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Abstract

This paper proposes a nonparametric
Bayesian method for inducing Part-of-
Speech (POS) tags in dependency trees
to improve the performance of statistical
machine translation (SMT). In particular,
we extend the monolingual infinite tree
model (Finkel et al., 2007) to a bilin-
gual scenario: each hidden state (POS tag)
of a source-side dependency tree emits a
source word together with its aligned tar-
get word, either jointly (joint model), or
independently (independent model). Eval-
uations of Japanese-to-English translation
on the NTCIR-9 data show that our in-
duced Japanese POS tags for dependency
trees improve the performance of a forest-
to-string SMT system. Our independent
model gains over 1 point in BLEU by re-
solving the sparseness problem introduced
in the joint model.

1 Introduction

In recent years, syntax-based SMT has made
promising progress by employing either depen-
dency parsing (Lin, 2004; Ding and Palmer, 2005;
Quirk et al., 2005; Shen et al., 2008; Mi and Liu,
2010) or constituency parsing (Huang et al., 2006;
Liu et al., 2006; Galley et al., 2006; Mi and Huang,
2008; Zhang et al., 2008; Cohn and Blunsom,
2009; Liu et al., 2009; Mi and Liu, 2010; Zhang
et al., 2011) on the source side, the target side,
or both. However, dependency parsing, which
is a popular choice for Japanese, can incorporate
only shallow syntactic information, i.e., POS tags,
compared with the richer syntactic phrasal cate-
gories in constituency parsing. Moreover, exist-
ing POS tagsets might not be optimal for SMT
because they are constructed without considering
the language in the other side. Consider the ex-
amples in Figure 1. The Japanese noun “利用” in

私 が 利用利用利用利用 料金 を 払う

あなた は インターネット が 利用利用利用利用 でき ない

You can not use the Internet  .

I  pay  usage fees  .

noun particle particlenoun noun verb auxiliary verb

noun particle noun noun verbparticle

[Example 1]

[Example 2]

Japanese POS:

Japanese POS:

Figure 1: Examples of Existing Japanese POS
Tags and Dependency Structures

Example 1 corresponds to the English verb “use”,
while that in Example 2 corresponds to the English
noun “usage”. Thus, Japanese nouns act like verbs
in English in one situation, and nouns in English
in another. If we could discriminate POS tags for
two cases, we might improve the performance of a
Japanese-to-English SMT system.

In the face of the above situations, this pa-
per proposes an unsupervised method for inducing
POS tags for SMT, and aims to improve the perfor-
mance of syntax-based SMT by utilizing the in-
duced POS tagset. The proposed method is based
on the infinite tree model proposed by Finkel et
al. (2007), which is a nonparametric Bayesian
method for inducing POS tags from syntactic de-
pendency structures. In this model, hidden states
represent POS tags, the observations they generate
represent the words themselves, and tree structures
represent syntactic dependencies between pairs of
POS tags.

The proposed method builds on this model by
incorporating the aligned words in the other lan-
guage into the observations. We investigate two
types of models: (i) a joint model and (ii) an in-
dependent model. In the joint model, each hid-
den state jointly emits both a source word and its
aligned target word as an observation. The in-
dependent model separately emits words in two
languages from hidden states. By inferring POS
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tags based on bilingual observations, both mod-
els can induce POS tags by incorporating infor-
mation from the other language. Consider, for ex-
ample, inducing a POS tag for the Japanese word “
利用” in Figure 1. Under a monolingual induction
method (e.g., the infinite tree model), the “利用”
in Example 1 and 2 would both be assigned the
same POS tag since they share the same observa-
tion. However, our models would assign separate
tags for the two different instances since the “利
用” in Example 1 and Example 2 could be disam-
biguated by encoding the target-side information,
either “use” or “usage”, in the observations.

Inference is efficiently carried out by beam sam-
pling (Gael et al., 2008), which combines slice
sampling and dynamic programming. Experi-
ments are carried out on the NTCIR-9 Japanese-
to-English task using a binarized forest-to-string
SMT system with dependency trees as its source
side. Our bilingually-induced tagset signifi-
cantly outperforms the original tagset and the
monolingually-induced tagset. Further, our inde-
pendent model achieves a more than 1 point gain
in BLEU, which resolves the sparseness problem
introduced by the bi-word observations.

