7 40.7
cost 25 17 34.8 61.1 64.7 62.9 56.1 50.2 53.0
loss 30 12 52.6 83.3 83.3 83.3 68.4 63.5 65.8
loan 11 9 18.2 42.9 33.3 37.5 25.0 20.0 22.2
investment 21 8 0.0 40.0 25.0 30.8 47.6 35.7 40.8
fund 43 6 0.0 14.3 16.7 15.4 66.7 33.3 44.4
Overall 437 246 26.5 44.5 40.4 42.3 47.9 43.8 45.8

Table 3: Evaluation with the test. The results from (Gerber and Chai, 2010) are included.

Baseline Gerber & Chai ImpAr
#Inst. #Imp. F1 P R F1 P R F1

sale 184 181 37.3 59.2 44.8 51.0 44.3 43.3 43.8
price 216 138 34.6 56.0 48.7 52.1 55.0 54.5 54.7
investor 160 108 5.1 46.7 39.8 43.0 28.2 27.0 27.6
bid 88 124 23.8 60.0 36.3 45.2 48.4 41.8 45.0
plan 100 77 32.3 59.6 44.1 50.7 47.0 47.0 47.0
cost 101 86 17.8 62.5 50.9 56.1 49.2 43.7 46.2
loss 104 62 54.7 72.5 59.7 65.5 63.0 58.2 60.5
loan 84 82 31.2 67.2 50.0 57.3 56.4 45.6 50.6
investment 102 52 15.5 32.9 34.2 33.6 41.2 30.9 35.4
fund 108 56 15.5 80.0 35.7 49.4 55.6 44.6 49.5
Overall 1,247 966 28.9 57.9 44.5 50.3 47.7 43.0 45.3

Table 4: Evaluation with the full dataset. The results from (Gerber and Chai, 2012) are included.

instance, our system obtains much higher results
for the predicates bid and fund, while much lower
for loss and loan. In general, ImpAr seems to be
more robust since it obtains similar performances
for all predicates. In fact, the standard deviation,
σ , of F1 measure is 10.98 for ImpAr while this
value for the (Gerber and Chai, 2010) system is
20.00.

In a more recent work, Gerber and Chai (2012)
presented some improvements of their previous
results. In this work, they extended the evalua-
tion of their model using the whole dataset and
not just the testing documents. Applying a cross-
validated approach they tried to solve some prob-
lems that they found in the previous evaluation,
like the small size of the testing set. For this work,
they also studied a wider set of features, specially,
they experimented with some statistics learnt from
parts of GigaWord automatically annotated. Table
4 shows that the improvement over their previous
system was remarkable. The system also seems
to be more stable across predicates. For compar-
ison purposes, we also included the performance
of ImpAr applied over the whole dataset.

The results in table 4 show that, although ImpAr
still achieves the best results in some cases, this
time, it cannot beat the overall results obtained by

the supervised model. In fact, both systems obtain
a very similar recall, but the system from (Gerber
and Chai, 2012) obtains much higher precision.
In both cases, the σ value of F1 is reduced, 8.81
for ImpAr and 8.21 for (Gerber and Chai, 2012).
However, ImpAr obtains very similar performance
independently of the testing dataset what proves
the robustness of the algorithm. This suggests
that our algorithm can obtain strong results also
for other corpus and predicates. Instead, the su-
pervised approach would need a large amount of
manual annotations for every predicate to be pro-
cessed.

6 Discussion

6.1 Component Analysis
In order to assess the contribution of each sys-
tem component, we also tested the performance
of ImpAr algorithm when disabling only one of
its components. With this evaluations we pretend
to sight the particular contribution of each compo-
nent. In table 5 we present the results obtained in
the following experiments for the two testing sets
explained in section 5:

• Exp1: The damping factor is disabled. All se-
lected fillers maintain the same salience over
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all sentences.

• Exp2: Only explicit fillers are considered as
candidates6.

• Exp3: No default fillers are considered as
candidates.

