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Bayesian method for inducing Part-of- You can not use the Internet .
. [Example 2]

Speech (POS) tags in dependency f[rees m i
to improve the performance of statistical B A NE 2 OWS

K i X Japanese POS: non particle noun  noun particle ve‘:rb
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machine translation (S_MT). Ir_\ p_a_rtlcular, I pay usage fees .
we extend the monolingual infinite tree

model (Finkel et al., 2007) to a bilin-  Figyre 1: Examples of Existing Japanese POS

gual scenario: each hidden state (POS tag) Tags and Dependency Structures
of a source-side dependency tree emits a

source word together with its aligned tar-
get word, either jointly (joint model), or
independently (independent model). Eval-
uations of Japanese-to-English translation
on the NTCIR-9 data show that our in-
duced Japanese POS tags for dependency
trees improve the performance of a forest-
to-string SMT system. Our independent
model gains over 1 point in BLEU by re-
solving the sparseness problem introduced
in the joint model.

Example 1 corresponds to the English verb “use”,
while that in Example 2 corresponds to the English
noun “usage”. Thus, Japanese nouns act like verbs
in English in one situation, and nouns in English
in another. If we could discriminate POS tags for
two cases, we might improve the performance of a
Japanese-to-English SMT system.

In the face of the above situations, this pa-
per proposes an unsupervised method for inducing
] POS tags for SMT, and aims to improve the perfor-
1 Introduction mance of syntax-based SMT by utilizing the in-

In recent years, syntax-based SMT has madduced POS tagset. The proposed method is based
promising progress by employing either depen®n the infinite tree model proposed by Finkel et
dency parsing (Lin, 2004; Ding and Palmer, 2005:al. (2007), which is a nonparametric Bayesian
Quirk et al., 2005; Shen et al., 2008; Mi and Liu, method for inducing POS tags from syntactic de-
2010) or constituency parsing (Huang et al., 2006p€endency structures. In this model, hidden states
Liu et al., 2006; Galley et al., 2006; Mi and Huang, 'epresent POS tags, the observations they generate
2008; Zhang et al., 2008; Cohn and ansom,representtheWordsthemselves, and tree structures
2009; Liu et al., 2009; Mi and Liu, 2010; Zhang represent syntactic dependencies between pairs of
et al., 2011) on the source side, the target sidd?OS tags.

or both. However, dependency parsing, which The proposed method builds on this model by
is a popular choice for Japanese, can incorporat@corporating the aligned words in the other lan-
only shallow syntactic information, i.e., POS tags,guage into the observations. We investigate two
compared with the richer syntactic phrasal catetypes of models: (i) a joint model and (ii) an in-
gories in constituency parsing. Moreover, exist-dependent model. In the joint model, each hid-
ing POS tagsets might not be optimal for SMT den state jointly emits both a source word and its
because they are constructed without consideringligned target word as an observation. The in-
the language in the other side. Consider the exdependent model separately emits words in two
amples in Figure 1. The Japanese non®”in  languages from hidden states. By inferring POS
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tags based on bilingual observations, both moc o)
els can induce POS tags by incorporating infor:
mation from the other language. Consider, for ex
ample, inducing a POS tag for the Japanese word
O O "in Figure 1. Under a monolingual induction
method (e.g., the infinite tree model), the 1"
in Example 1 and 2 would both be assigned tht
same POS tag since they share the same obsen
tion. However, our models would assign separat Figure 2. A Graphical Representation of the Finite
tags for the two different instances since tie « Tree Model
O ”in Example 1 and Example 2 could be disam-
biguated by encoding the target-side information
either “use” or “usage”, in the observations.
Inference is efficiently carried out by beam sam-
pling (Gael et al., 2008), which combines slice
sampling and dynamic programming. EXxperi-2.1 Finite Tree Model
ments are carried out on the NTCIR-9 Japanes¢
to-English task using a binarized forest-to-string
SMT system with dependency trees as its sourc
side.  Our biIinguaIIy-inc!uF:ed tagset signifi- node t has a hidden state, (the POS tag)
cantly outperforms the original tagset and the .
. . ! and an observatiorr; (the word). The prob-
monolingually-induced tagset. Further, our inde-_, .. : :
. : .ability of a treeT;, pr(T:), is recursively de-
pendent model achieves a more than 1 pointgai_ -
in BLEU, which resolves the sparseness probler "€ pr(Ty) = pladdz) [T plalzpr(T),