2 Related Work

A number of unsupervised methods have been
proposed for inducing POS tags. Early methods
have the problem that the number of possible POS
tags must be provided preliminarily. This limita-
tion has been overcome by automatically adjust-
ing the number of possible POS tags using non-
parametric Bayesian methods (Finkel et al., 2007;
Gael et al., 2009; Blunsom and Cohn, 2011; Sirts
and Alum̈ae, 2012). Gael et al. (2009) applied
infinite HMM (iHMM) (Beal et al., 2001; Teh
et al., 2006), a nonparametric version of HMM,
to POS induction. Blunsom and Cohn (2011)
used a hierarchical Pitman-Yor process prior to the
transition and emission distribution for sophisti-
cated smoothing. Sirts and Alumäe (2012) built a
model that combines POS induction and morpho-
logical segmentation into a single learning prob-
lem. Finkel et al. (2007) proposed the infinite
tree model, which represents recursive branching
structures over infinite hidden states and induces
POS tags from syntactic dependency structures. In
the following, we overview the infinite tree model,
which is the basis of our proposed model. In par-
ticular, we will describe the independent children

H φk

ππππkρ
z1

z2 z3

x1 x2 x3
k=1,…,C

H
k

k

~

),...,(Dirichlet~|

φ
ρρρπ

Figure 2: A Graphical Representation of the Finite
Tree Model

model (Finkel et al., 2007), where children are
dependent only on their parents, used in our pro-
posed model1.

2.1 Finite Tree Model

We first review the finite tree model, which can
be graphically represented in Figure 2. Let
Tt denote the tree whose root node ist. A
node t has a hidden statezt (the POS tag)
and an observationxt (the word). The prob-
ability of a tree Tt, pT (Tt), is recursively de-
fined: pT (Tt) = p(xt|zt)

∏

t′∈c(t)

p(zt′ |zt)pT (Tt′),

wherec(t) is the set of the children oft.
Let each hidden state variable haveC possible

values indexed byk. For each statek, there is
a parameterϕk which parameterizes the observa-
tion distribution for that state:xt|zt ∼ F (ϕzt). ϕk

is distributed according to a prior distributionH:
ϕk ∼ H.

Transitions between states are governed by
Markov dynamics parameterized byπ, where
πij = p(zc(t) = j|zt = i) andπk are the transition
probabilities from the parent’s statek. πk is dis-
tributed according to a Dirichlet distribution with
parameterρ: πk|ρ ∼ Dirichlet(ρ, . . . , ρ). The
hidden state of each childzt′ is distributed accord-
ing to a multinomial distributionπzt specific to the
parent’s statezt: zt′ |zt ∼ Multinomial(πzt).

2.2 Infinite Tree Model

In the infinite tree model, the number of possible
hidden states is potentially infinite. The infinite
model is formed by extending the finite tree model
using a hierarchical Dirichlet process (HDP) (Teh
et al., 2006). The reason for using an HDP rather

1Finkel et al. (2007) originally proposed three types of
models: besides the independent children model, the simul-
taneous children model and the markov children model. Al-
though we could apply the other two models, we leave this
for future work.
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Figure 3: A Graphical Representation of the Infi-
nite Tree Model

than a simple Dirichlet process (DP)2 (Ferguson,
1973) is that we have to introduce coupling across
transitions from different parent’s states. A similar
measure was adopted in iHMM (Beal et al., 2001).

HDP is a set of DPs coupled through a shared
random base measure which is itself drawn from
a DP: eachGk ∼ DP(α0, G0) with a shared base
measureG0, andG0 ∼ DP(γ, H) with a global
base measureH. From the viewpoint of the stick-
breaking construction3 (Sethuraman, 1994), the

HDP is interpreted as follows:G0 =
∞∑

k′=1

βk′δϕk′

and Gk =

∞∑

k′=1

πkk′δϕk′ , where β ∼ GEM(γ),

πk ∼ DP(α0, β), andϕk′ ∼ H.
We regard eachGk as two coindexed distribu-

tions: πk, a distribution over the transition prob-
abilities from the parent’s statek, andϕk′ , an ob-
servation distribution for the statek′. Then, the
infinite tree model is formally defined as follows:

β|γ ∼ GEM(γ),

πk|α0, β ∼ DP(α0, β),

ϕk ∼ H,

zt′ |zt ∼ Multinomial(πzt),

xt|zt ∼ F (ϕzt).