As expected, we observe a very similar perfor-
mances in both datasets. Additionally, the high-
est loss appears when the default fillers are ruled
out (Exp3). In particular, it also seems that the
explicit information from previous predicates pro-
vides the most correct evidence (Exp2). Also note
that for Exp2, the system obtains the highest preci-
sion. This means that the most accurate cases are
obtained by previous explicit antecedents.

test full
P R F1 P R F1

full 47.9 43.8 45.8 47.7 43.0 45.3
Exp1 45.7 41.8 43.6 47.1 42.5 44.8
Exp2 51.2 24.6 33.2 55.3 25.5 34.9
Exp3 34.6 29.7 31.9 34.8 28.9 31.5
Exp4 42.6 37.9 40.1 37.5 31.2 34.1
Exp5 38.8 34.5 36.5 35.7 29.7 32.4
Exp6 53.3 48.7 50.9 52.4 47.2 49.6

Table 5: Exp1, Exp2 and Exp3 correspond to ablations of the
components. Exp3 and Exp4 are experiments over the cases
that are not solved by explicit antecedents. Exp6 evaluates
the system capturing just the head tokens of the constituents.

As Exp1 also includes instances with explicit
antecedents, and for these cases the damping fac-
tor component has no effect, we have designed two
additional experiments:

• Exp4: Full system for the cases not solved by
explicit antecedents.

• Exp5: As in Exp4 but with the damping fac-
tor disabled.

As expected, now the contribution of the dump-
ing factor seems to be more relevant, in particular,
for the test dataset.

6.2 Correct span of the fillers
As explained in Section 5, our algorithm works
with syntactic dependencies and its predictions
only return the head token of the filler. Obtaining
the correct constituents from syntactic dependen-
cies is not trivial. In this work we have applied
a simple heuristic that returns all the descendant

6That is, implicit arguments without explicit antecedents
are not filled.

tokens of the predicted head token. This naive
process inserts some noise to the evaluation of the
system. For example, from the following sentence
our system gives the following prediction for an
implicit arg1 of an instance of the predicate sale:

Ports of Call Inc. reached agreements to sell its re-
maining seven aircraft [arg1 to buyers] that weren’t
disclosed.

But the actual gold-standard annotation is:
[arg1 buyers that weren’t disclosed]. Although the
head of the constituent, buyers, is correctly cap-
tured by ImpAr, the final prediction is heavily pe-
nalized by the scoring method. Table 5 presents
the results of ImpAr when evaluating the head to-
kens of the constituents only (Exp6). These results
show that the current performance of our system
can be easily improved applying a more accurate
process for capturing the correct span.

7 Conclusions and Future Work

In this work we have presented a robust determin-
istic approach for implicit Semantic Role Label-
ing. The method exploits a very simple but rel-
evant discoursive coherence property that holds
over explicit and implicit arguments of closely re-
lated nominal and verbal predicates. This prop-
erty states that if several instances of the same
predicate appear in a well-written discourse, it is
very likely that they maintain the same argument
fillers. We have shown the importance of this phe-
nomenon for recovering the implicit information
about semantic roles. To our knowledge, this is the
first empirical study that proves this phenomenon.

Based on these observations, we have devel-
oped a new deterministic algorithm, ImpAr, that
obtains very competitive and robust performances
with respect to supervised approaches. That is, it
can be applied where there is no available manual
annotations to train. The code of this algorithm is
publicly available and can be applied to any docu-
ment. As input it only needs the document with
explicit semantic role labeling and Super-Sense
annotations. These annotations can be easily ob-
tained from plain text using available tools7, what
makes this algorithm the first effective tool avail-
able for implicit SRL.

As it can be easily seen, ImpAr has a large
margin for improvement. For instance, providing
more accurate spans for the fillers. We also plan

7We recommend mate-tools (Björkelund et al., 2009) and
SuperSenseTagger (Ciaramita and Altun, 2006).
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to test alternative approaches to solve the argu-
ments without explicit antecedents. For instance,
our system can also profit from additional annota-
tions like coreference, that has proved its utility in
previous works. Finally, we also plan to study our
approach on different languages and datasets (for
instance, the SemEval-2010 dataset).
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