X N . t'€c(t)
introduced by the bi-word observations. wherec(t) is the set of the children af

Let each hidden state variable havVepossible
values indexed byt. For each staté, there is

A number of unsupervised methods have beed Parameter; which parameterizes the observa-
proposed for inducing POS tags. Early methoddion distribution for that statet. |z ~ F(¢s,). éx
have the problem that the number of possible PO distributed according to a prior distributid:
tags must be provided preliminarily. This limita- Pr ~ H-_ .
tion has been overcome by automatically adjust- Transitions between states are governed by
ing the number of possible POS tags using nonMarkov dynamics parameterized by, where
parametric Bayesian methods (Finkel et al., 20077ij = P(%c(r) = j|2 = i) andmy, are the transition
Gael et al., 2009; Blunsom and Cohn, 2011; SirtdProbabilities from the parent's staie m is dis-
and Aluriie, 2012). Gael et al. (2009) applied tributed according to a Dirichlet distribution with
infinite HMM (iIHMM) (Beal et al., 2001; Teh Parameter: my|p ~ Dirichlet(p,...,p). The
et al., 2006), a nonparametric version of HMM, hidden state of each chilg: is distributed accord-
to POS induction. Blunsom and Cohn (2011)ingtoamultinomialdistributiomzt specific to the
used a hierarchical Pitman-Yor process prior to thé#arent's state;: zy|z; ~ Multinomial(r_, ).
transition and emission distribution for sophisti- .-

. . - : 2.2 Infinite Tree Model
cated smoothing. Sirts and Al (2012) built a o _
model that combines POS induction and morpholn the infinite tree model, the number of possible
logical segmentation into a single learning prob_hidden states is potentially infinite. The infinite
lem. Finkel et al. (2007) proposed the infinite model is formed by extending the finite tree model
tree model, which represents recursive branchingSing & hierarchical Dirichlet process (HDP) (Teh
structures over infinite hidden states and induce§t al., 2006). The reason for using an HDP rather
POS tags from syntactic dependency structures. In 'Finkel et al. (2007) originally proposed three types of

the following, we overview the infinite tree model, models: besides the independent children model, the simul-
taneous children model and the markov children model. Al-

V_Vh'Ch is the _bas's of.our prqposed model. I.n Pahough we could apply the other two models, we leave this
ticular, we will describe the independent childrenfor future work.

model (Finkel et al., 2007), where children are
dependent only on their parents, used in our pro-
posed modél

We first review the finite tree model, which can
be graphically represented in Figure 2. Let
T: denote the tree whose root nodetis A

2 Related Work
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Bly ~ GEM(y)
7s |0’0,ﬂ ~ DP(a(J’IB)

Figure 4. An Example of the Joint Model

Figure 3: A Graphical Representation of the Infi-
nite Tree Model

tween Figure 2 and Figure 3 is whether the number

. . of copies of the state is finite or not.
than a simple Dirichlet process (DP(Ferguson, P

1973) .is that we have to introduce coupling acrostg Bilingual Infinite Tree Model

transitions from different parent’s states. A similar

measure was adopted in iHMM (Beal et al., 2001) We propose a bilingual variant of the infinite tree
HDP is a set of DPs coupled through a shareimodel, the bilingual infinite tree model, which uti-

random base measure which is itself drawn fronlizes information from the other language. Specifi-

a DP: eachGy, ~ DP(ag, Gp) with a shared base cally, the proposed model introduces bilingual ob-

measurey, andGy ~ DP(~, H) with a global servations by embedding the aligned target words

base measur®. From the viewpoint of the stick- in the source-side dependency trees. This paper

breaking constructioh (Sethuraman, 1994), the proposes two types of models that differ in their

> processes for generating observations: the joint

HDP is interpreted as followsto = Y B'ds,,  model and the independent model.

k'=1

and G, = Zﬂkk,%k” where 3 ~ GEM(y), 3-1 JointModel

k=1 The joint model is a simple application of the in-
7y, ~ DP(co, B), andgy ~ H. . finite tree model under a bilingual scenario. The
We regard eaclir; as two coindexed distribu- e s formally defined in the same way as in

tio_n_s_: my, @ distribution over the transition prob- gaction 2.2 and is graphically represented simi-
abilities from the parent's state and¢ys, an ob- 3y t5 Figure 3. The only difference from the