Figure 3 shows the graphical representation of the
infinite tree model. The primary difference be-

2DP is a measure on measures. It has two parameters, a
scaling parameterα and a base measureH: DP (α, H).

3Sethuraman (1994) showed a definition of a measure
G ∼ DP(α0, G0). First, infinite sequences of i.i.d variables
(π′

k)∞
k=1 and(ϕk)∞

k=1 are generated:π′
k|α0 ∼ Beta(1, α0),

ϕk ∼ G0. Then,G is defined as:πk = π′
k

∑k−1
l=1 (1 − π′

l),
G =

∑∞
k=1 πkδϕk . If π is defined by this process, then we

write π ∼ GEM(α0).

H φk

ππππkα0

∞

γ ββββ z1

z2 z3

z4 z5 z6

“払う
+pay” “を”

“料金
+fees”

“利用
+usage”

“私+I” “が”

Figure 4: An Example of the Joint Model

tween Figure 2 and Figure 3 is whether the number
of copies of the state is finite or not.

3 Bilingual Infinite Tree Model

We propose a bilingual variant of the infinite tree
model, the bilingual infinite tree model, which uti-
lizes information from the other language. Specifi-
cally, the proposed model introduces bilingual ob-
servations by embedding the aligned target words
in the source-side dependency trees. This paper
proposes two types of models that differ in their
processes for generating observations: the joint
model and the independent model.

3.1 Joint Model

The joint model is a simple application of the in-
finite tree model under a bilingual scenario. The
model is formally defined in the same way as in
Section 2.2 and is graphically represented simi-
larly to Figure 3. The only difference from the
infinite tree model is the instances of observations
(xt). Observations in the joint model are the com-
bination of source words and their aligned target
words4, while observations in the monolingual in-
finite tree model represent only source words. For
each source word, all the aligned target words are
copied and sorted in alphabetical order, and then
concatenated into a single observation. Therefore,
a single target word may be emitted multiple times
if the target word is aligned with multiple source
words. Likewise, there may be target words which
may not be emitted by our model, if the target
words are not aligned.

Figure 4 shows the process of generating Exam-
ple 2 in Figure 1 through the joint model, where
aligned words are jointly emitted as observations.
In Figure 4, the POS tag of “利用” (z5) generates

4When no target words are aligned, we simply add a
NULL target word.
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Figure 5: A Graphical Representation of the Inde-
pendent Model

the string “利用+usage” as the observation (x5).
Similarly, the POS tag of “利用” in Example 1
would generate the string “利用+use”. Hence, this
model can assign different POS tags to the two dif-
ferent instances of the word “利用”, based on the
different observation distributions in inference.

3.2 Independent Model

The joint model is prone to a data sparseness prob-
lem, since each observation is a combination of a
source word and its aligned target word. Thus, we
propose an independent model, where each hidden
state generates a source word and its aligned target
word separately. For the aligned target side, we in-
troduce an observation variablex′

t for eachzt and
a parameterϕ′

k for each statek, which parame-
terizes a distinct distribution over the observations
x′

t for that state.ϕ′
k is distributed according to a

prior distributionH ′. Specifically, the indepen-
dent model is formally defined as follows:

β|γ ∼ GEM(γ),

πk|α0, β ∼ DP(α0, β),

ϕk ∼ H, ϕ′
k ∼ H ′,

zt′ |zt ∼ Multinomial(πzt),

xt|zt ∼ F (ϕzt), x′
t|zt ∼ F ′(ϕ′

zt
).

When multiple target words are aligned to a single
source word, each aligned word is generated sepa-
rately from observation distribution parameterized
by ϕ′

k.
Figure 5 graphs the process of generating Ex-

ample 2 in Figure 1 using the independent model.
x′

t andϕ′
k are introduced for aligned target words.

