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Abstract
Recent work on statistical quantifier scope
disambiguation (QSD) has improved upon
earlier work by scoping an arbitrary num-
ber and type of noun phrases. No corpus-
based method, however, has yet addressed
QSD when incorporating the implicit uni-
versal of plurals and/or operators such as
negation. In this paper we report early,
though promising, results for automatic
QSD when handling both phenomena. We
also present a general model for learning
to build partial orders from a set of pair-
wise preferences. We give an n log n algo-
rithm for finding a guaranteed approxima-
tion of the optimal solution, which works
very well in practice. Finally, we signifi-
cantly improve the performance of the pre-
vious model using a rich set of automati-
cally generated features.

1 Introduction

The sentence there is one faculty member in ev-
ery graduate committee is ambiguous with respect
to quantifier scoping, since there are at least two
possible readings: If one has wide scope, there is
a unique faculty member on every committee. If
every has wide scope, there can be different fac-
ulty members on each committee. Over the past
decade there has been some work on statistical
quantifier scope disambiguation (QSD) (Higgins
and Sadock, 2003; Galen and MacCartney, 2004;
Manshadi and Allen, 2011a). However, the extent
of the work has been quite limited for several rea-
sons. First, in the past two decades, the main focus
of the NLP community has been on shallow text
processing. As a deep processing task, QSD is not
essential for many NLP applications that do not re-
quire deep understanding. Second, there has been
a lack of comprehensive scope-disambiguated cor-
pora, resulting in the lack of work on extensive

statistical QSD. Third, QSD has often been con-
sidered only in the context of explicit quantifica-
tion such as each and every versus some and a/an.
These co-occurrences do not happen very often in
real-life data. For example, Higgins and Sadock
(2003) find fewer than 1000 sentences with two or
more explicit quantifiers in the Wall Street journal
section of Penn Treebank. Furthermore, for more
than 60% of those sentences, the order of the quan-
tifiers does not matter, either as a result of the logi-
cal equivalence (as in two existentials), or because
they do not have any scope interaction.

Having said that, with deep language processing
receiving more attention in recent years, QSD is
becoming a real-life issue.1 At the same time, new
scope-disambiguated corpora have become avail-
able (Manshadi et al., 2011b). In this paper, we
aim at tackling the third issue mentioned above.
We push statistical QSD beyond explicit quantifi-
cation, and address an interesting, yet practically
important, problem in QSD: plurality and quan-
tification. In spite of an extensive literature in
theoretical semantics (Hamm and Hinrichs, 2010;
Landmann, 2000), this topic has not been well in-
vestigated in computational linguistics. To illus-
trate the phenomenon, consider (1):

1. Three words start with a capital letter.

A deep understanding of this sentence, requires
deciding whether each word in the set, referred
to by Three words, starts with a potentially dis-
tinct capital letter (as in Apple, Orange, Banana)
or there is a unique capital letter which each word
starts with (as in Apple, Adam, Athens). By treat-
ing the NP Three words as a single atomic entity,
earlier work on automatic QSD has overlooked
this problem. In general, every plural NP poten-
tially introduces an implicit universal, ranging

1For example, Liang et al. (2011) in their state-of-the-art
statistical semantic parser within the domain of natural lan-
guage queries to databases, explicitly devise quantifier scop-
ing in the semantic model.
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over the collection of entities introduced by the
plural.2 Scoping this implicit universal is just as
important. While explicit universals may not oc-
cur very often in natural language, the usage of
plurals is very common. Plurals form 18% of the
NPs in our corpus and 20% of the nouns in Penn
Treebank. Explicit universals, on the other hand,
form less than 1% of the determiners in Penn Tree-
bank. Quantifiers are also affected by negation.
Previous work (e.g., Morante and Blanco, 2012)
has investigated automatically detecting the scope
and focus of negation. However, the scope of
negation with respect to quantifiers is a different
phenomenon. Consider the following sentence.

2. The word does not start with a capital letter.
Transforming this sentence into a meaning repre-
sentation language, for almost any practical pur-
poses, requires deciding whether the NP a capital
letter lies in the scope of the negation or outside
of it. The former describes the preferred reading
where The word starts with a lowercase letter as
in apple, orange, banana, but the latter gives the
unlikely reading, according to which there exists a
particular capital letter, say A, that The word starts
with, as in apple, Orange, Banana. By not in-
volving negation in quantifier scoping, a semantic
parser may produce an unintended interpretation.

Previous work on statistical QSD has been quite
restricted. Higgins and Sadock (2003), which
we refer to as HS03, developed the first statisti-
cal QSD system for English. Their system dis-
ambiguates the scope of exactly two explicitly
quantified NPs in a sentence, ignoring indefinite
a/an, definites and bare NPs. Manshadi and Allen
(2011a), hence MA11, go beyond those limita-
tions and scope an arbitrary number of NPs in a
sentence with no restriction on the type of quantifi-
cation. However, although their corpus annotates
the scope of negations and the implicit universal of
plurals, their QSD system does not handle those.