§erv§tlon dlstrlbutlpn for the sta.llé. Then, the infinite tree model is the instances of observations
infinite tree model is formally defined as follows: (). Observations in the joint model are the com-
bination of source words and their aligned target

Bly ~ GEM(y), wordg, while observations in the monolingual in-
7| o, B ~ DP(av, B), finite tree model represent only source words. For
o ~ H, each source word, all the aligned target words are
2y |2 ~ Multinomial(r, ), copied and sorted in alphabetical order, and then

concatenated into a single observation. Therefore,
ﬂl’t’Zt ~ F(d)Zt)

a single target word may be emitted multiple times
if the target word is aligned with multiple source

Figure 3 shows the graphical representation of the. ords. Likewise, there may be target words which

g . . t itt |, if the t t
infinite tree model. The primary difference be- may not be em ed by our model, if the targe
words are not aligned.

DP is a measure on measures. It has two parameters, a Figure 4 shows the process of generating Exam-

scaling parametex and a base measuf& DP(«a, H). . . . .
3Sethuraman (1994) showed a definition of a measurkple 2 in Figure 1 through the joint model, where

G ~ DP(aw, Go). First, infinite sequences of i.i.d variables aligned words are jointly emitted as observations.
(mk)iz1 and (¢x)iZ, are generatedr; oo ~ Betal,a0),  In Figure 4, the POS tag of* 0 ” (z5) generates
ér ~ Go. Then,G is defined asmy, = 7, S0 (1 — 7]), ——

G = Y 72, mdg, . If is defined by this process, then we “When no target words are aligned, we simply add a
write w ~ GEM(«o). NULL target word.
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We assumed the surface form of aligned target
words as additional observations in previous sec-
tions. Here, we introduce additional factors, i.e.,
the POS of aligned target words, in the observa-
tions. Note that POSs of target words are assigned
by a POS tagger in the target language and are not
inferred in the proposed model.

First, we can simply replace surface forms of
target words with their POSs to overcome the
Figure 5: A Graphical Representation of the Indesparseness problem. Second, we can incorporate
pendent Model both information from the target language as ob-
servations. In the joint model, two pieces of in-
formation are concatenated into a single observa-
Similarly, the POS tag of [ 0" in Example 1 tion. In the in_dependent model, we introduce ob-

servation variables (e.gr; andx}) and parame-

would generate the string™ 0 +use”. Hence, this ) ” : : :
model can assign different POS tags to the two dif S (e.9.¢}, andgj) for each information. Specif-

/ / H
ferent instances of the word*J ", based on the ically, z; and ¢}, are introduced for the surface

H ! '
different observation distributions in inference. form of aligned words, ?ndt andgy, for the POS
of aligned words. Consider, for example, Example

3.2 Independent Model 1linFigure 1. The POS tag of' " generates the
gtring “0 O +use+verb” as the observation in the

e Bly~GEMO) 3.3 Introduction of Other Factors
I mla, B~ DP@,.B)

the string ‘0 O +usage” as the observatioms).

The joint model is prone to a data sparseness prob-. o Rt
lem, since each observation is a combination of éomt T_Odel’ while it ggnerat.esﬂ 0" “use”, and
source word and its aligned target word. Thus, Weverb independently in the independent model.
propose an independent model, where each hidd
state generates a source word and its aligned target
word separately. For the aligned target side, we inVWe have assumed a completely unsupervised way
troduce an observation variahié for eachz, and  of inducing POS tags in dependency trees. An-
a parametery, for each state:, which parame- other realistic scenario is to refine the existing POS
terizes a distinct distribution over the observationdags (Finkel et al., 2007; Liang et al., 2007) so
z; for that state.¢) is distributed according to a that each refined sub-POS tag may reflect the in-
prior distribution 2I’. Specifically, the indepen- formation from the aligned words while preserv-

POS Refinement

dent model is formally defined as follows: ing the handcrafted distinction from original POS
tagset. Major difference is that we introduce sep-
Bly ~ GEM(v), arate transition probabilities; and observation
k|, B ~ DP(ag, B), distributions ¢;, d);f) for each existing POS tag
¢~ H, ¢ ~H' Then, each nodeis constrained to follow the dis-

tributions indicated by the initially assigned POS

tags;, and we use the paig{, z;) as a state repre-
$t|2t ~ F(¢Zt)’ SUHZt ~ F/(qblzt) sentation.