The state of “利用” (z5) generates the Japanese
word “利用” as x5 and the English word “usage”
asx′

5. Due to this factorization, the independent
model is less subject to the sparseness problem.

3.3 Introduction of Other Factors

We assumed the surface form of aligned target
words as additional observations in previous sec-
tions. Here, we introduce additional factors, i.e.,
the POS of aligned target words, in the observa-
tions. Note that POSs of target words are assigned
by a POS tagger in the target language and are not
inferred in the proposed model.

First, we can simply replace surface forms of
target words with their POSs to overcome the
sparseness problem. Second, we can incorporate
both information from the target language as ob-
servations. In the joint model, two pieces of in-
formation are concatenated into a single observa-
tion. In the independent model, we introduce ob-
servation variables (e.g.,x′

t andx′′
t ) and parame-

ters (e.g.,ϕ′
k andϕ′′

k) for each information. Specif-
ically, x′

t and ϕ′
k are introduced for the surface

form of aligned words, andx′′
t andϕ′′

k for the POS
of aligned words. Consider, for example, Example
1 in Figure 1. The POS tag of “利用” generates the
string “利用+use+verb” as the observation in the
joint model, while it generates “利用”, “use”, and
“verb” independently in the independent model.

3.4 POS Refinement

We have assumed a completely unsupervised way
of inducing POS tags in dependency trees. An-
other realistic scenario is to refine the existing POS
tags (Finkel et al., 2007; Liang et al., 2007) so
that each refined sub-POS tag may reflect the in-
formation from the aligned words while preserv-
ing the handcrafted distinction from original POS
tagset. Major difference is that we introduce sep-
arate transition probabilitiesπs

k and observation
distributions (ϕs

k, ϕ
′s
k ) for each existing POS tags.

Then, each nodet is constrained to follow the dis-
tributions indicated by the initially assigned POS
tagst, and we use the pair (st, zt) as a state repre-
sentation.

3.5 Inference

In inference, we find the state set that maximizes
the posterior probability of state transitions given
observations (i.e.,P (z1:n|x1:n)). However, we
cannot evaluate the probability for all possible
states because the number of states is infinite.
Finkel et al. (2007) presented a sampling algo-
rithm for the infinite tree model, which is based on
the Gibbs sampling in the direct assignment rep-
resentation for iHMM (Teh et al., 2006). In the
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Gibbs sampling, individual hidden state variables
are resampled conditioned on all other variables.
Unfortunately, its convergence is slow in HMM
settings because sequential data is likely to have
a strong correlation between hidden states (Gael
et al., 2008).

We present an inference procedure based on
beam sampling (Gael et al., 2008) for the joint
model and the independent model. Beam sam-
pling limits the number of possible state transi-
tions for each node to a finite number using slice
sampling (Neal, 2003), and then efficiently sam-
ples whole hidden state transitions using dynamic
programming. Beam sampling does not suffer
from slow convergence as in Gibbs sampling by
sampling the whole state variables at once. In ad-
dition, Gael et al. (2008) showed that beam sam-
pling is more robust to initialization and hyperpa-
rameter choice than Gibbs sampling.

Specifically, we introduce an auxiliary variable
ut for each node in a dependency tree to limit
the number of possible transitions. Our procedure
alternates between sampling each of the follow-
ing variables: the auxiliary variablesu, the state
assignmentsz, the transition probabilitiesπ, the
shared DP parametersβ, and the hyperparameters
α0 andγ. We can parallelize procedures in sam-
plingu andz because the slice sampling foru and
the dynamic programing forz are independent for
each sentence. See Gael el al. (2009) for details.

The only difference between inferences in the
joint model and the independent model is in com-
puting the posterior probability of state transi-
tions given observations (e.g.,p(z1:n|x1:n) and
p(z1:n|x1:n, x′

1:n)) in samplingz. In the follow-
ing, we describe each sampling stage. See Teh et
al., (2006) for details of samplingπ, β, α0 andγ.

Samplingu:

Each ut is sampled from the uniform distribu-
tion on [0, πzd(t)zt ], whered(t) is the parent of
t: ut ∼ Uniform(0, πzd(t)zt). Note thatut is a
positive number, since each transition probability
πzd(t)zt is larger than zero.