As a step towards comprehensive automatic
QSD, in this paper we present our work on auto-
matic scoping of the implicit universal of plurals
and negations. For data, we use a new revision
of MA11’s corpus, first introduced in Manshadi et
al. (2011b). The new revision, called QuanText,
carries a more detailed, fine-grained scope annota-
tion (Manshadi et al., 2012). The performance of

2Although plurals carry different types of quantification
(Herbelot and Copestake, 2010), almost always there exists
an implicit universal. The importance of scoping this univer-
sal, however, may vary based on the type of quantification.

our model defines a baseline for future efforts on
(comprehensive) QSD over QuanText. In addition
to addressing plurality and negation, this work im-
proves upon MA11’s in two directions.

• We theoretically justify MA11’s ternary-
classification approach, formulating it as a
general framework for learning to build par-
tial orders. An n log n algorithm is then given
to find a guaranteed approximation within a
fixed ratio of the optimal solution from a set
of pairwise preferences (Sect. 3.1).

• We replace MA11’s hand-annotated features
with a set of automatically generated linguis-
tic features. Our rich set of features signifi-
cantly improves the performance of the QSD
model, even though we give up the gold-
standard dependency features (Sect. 3.3).

2 Task definition

In QuanText, scope-bearing elements (or, as we
call them, scopal terms) of each sentence have
been identified using labeled chunks, as in (3).

3. Replace [1/ every line] in [2/ the file] ending
in [3/ punctuation] with [4/ a blank line] .

NP chunks follow the definition of baseNP
(Ramshaw and Marcus, 1995) and hence are flat.
Outscoping relations are used to specify the rel-
ative scope of scopal terms. The relation i > j
means that chunk i outscopes (or has wide scope
over) chunk j. Equivalently, chunk j is said to
have narrow scope with respect to i. Each sen-
tence is annotated with its most preferred scoping
(according to the annotators’ judgement), repre-
sented as a partial order:

4. SI : (2 > 1 > 4; 1 > 3)

If neither i > j nor j > i is entailed from the
scoping, i and j are incomparable. This happens
if both orders are equivalent (as in two existentials)
or when the two chunks have no scope interaction.

Since a partial order can be represented by a Di-
rected Acyclic Graph (DAG), we use DAGs to
represent scopings. For example, G1 in Figure 1
represents the scoping in (4).

2.1 Evaluation metrics
Given the gold standard DAG Gg = (V,Eg) and
the predicted DAG Gp = (V,Ep), a similarity
measure may be defined based on the ratio of the
number of pairs (of nodes) labeled correctly to the
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Figure 1: Scoping as DAG

total number of pairs. In order to take the transi-
tivity of outscoping relations into account, we use
the transitive closure (TC) of DAGs. Let G+ =
(V,E+) represent the TC of a DAG G = (V,E).3

G1 and G+
1 in Figure 1 illustrate this concept. We

now define the similiarty metric S+ as follows:

σ+ =
|E+

p ∩ E+
g | ∪ |Ē+

p ∩ Ē+
g |

|V |(|V | − 1)/2
(1)

in which Ḡ = (V, Ē) is the complement of the
underlying undirected version of G.

HS03 and others have used such a similarity
measure for evaluation purposes. A disadvantage
of this metric is that it gives the same weight to
outscoping and incomparability relations. In prac-
tice, if two scopal terms with equivalent ordering
(and hence, no outscoping relation) are incorrectly
labeled with an outscoping, the logical form still
remains valid. But if an outscoping relation is mis-
labeled, it will change the interpretation of the sen-
tence. Therefore, in MA11, we suggest defining a
precision/recall based on the number of outscop-
ing relations recovered correctly: 4

P+ =
|E+

p ∩ E+
g |

|E+
p |

, R+ =
|E+

p ∩ E+
g |

|E+
g |

(2)

3 (u, v) ∈ G+ ⇐⇒ ((u, v)∈G ∨
∃w1 . . . wn∈V, (u,w1) . . . (wn, v) ∈ E )

4MA11 argues that TC-based metrics tend to produce
higher numbers. For example if G3 in Figure 1 is a gold-
standard DAG andG1 is a candidate DAG, TC-based metrics
count 2>3 as another match, even though it is entailed from
2 > 1 and 1 > 3. They give an alternative metric based on
transitive reduction (TR), obtained by removing all the re-
dundant edges of a DAG. TR-based metrics, however, have
their own disadvantage. For example, if G2 is another candi-
date forG3, TR-based metrics produce the same numbers for
both G1 and G2, even though G1 is clearly closer to G3 than
G2. Therefore, in this paper we stick to TC-based metrics.