zp|z¢ ~ Multinomial(7r, ),

When multiple target words are aligned to a single
source word, each aligned word is generated sep?}—'5
rately from observation distribution parameterizedin inference, we find the state set that maximizes
by ¢.. the posterior probability of state transitions given
Figure 5 graphs the process of generating Exebservations (i.e.P(z1.,|%1.,)). However, we
ample 2 in Figure 1 using the independent modelcannot evaluate the probability for all possible
z; andgj are introduced for aligned target words. states because the number of states is infinite.
The state of {1 0" (z5) generates the JapaneseFinkel et al. (2007) presented a sampling algo-
word “00 O " as x5 and the English word “usage” rithm for the infinite tree model, which is based on
aszi. Due to this factorization, the independentthe Gibbs sampling in the direct assignment rep-
model is less subject to the sparseness problem. resentation for iHMM (Teh et al., 2006). In the

Inference
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Gibbs sampling, individual hidden state variablesservations for alk (¢ = 1,...,T) using dynamic
are resampled conditioned on all other variablesprogramming as follows:
Unfortunately, its convergence is slow in HMM In the joint modelp(2: |44, ug(s)) o
settings because sequential data is likely to havg(xtyzt) . Z
a strong correlation between hidden states (Gael 2a(t) Mgy 2t >t
etal., 2008). _ and in the independent
We preser_lt an inference procedure base_zd_ Oﬂ(zt!%(t)yﬂf;(t),%(t)) o plxe|ze) - p(ah]z)
beam sampling (Gael et al., 2008) for the joint
model and the independent model. Beam sam- Z N
. .. . . 2d(t) Tz geq) ¢ > Ut
pling limits the number of possible state transi- @®
tions for each node to a finite number using slicaVNerezo(y) (Oru,(y) denotes the set of; (or u,)

sampling (Neal, 2003), and then efficiently sam-2" the path from the root node to the nofde a
tree.

ples whole hidden state transitions using dynamic : . ¢ ¢
programming. Beam sampling does not suffer, fl our experiments, we asstume h&I( )
s Multinomial(¢) and H is Dirichlet(p, ..., p),

¢ | DT i
fom slow convergence as in Gibbs sampling b which is the same in Finkel et al. (2007). Un-

sampling the whole state variables at once. In a er thi tion. th eri bability of
dition, Gael et al. (2008) showed that beam sam- erthis assumption, the posterior pr% ak :%O an
Tt

pling is more robust to initialization and hyperpa- observation is as followsp(x;|z;) = Pt Np

rameter choice than Gibbs sampling. ~ wheren,y, is the number of observationswith
Specifically, we introduce an auxiliary variable statek, 7., is the number of hidden states whose

u; for each node in a dependency tree to limityalyes ard:, andNN is the total number of observa-
the number of possible transitions. Our procedure, Tty + 0

- o
alternates between sampling each of the follow{ions@- Similarly, p(x;|z) = ES P
N is the total number of observations.

ing variables: the auxiliary variables, the state

assignmentg, the transition probabilitiesr, the When the posterior probability of a statg

shared DP parametefk and the hyperparameters given observations for alt can be computed,

ap andy. We can parallelize procedures in sam-we first sample the state of each leaf node and

pling u andz because the slice sampling feand  then perform backtrack sampling for every other

the dynamic programing for are independent for -, where thez, is sampled given the sample

each sentence. See Gael el al. (2009) for details.for ze() as follows: p(zt‘zc(t),xlzT,ulzT) x
The only difference between inferences in thep(z¢|z, ), te(r)) [1yecry (20|26, wrr)-

joint model and the independent model is in com- _

puting the posterior probability of state transi- Samplingz:

P(2aw) [To(d(t))s Uo(d()))s

model,

P(Za)| Toa(e))s Toragey)» Yo (d(r)))s

where

tions given observations (e.gp(z1.n|71:,) and  We introduce a count variabley;; € mn,
p(z1:n|T1m, 2).,)) I samplingz. In the follow- which is the number of observations with
ing, we describe each sampling stage. See Teh state ; whose parent's state ig. Then,

al., (2006) for details of sampling, 3, g andy. we sample « using the Dirichlet distri-
Samphng w bl..Jt.ionl (7Tk1, ey TRK Zz?:K—&-l ﬂ'kk/) ~