Samplingz:

Possible valuesk of zt are divided into the two
sets usingut: a finite set withπzd(t)k > ut and
an infinite set withπzd(t)k ≤ ut. The beam
sampling considers only the former set. Owing
to the truncation of the latter set, we can compute
the posterior probability of a statezt given ob-

servations for allt (t = 1, . . . , T ) using dynamic
programming as follows:
In the joint model,p(zt|xσ(t), uσ(t)) ∝
p(xt|zt) ·

∑

zd(t):πzd(t)zt>ut

p(zd(t)|xσ(d(t)), uσ(d(t))),

and in the independent model,
p(zt|xσ(t), x

′
σ(t), uσ(t)) ∝ p(xt|zt) · p(x′

t|zt)

·
∑

zd(t):πzd(t)zt>ut

p(zd(t)|xσ(d(t)), x
′
σ(d(t)), uσ(d(t))),

wherexσ(t) (or uσ(t)) denotes the set ofxt (or ut)
on the path from the root node to the nodet in a
tree.

In our experiments, we assume thatF (ϕk)
is Multinomial(ϕk) andH is Dirichlet(ρ, . . . , ρ),
which is the same in Finkel et al. (2007). Un-
der this assumption, the posterior probability of an

observation is as follows:p(xt|zt) =
ṅxtk + ρ

ṅ·k + Nρ
,

whereṅxk is the number of observationsx with
statek, ṅ·k is the number of hidden states whose
values arek, andN is the total number of observa-

tionsx. Similarly, p(x′
t|zt) =

ṅx′
tk

+ ρ′

ṅ·k + N ′ρ′ , where

N ′ is the total number of observationsx′.
When the posterior probability of a statezt

given observations for allt can be computed,
we first sample the state of each leaf node and
then perform backtrack sampling for every other
zt where thezt is sampled given the sample
for zc(t) as follows: p(zt|zc(t), x1:T , u1:T ) ∝
p(zt|xσ(t), uσ(t))

∏
t′∈c(t) p(zt′ |zt, ut′).

Samplingπ:

We introduce a count variablenij ∈ n,
which is the number of observations with
state j whose parent’s state isi. Then,
we sample π using the Dirichlet distri-
bution: (πk1, . . . , πkK ,

∑∞
k′=K+1 πkk′) ∼

Dirichlet(nk1 + α0β1, . . . , nkK +
α0βK , α0

∑∞
k′=K+1 βk′), where K is the

number of distinct states inz.

Samplingβ:

We introduce a set of auxiliary variablesm, where
mij ∈ m is the number of elements ofπj

corresponding toβi. The conditional distribu-
tion of each variable isp(mij = m|z, β, α0) ∝
S(nij ,m)(α0βj)

m, whereS(n,m) are unsigned
Stirling numbers of the first kind5.

5S(0, 0) = S(1, 1) = 1, S(n, 0) = 0 for n > 0,
S(n, m) = 0 for m > n, andS(n + 1, m) = S(n, m −
1) + nS(n, m) for others.
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The parametersβ are sampled using the Dirich-
let distribution: (β1, . . . , βK ,

∑∞
k′=K+1 βk′) ∼

Dirichlet(m·1, . . . , m·K , γ), where m·k =∑K
k′=1 mk′k.

Samplingα0:

α0 is parameterized by a gamma hyperprior
with hyperparametersαa and αb. We introduce
two types of auxiliary variables for each state
(k = 1, . . . , K), wk ∈ [0, 1] and vk ∈ {0, 1}.
The conditional distribution of eachwk is
p(wk|α0) ∝ wα0

k (1−wk)
n·k−1 and that of eachvk

is p(vk|α0) ∝ (
n·k
α0

)
vk

, wheren·k =
∑K

k′=1 nk′k.

The conditional distribution ofα0 given wk

and vk (k = 1, . . . ,K) is p(α0|w,v) ∝
α

αa−1+m..−∑K
k=1 vk

0 e−α0(αb−
∑K

k=1 logwk), where
m·· =

∑K
k′=1

∑K
k′′=1 mk′k′′ .

Samplingγ:

γ is parameterized by a gamma hyperprior with
hyperparametersγa and γb. We introduce an
auxiliary variableη, whose conditional distribu-
tion is p(η|γ) ∝ ηγ(1 − η)m··−1. The con-
ditional distribution ofγ given η is p(γ|η) ∝
γγa−1+Ke−γ(γb−logη).