: Dirichlet(n + B, ... NEK +
Eachu; is sampled from the uniform distribu- o8, ag ZZ?:KJA Br), Where K is the
tion on [O,Wzd(i)zt], whered(t) is the parent of number of distinct states ia.
toug o~ Uniform(O,Ter(t>Zt). Note thatu; is a _
positive number, since each transition probabilitySampling 3:
T2y 1S larger than zero. We introduce a set of auxiliary variables, where
mi; € m is the number of elements of;

Sampling z: corresponding ta3;. The conditional distribu-

Possible valueg of z; are divided into the two
sets usingy: a finite set withr., , , > ¢ and
an infinite set withwzd(t)k < wu;. The beam

sampling considers only the former set. Owing
to the truncation of the latter set, we can compute;

the posterior probability of a statg given ob-

845

tion of each variable ip(m;; = m|z, 3, ag)
S(nij,m)(aoB;)™, whereS(n,m) are unsigned
Stirling numbers of the first kird

%5(0,0) = S(1,1) = 1, S(n,0) = 0forn > 0,

n,m) = 0form > n,andS(n + 1,m) = S(n,m —
1) + nS(n, m) for others.



The parameter8 are sampled using the Dirich- ducing a POS tagset for Japarfes€he Japanese

let distribution: (f1,..., Ak, Z;‘,’ZKH Bw) ~  sentences were segmented using M€Cahd the
Dirichlet(m.q,...,m.x,v), where m, = English sentences were tokenized and POS tagged
Zgzl My using TreeTagger (Schmid, 1994), where 43 and
58 types of POS tags are included in the Japanese
Sampling ao: sentences and the English sentences, respectively.

two types of auxiliary variables for each stateMatsumoto, 2003) and the English POS tags are
(k =1,...,K), wy, € [0,1] andv, € {0,1}. derived from the Penn Treebank. Note that the

The conditional distribution of eachw, is Japanese POS tags are used for initialization of

p(wi|ag) o< wi (1 —wy,)™+" and that of eachy, hidden states and the English POS tags are used

as observations emitted by hidden states.
Word-by-word alignments for the sentence

. N.k Yk
is p(vi|ao) o (075) , wheren, = S5 npp.
The conditional distribution ofag given wi  pairs are produced by first running GIZA++ (Och

and ve (k= 1,....,K) is plaglw,v) o and Ney, 2003) in both directions and then com-
ag‘“me"*Z’“l Uk o—ao(a=3 k=1 100wk) - where  bining the alignments using the “grow-diag-final-
m. — 25:1 25,:1 Mgt o and” heuristic (Koehn et al., 2003). Note that we

ran GIZA++ on all of the NTCIR-9 training data
Sampling~: in order to obtain better alignements.

~ is parameterized by a gamma hyperprior with "€ Japanese sentences are parsed using
hyperparameters,, and v,. We introduce an CaboCha (Kudo and Matsumoto, 2002), which

auxiliary variablen, whose conditional distribu- 9€nerates dependency structures using a phrasal
tion is p(nly) o 7'(1 — n)™~1. The con- unit called abunsetsu8, rather than a word unit as

ditional distribution of~ given 5 is p(y]n) o in English or Chinese dependency parsi_ng. Since
~Ya—1+K o =(7,—logn) we focus on the word-level POS induction, each
bunsetsu-based dependency tree is converted into
its corresponding word-based dependency tree us-
ing the following heuristig: first, the last func-
We tested our proposed models under thdion word inside eaclbunsetsu is identified as
NTCIR-9 Japanese-to-English patent translatiohe head wortf; then, the remaining words are
task (Goto et al., 2011), consisting of approxi-treated as dependents of the head word in the same
mately 3.2 million bilingual sentences. Both thebunsetsu; finally, abunsetsu-based dependency
development data and the test data consist of 2,008ructure is transformed to a word-based depen-
sentences. We also used the NTCIR-7 developdency structure by preserving the head/modifier
ment data consisting of 2,741 sentences for develelationships of the determined head words.

opment testing purposes. Step 2. POS Induction

4.1 Experimental Setup A POS tag for each word in the Japanese sentences
is inferred by our bilingual infinite tree model, ei-

4 Experiment

We evaluated our bilingual infinite tree model
®Due to the high computational cost, we did not use all

for POS induction using a_‘n in-house develOpec{he NTCIR-9 training data. We leave scaling up to a larger
SyntaX-baSE‘d fOI’eSt-tO-Stl’Ing SMT System Indatasetforfuture work.

the training process, the following steps are per- ’http:/mecab.googlecode.com/svn/

formed sequentially: preprocessing, inducing drunk/mecab/doc/index.html .
9 y- prep 9 9 8A bunsetsu is the smallest meaningful sequence con-

POS tagset for a source language, training a POgisting of a content word and accompanying function words
tagger and a dependency parser, and training @.g., a noun and a particle).
9

forest-to-string MT model. We could use other word-based dependency trees such

9 as trees by the infinite PCFG model (Liang et al., 2007)

. and syntactic-head or semantic-head dependency trees in
Step 1. Preprocessing Nakazawa and Kurohashi (2012), although it is not our major
. . focus. We leave this for future work.

We used the first 10,000 Japanese-English sen-io nq function words exist in aunsetsu, the last content

tence pairs in the NTCIR-9 training data for in- word is treated as the head word.

846



ther jointly (Joint) or independently [nd). We IND | REF
also performed monolingual induction of Finkel et BS 27.54

al. (2007) for comparison\{ ono). In each model, Mono 27.66| 26.83
a sequence of sampling =z, 7w, 3, ap, and~y is Joint[s] | 28.00| 28.00
repeated 10,000 times. In sampling and~y, hy- Joint[P] | 26.36| 26.72
perparameters,, as, 7., and-y, are set to 2, 1, Joint[s+P] | 27.99| 27.82
1, and 1, respectively, which is the same setting in Ind[s] 28.00| 27.93
Gael et al. (2008). In sampling parameterg, /', Ind[P] 28.11| 28.63
..., are setto 0.01. In the experiments, three types Ind[s+P] | 28.13| 28.62

of factors for the aligned English words are com-

pared: surface forms (‘s’), POS tags (‘P’), and theTable 1: Performance on Japanese-to-English
combination of both (‘'s+P’). Further, two types of Translation Measured by BLEU (%)

inference frameworks are comparethduction

(IND) andrefinement (REF). In both frame- _ _

works, each hidden statg is first initialized to the GHKM algorlthm (Mi and Huar_\g, 2008) af-
the POS tags assigned by MeCab (the IPA poder each parse tree is restructured into a binarized
tagset), and then each state is updated throud?f"Cked forest. Earameters are tqned on the devel-
the inference procedure described in Section 3_5o.pme'nt c!ata using XBLEU _(ROS“ etal., 2011) as
Note that inREF', the sampling distribution over an objective and L-BFGS (Liu and Nocedal, 1989)

2 is constrained to include only states that are asan optimization toolkit, since it is stable and less
refinement of the initially assigned POS tag. prone to randgmness, unlike MERT (Och, 2003)
or PRO (Hopkins and May, 2011). The develop-

Step 3. Training a POS Tagger and a ment test data is used to set up hyperparameters,
Dependency Parser i.e., to terminate tuning iterations.

In this step, we train a Japanese dependency parserWhen translating Japanese sentences, a parse
from the 10,000 Japanese dependency trees witfee for each sentence is constructed in the same
the induced POS tags which are derived from Stepvay as described earlier in this step, and then the
2. We employed a transition-based dependencparse trees are translated into English sentences
parser which can jointly learn POS tagging andusing the learned forest-to-string MT model.
dependency parsing (Hatori et al., 2011) under an _

incremental framewor. Note that the learned 42 EXperimental Results

parser can identify dependencies between wordsable 1 shows the performance for the test data
and attach an induced POS tag for each word. measured by case sensitive BLEU (Papineni et
al., 2002). We also present the performance of
our baseline forest-to-string MT systeml.§) us-

In this step, we train a forest-to-string MT model ing the original IPA POS tags. In Table 1, num-
based on the learned dependency parser in Stepgers in bold indicate that the systems outperform
We use an in-house developed hypergraph-basqge paselinespS and Mono. Under the Moses
toolkit, cicada for training and decoding with a phrase-based SMT system (Koehn et al., 2007)
tree-to-string model, which has been successfullyith the default settings, we achieved a 26.80%
employed in our previous work for system com-g|EU score.