4 Experiment

We tested our proposed models under the
NTCIR-9 Japanese-to-English patent translation
task (Goto et al., 2011), consisting of approxi-
mately 3.2 million bilingual sentences. Both the
development data and the test data consist of 2,000
sentences. We also used the NTCIR-7 develop-
ment data consisting of 2,741 sentences for devel-
opment testing purposes.

4.1 Experimental Setup

We evaluated our bilingual infinite tree model
for POS induction using an in-house developed
syntax-based forest-to-string SMT system. In
the training process, the following steps are per-
formed sequentially: preprocessing, inducing a
POS tagset for a source language, training a POS
tagger and a dependency parser, and training a
forest-to-string MT model.

Step 1. Preprocessing

We used the first 10,000 Japanese-English sen-
tence pairs in the NTCIR-9 training data for in-

ducing a POS tagset for Japanese6. The Japanese
sentences were segmented using MeCab7, and the
English sentences were tokenized and POS tagged
using TreeTagger (Schmid, 1994), where 43 and
58 types of POS tags are included in the Japanese
sentences and the English sentences, respectively.
The Japanese POS tags come from the second-
level POS tags in the IPA POS tagset (Asahara and
Matsumoto, 2003) and the English POS tags are
derived from the Penn Treebank. Note that the
Japanese POS tags are used for initialization of
hidden states and the English POS tags are used
as observations emitted by hidden states.

Word-by-word alignments for the sentence
pairs are produced by first running GIZA++ (Och
and Ney, 2003) in both directions and then com-
bining the alignments using the “grow-diag-final-
and” heuristic (Koehn et al., 2003). Note that we
ran GIZA++ on all of the NTCIR-9 training data
in order to obtain better alignements.

The Japanese sentences are parsed using
CaboCha (Kudo and Matsumoto, 2002), which
generates dependency structures using a phrasal
unit called abunsetsu8, rather than a word unit as
in English or Chinese dependency parsing. Since
we focus on the word-level POS induction, each
bunsetsu-based dependency tree is converted into
its corresponding word-based dependency tree us-
ing the following heuristic9: first, the last func-
tion word inside eachbunsetsu is identified as
the head word10; then, the remaining words are
treated as dependents of the head word in the same
bunsetsu; finally, a bunsetsu-based dependency
structure is transformed to a word-based depen-
dency structure by preserving the head/modifier
relationships of the determined head words.

Step 2. POS Induction

A POS tag for each word in the Japanese sentences
is inferred by our bilingual infinite tree model, ei-

6Due to the high computational cost, we did not use all
the NTCIR-9 training data. We leave scaling up to a larger
dataset for future work.

7http://mecab.googlecode.com/svn/
trunk/mecab/doc/index.html

8A bunsetsu is the smallest meaningful sequence con-
sisting of a content word and accompanying function words
(e.g., a noun and a particle).

9We could use other word-based dependency trees such
as trees by the infinite PCFG model (Liang et al., 2007)
and syntactic-head or semantic-head dependency trees in
Nakazawa and Kurohashi (2012), although it is not our major
focus. We leave this for future work.

10If no function words exist in abunsetsu, the last content
word is treated as the head word.
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ther jointly (Joint) or independently (Ind). We
also performed monolingual induction of Finkel et
al. (2007) for comparison (Mono). In each model,
a sequence of samplingu, z, π, β, α0, andγ is
repeated 10,000 times. In samplingα0 andγ, hy-
perparametersαa, αb, γa, andγb are set to 2, 1,
1, and 1, respectively, which is the same setting in
Gael et al. (2008). In samplingz, parametersρ, ρ′,
. . ., are set to 0.01. In the experiments, three types
of factors for the aligned English words are com-
pared: surface forms (‘s’), POS tags (‘P’), and the
combination of both (‘s+P’). Further, two types of
inference frameworks are compared:induction
(IND) andrefinement (REF ). In both frame-
works, each hidden statezt is first initialized to
the POS tags assigned by MeCab (the IPA POS
tagset), and then each state is updated through
the inference procedure described in Section 3.5.
Note that inREF , the sampling distribution over
zt is constrained to include only states that are a
refinement of the initially assigned POS tag.