bination (Watanabe and Sumita, 2011) and onlineé Tgple 1 shows that the proposed systems outper-
learning (Watanabe, 2012). All the Japanese anghrm the baseliné/ono. The differences between
English sentences in the NTCIR-9 training datane performance afnd[s+P] and}M ono are statis-

are segmented in the same way as in Step 1, angta)ly significant in the bootstrap method (Koehn,
then each Japanese sentence is parsed by the %04), with a 1% significance level both iV D
pendency parser learned in Step 3, which simulyngrE . The results indicate that integrating the
taneously assigns induced POS tags and word dgjigned target-side information in POS induction
pendencies. Finally, a forest-to-string MT modelmakes inferred tagsets more suitable for SMT.

is learned with Zhang et al., (2011), which ex- Tgple 1 also shows that the independent model

tracts translation rules by a forest-based variant o ore effective for SMT than the joint model.
Yhttp:/itriplet.cc/software/corbit/ This means that sparseness is a severe problem in

Step 4. Training a Forest-to-String MT

847



Model IND | REF Tagging Dependency
Joint[s+P] | 164 | 620 IND REF | IND REF

Ind[s+P] 102 | 517 Original 90.37 93.62
IPA POS tag 42 Mono | 90.75 88.04/ 91.77 91.51
Joini[s] | 89.08 86.73 91.55 91.14
Table 2: The Number of POS Tags Joint[P] | 80.54 79.98| 91.06 91.29
Joint[s+P] | 87.56 84.92] 91.31 91.10
POS induction when jointly encoding bilingualin- | {nd[s] | 87.62 84.33/ 92.06 92.58
formation into observations. Additionally, all the | {nd[P] | 90.21 88.50| 92.85 93.03
systems using the independent model outperform_{nd[s+P] | 89.57 86.12) 92.96 92.78

BS. The improvements are statistically significant _
in the bootstrap method (Koehn, 2004), with a 1% Table 3: Tagging and Dependency Accuracy (%)
significance level. The results show that the pro-

posed models can generaf[e_more favorable Poé<ample, 70 (mutual)0 0"
tagsets for SMT than an existing POS tagset.

is translated as
the adverb “mutually” in English. Other times,

In Table 1,REF's are at least comparable 10, Orjy 5 atached to words to make them the objects
better than/N Ds except forM ono. This shows ¢ \arbs  For example,[ (he)0 00000

that RE'F achieves better performance by Presenvigive)” is translated as “give him”. The POS tags

ing the clues from the original POS tagset. HoW-yy, 1, yis+p] in REF discriminated the two types.
ever, REF may suffer sever overfitting problem “poqe examples show that the proposed mod-
for Mono since no bilingual information was in- g|¢ ¢4 disambiguate POS tags that have different
corggrated. Further, when the full-level IPA POSg, 1 tions in English, whereas the IPA POS tagset
tags® were used inBS, the system achieved a treats them jointly. Thus, such discrimination im-

27'49% BLEU score, which is worse than the " broves the performance of a forest-to-string SMT.
sult using the second-level IPA POS tags. This

means that manual refinement without bilinguals 2
information may also cause an overfitting problem
in MT.

Impact of Tagging and Dependency
Accuracy

The performance of our methods depends not only
on the quality of the induced tag sets but also on
the performance of the dependency parser learned
5.1 Comparison to the IPA POS Tagset in Step 3 of Section 4.1. We cannot directly eval-
Table 2 shows the number of the IPA POS tagsiate the tagging accuracy of the parser trained
used in the experiments and the POS tags inducébirough Step 3 because we do not have any data
by the proposed models. This table shows thawith induced POS tags other than the 10,000-
each induced tagset contains more POS tags th&gntence data gained through Step 2. Thus we split
the IPA POS tagset. In the experimental datathe 10,000 data into the first 9,000 data for train-
some of Japanese verbs correspond to genuine Eig and the remaining 1,000 for testing, and then
glish verbs, some are nominalized, and others co@ dependency parser was learned in the same way
respond to English past participle verbs or preseras in Step 3.
participle verbs which modify other words. Re- Table 3 shows the result&riginal is the per-
spective examples are tise a card.”, ‘Using the formance of the parser learned from the training
index is faster.”, and “l explainusing an exam- data with the original POS tagset. Note that the de-
ple.”, where all the underlined words correspondpendency accuracies are measured on the automat-
to the same Japanese word]) f1”, whose IPA ically parsed dependency trees, not on the syntac-
POS tag is a verbInd[s+P] in REF generated tically correct gold standard trees. ThUsiginal
the POS tagset where the three types are assignadhieved the best dependency accuracy.
to separate POS groups. In Table 3, the performance for our bilingually-
The Japanese particld]” is sometimes at- induced POSsJoint and Ind, are lower than
tached to nouns to give them adverb roles. FoOriginal and Mono. It seems performing pars-
T 12277 tvnee ing and tagging with the bilingually-induced POS
tagset is too difficult when only monolingual in-

5 Discussion

12377 types of full-level IPA POS tags were included in our
experimental data.
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formation is available to the parser. However, our Speech Induction. IfProceedings of the 49th An-

bilingually-induced POSs, except fafoint[P], nual Meeting of the Association for Computational

with the lower accuracies are more effective for -N9UIStics pages 865-874.

SMT than the monolingually-induced POSs andTrevor Cohn and Phil Blunsom. 2009. A Bayesian

the original POSs, as indicated in Table 1. The Model of Syntax-Directed Tree to String Grammar

tagging accuracies fafoint[P] both inIN D and Induction. InProceedings of the 2009 Conference

REF ianificantly | than the oth hil on Empirical Methods in Natural Language Pro-
are significantly lower than the others, while  .osqing nages 352-361.

the dependency accuracies do not differ signifi- _ .

cantly. The lower tagging accuracies may directlyYuan Ding and Martha Palmer. 2005. Machine Trans-

; i . lation Using Probabilistic Synchronous Dependenc
reflect the lower translation qualities fdpint[P] Insertion G%ammars' Iﬁrocéedings of the z|103rd An- y

in Table 1. nual Meeting of the Association for Computational
Linguistics pages 541-548.
6 Conclusion
Thomas S. Ferguson. 1973. A Bayesian Analysis

We proposed a novel method for inducing POS of Some Nonparametric Problem&he Annals of
tags for SMT. The proposed method is a non- Statistics 1(2):209-230.

parametric Bayesian method, which infers hidderjenny Rose Finkel, Trond Grenager, and Christo-
states (i.e., POS tags) based on observations repre-pher D. Manning. 2007. The Infinite Tree. Rro-
senting not only source words themselves but also ceedings of the 45th Annual Meeting of the Associa-
aligned target words. Our experiments showed 1on Of Computational Linguisticpages 272-279.

that a more favorable POS tagset can be induceglirgen Van Gael, Yunus Saatci, Yee Whye Teh, and
by integrating aligned information, and further- Zoubin Ghahramani. 2008. Beam Sampling for

more, the POS tagset generated by the proposedthe Infinite Hidden Markov Model. IfProceedings
th, di ffective for SMT th isti of the 25th International Conference on Machine
method is more effective for an an existing Learning pages 1088—1095.

POS tagset (the IPA POS tagset).
Even though we employed word alignmentJurgen Van Gael, Andreas Vlachos, and Zoubin

. : . Ghahramani. 2009. The infinite HMM for unsuper-
from GIZA++ with potential errors, large gains vised PoS tagging. IRroceedings of the 2009 Con-

were achieved using our proposed method. We ference on Empirical Methods in Natural Language
would like to investigate the influence of align-  Processing: Volume 2 - Volume [2ages 678—687.

ment errars in the future. In addition, we are plan- ichel Galley, Jonathan Graehl, Kevin Knight, Daniel

ning to prove the effec'_tiveness of our propose Marcu, Steve DeNeefe, Wei Wang, and Ignacio
method for language pairs other than Japanese-to- Thayer. 2006. Scalable Inference and Training
English. We are also planning to introduce our of Context-Rich Syntactic Translation Models. In

proposed method to other syntax-based SMT, such Proceedings of the 21st International Conference on

. Computational Linguistics and 44th Annual Meet-
as a string-to-tree SMT and a tree-to-tree SMT. ing of the Association for Computational Linguis-

tics, pages 961-968.
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