Step 3. Training a POS Tagger and a
Dependency Parser

In this step, we train a Japanese dependency parser
from the 10,000 Japanese dependency trees with
the induced POS tags which are derived from Step
2. We employed a transition-based dependency
parser which can jointly learn POS tagging and
dependency parsing (Hatori et al., 2011) under an
incremental framework11. Note that the learned
parser can identify dependencies between words
and attach an induced POS tag for each word.

Step 4. Training a Forest-to-String MT

In this step, we train a forest-to-string MT model
based on the learned dependency parser in Step 3.
We use an in-house developed hypergraph-based
toolkit, cicada, for training and decoding with a
tree-to-string model, which has been successfully
employed in our previous work for system com-
bination (Watanabe and Sumita, 2011) and online
learning (Watanabe, 2012). All the Japanese and
English sentences in the NTCIR-9 training data
are segmented in the same way as in Step 1, and
then each Japanese sentence is parsed by the de-
pendency parser learned in Step 3, which simul-
taneously assigns induced POS tags and word de-
pendencies. Finally, a forest-to-string MT model
is learned with Zhang et al., (2011), which ex-
tracts translation rules by a forest-based variant of

11http://triplet.cc/software/corbit/

IND REF

BS 27.54
Mono 27.66 26.83

Joint[s] 28.00 28.00
Joint[P] 26.36 26.72

Joint[s+P] 27.99 27.82
Ind[s] 28.00 27.93
Ind[P] 28.11 28.63

Ind[s+P] 28.13 28.62

Table 1: Performance on Japanese-to-English
Translation Measured by BLEU (%)

the GHKM algorithm (Mi and Huang, 2008) af-
ter each parse tree is restructured into a binarized
packed forest. Parameters are tuned on the devel-
opment data using xBLEU (Rosti et al., 2011) as
an objective and L-BFGS (Liu and Nocedal, 1989)
as an optimization toolkit, since it is stable and less
prone to randomness, unlike MERT (Och, 2003)
or PRO (Hopkins and May, 2011). The develop-
ment test data is used to set up hyperparameters,
i.e., to terminate tuning iterations.

When translating Japanese sentences, a parse
tree for each sentence is constructed in the same
way as described earlier in this step, and then the
parse trees are translated into English sentences
using the learned forest-to-string MT model.

4.2 Experimental Results

Table 1 shows the performance for the test data
measured by case sensitive BLEU (Papineni et
al., 2002). We also present the performance of
our baseline forest-to-string MT system (BS) us-
ing the original IPA POS tags. In Table 1, num-
bers in bold indicate that the systems outperform
the baselines,BS andMono. Under the Moses
phrase-based SMT system (Koehn et al., 2007)
with the default settings, we achieved a 26.80%
BLEU score.

Table 1 shows that the proposed systems outper-
form the baselineMono. The differences between
the performance ofInd[s+P] andMono are statis-
tically significant in the bootstrap method (Koehn,
2004), with a 1% significance level both inIND
andREF . The results indicate that integrating the
aligned target-side information in POS induction
makes inferred tagsets more suitable for SMT.

Table 1 also shows that the independent model
is more effective for SMT than the joint model.
This means that sparseness is a severe problem in
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Model IND REF

Joint[s+P] 164 620
Ind[s+P] 102 517

IPA POS tags 42

Table 2: The Number of POS Tags

POS induction when jointly encoding bilingual in-
formation into observations. Additionally, all the
systems using the independent model outperform
BS. The improvements are statistically significant
in the bootstrap method (Koehn, 2004), with a 1%
significance level. The results show that the pro-
posed models can generate more favorable POS
tagsets for SMT than an existing POS tagset.

In Table 1,REFs are at least comparable to, or
better than,INDs except forMono. This shows
thatREF achieves better performance by preserv-
ing the clues from the original POS tagset. How-
ever,REF may suffer sever overfitting problem
for Mono since no bilingual information was in-
corporated. Further, when the full-level IPA POS
tags12 were used inBS, the system achieved a
27.49% BLEU score, which is worse than the re-
sult using the second-level IPA POS tags. This
means that manual refinement without bilingual
information may also cause an overfitting problem
in MT.

5 Discussion

5.1 Comparison to the IPA POS Tagset

Table 2 shows the number of the IPA POS tags
used in the experiments and the POS tags induced
by the proposed models. This table shows that
each induced tagset contains more POS tags than
the IPA POS tagset. In the experimental data,
some of Japanese verbs correspond to genuine En-
glish verbs, some are nominalized, and others cor-
respond to English past participle verbs or present
participle verbs which modify other words. Re-
spective examples are “Iuse a card.”, “Using the
index is faster.”, and “I explainusing an exam-
ple.”, where all the underlined words correspond
to the same Japanese word, “用い”, whose IPA
POS tag is a verb.Ind[s+P] in REF generated
the POS tagset where the three types are assigned
to separate POS groups.

The Japanese particle “に” is sometimes at-
tached to nouns to give them adverb roles. For

12377 types of full-level IPA POS tags were included in our
experimental data.

Tagging Dependency
IND REF IND REF

Original 90.37 93.62
Mono 90.75 88.04 91.77 91.51

Joint[s] 89.08 86.73 91.55 91.14
Joint[P] 80.54 79.98 91.06 91.29

Joint[s+P] 87.56 84.92 91.31 91.10
Ind[s] 87.62 84.33 92.06 92.58
Ind[P] 90.21 88.50 92.85 93.03

Ind[s+P] 89.57 86.12 92.96 92.78

Table 3: Tagging and Dependency Accuracy (%)

example, “相互 (mutual)　に” is translated as
the adverb “mutually” in English. Other times,
it is attached to words to make them the objects
of verbs. For example, “彼 (he)　に　与える
(give)” is translated as “give him”. The POS tags
by Ind[s+P] inREF discriminated the two types.

These examples show that the proposed mod-
els can disambiguate POS tags that have different
functions in English, whereas the IPA POS tagset
treats them jointly. Thus, such discrimination im-
proves the performance of a forest-to-string SMT.

5.2 Impact of Tagging and Dependency
Accuracy

The performance of our methods depends not only
on the quality of the induced tag sets but also on
the performance of the dependency parser learned
in Step 3 of Section 4.1. We cannot directly eval-
uate the tagging accuracy of the parser trained
through Step 3 because we do not have any data
with induced POS tags other than the 10,000-
sentence data gained through Step 2. Thus we split
the 10,000 data into the first 9,000 data for train-
ing and the remaining 1,000 for testing, and then
a dependency parser was learned in the same way
as in Step 3.

Table 3 shows the results.Original is the per-
formance of the parser learned from the training
data with the original POS tagset. Note that the de-
pendency accuracies are measured on the automat-
ically parsed dependency trees, not on the syntac-
tically correct gold standard trees. ThusOriginal
achieved the best dependency accuracy.

In Table 3, the performance for our bilingually-
induced POSs,Joint and Ind, are lower than
Original andMono. It seems performing pars-
ing and tagging with the bilingually-induced POS
tagset is too difficult when only monolingual in-
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formation is available to the parser. However, our
bilingually-induced POSs, except forJoint[P ],
with the lower accuracies are more effective for
SMT than the monolingually-induced POSs and
the original POSs, as indicated in Table 1. The
tagging accuracies forJoint[P ] both inIND and
REF are significantly lower than the others, while
the dependency accuracies do not differ signifi-
cantly. The lower tagging accuracies may directly
reflect the lower translation qualities forJoint[P ]
in Table 1.

6 Conclusion

We proposed a novel method for inducing POS
tags for SMT. The proposed method is a non-
parametric Bayesian method, which infers hidden
states (i.e., POS tags) based on observations repre-
senting not only source words themselves but also
aligned target words. Our experiments showed
that a more favorable POS tagset can be induced
by integrating aligned information, and further-
more, the POS tagset generated by the proposed
method is more effective for SMT than an existing
POS tagset (the IPA POS tagset).

Even though we employed word alignment
from GIZA++ with potential errors, large gains
were achieved using our proposed method. We
would like to investigate the influence of align-
ment errors in the future. In addition, we are plan-
ning to prove the effectiveness of our proposed
method for language pairs other than Japanese-to-
English. We are also planning to introduce our
proposed method to other syntax-based SMT, such
as a string-to-tree SMT and a tree-to-tree SMT.
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