3 Our framework

3.1 Learning to do QSD
Since we defined QSD as a partial ordering, auto-
matic QSD would become the problem of learn-
ing to build partial orders. The machine learning
community has studied the problem of learning to-
tal orders (ranking) in depth (Cohen et al., 1999;
Furnkranz and Hullermeier, 2003; Hullermeier et
al., 2008). Many ranking systems create partial
orders as output when the confidence level for the
relative order of two objects is below some thresh-
old. However, the target being a partial order is
a fundamentally different problem. While the lack
of order between two elements is interpreted as the
lack of confidence in the former, it should be inter-
preted as incomparability in the latter. Learning
to build partial orders has not attracted much atten-
tion in the learning community, although as seen
shortly, the techniques developed for ranking can
be adopted for learning to build partial orders.

As mentioned before, a partial order P can be
represented by a DAG G, with a preceding b in P
if and only if a reaches b in G by a directed path.
Although there could be many DAGs representing
a partial order P , only one of those is a transitive
DAG.5 Therefore, in order to have a one-to-one re-
lationship between QSDs and DAGs, we only con-
sider the class of transitive DAGs, or TDAG. Ev-
ery non-transitive DAG will be converted into its
transitive counterpart by taking its transitive clo-
sure (as shown in Figure 1).

Consider V , a set of nodes and a TDAG G =
(V,E). It would help to think of disconnected
nodes u, v of G, as connected with a null edge ε.
We define the labeling function δG : V × V −→
{+,−, ε} assigning one of the three labels to each
pair of nodes in G:

δG(u, v) =





+ (u, v) ∈ G
− (v, u) ∈ G
ε otherwise

(3)

Given the true TDAG Ĝ = (V, Ê), and a candidate
TDAG G, we define the Loss function to be the
total number of incorrect edges:

L(G, Ĝ) =
∑

u≺v∈V
I(δG(u, v) 6= δĜ(u, v)) (4)

in which ≺ is an arbitrary total order over the
nodes in V 6, and I(·) is the indicator function. We

5G is transitive iff (u, v), (v, w) ∈ G =⇒ (u,w) ∈ G.
6E.g., the left-to-right order of the corresponding chunks

in the sentence.
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adopt a minimum Bayes risk (MBR) approach,
with the goal of finding the graph with the lowest
expected loss against the (unknown) target graph:

G∗ = argmin
G∈TDAG

EĜ

[
L(G, Ĝ)

]
(5)

Substituting in the definition of the loss function
and exchanging the order of the expectation and
summation, we get:

G∗ = argmin
G∈TDAG

∑

u≺v∈V
EĜ
[
I(δG(u, v) 6= δĜ(u, v)

]

= argmin
G∈TDAG

∑

u≺v∈V
P (δG(u, v) 6= δĜ(u, v)) (6)

This means that in order to solve Eq. (5), we need
only the probabilities of each of the three labels for
each of the C(n, 2) = n(n− 1)/2 pairs of nodes7

in the graph, rather than a probability for each
of the superexponentially many possible graphs.
We train a classifier to estimate these probabili-
ties directly for a given pair. Therefore, we have
reduced the problem of predicting a partial order
to pairwise comparison, analogous to ranking by
pairwise comparison or RPC (Hullermeier et al.,
2008; Furnkranz and Hullermeier, 2003), a popu-
lar technique in learning total orders. The differ-
ence though is that in RPC, the comparison is a
(soft) binary classification, while for partial orders
we have the case of incomparability (the label ε),
hence a (soft) ternary classification.

A soft ternary classifier generates three proba-
bilities, pu,v(+), pu,v(−), and pu,v(ε) for each pair
(u, v),8 corresponding to the three labels. Hence,
equation Eq. (6) can be rearranged as follows:

G∗ = argmax
G∈TDAG

∑

u≺v∈V
pu,v(δG(u, v)) (7)

Let Γp be a graph like the one in Figure 2, contain-
ing exactly three edges between every two nodes,
weighted by the probabilities from the n(n− 1)/2
classifiers. We call Γp the preference graph. In-
tuitively speaking, the solution to Eq. (7) is the
transitive directed acyclic subgraph of Γp that has
the maximum sum of weights. Unfortunately find-
ing this subgraph is an NP-hard problem.9

7Throughout this subsection, unless otherwise specified,
by a pair of nodes we mean a pair (u, v) with u≺v.

8pv,u for u≺v is defined in the obvious way: pv,u(+) =
pu,v(−), pv,u(−) = pu,v(+), and pv,u(ε) = pu,v(ε).

9 The proof is beyond the scope of this paper, but the idea
is similar to that of Cohen et al. (1999), on finding total or-
ders. Although they don’t use an RPC technique, Cohen et
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Figure 2: A preference graph over three nodes.

1. Let Γp be the preference graph and
set G to ∅.

2. ∀u ∈ V , let π(u) =
∑
v pu,v(+)−∑v pu,v(−).

3. Let u∗ = argmaxu π(u),
S− =

∑
v∈G pv,u∗(−) & Sε =

∑
v∈G pv,u∗(ε).

4. Remove u∗ and all its incident edges
from Γp.

5. Add u∗ to G; also if S− > Sε, for
every v ∈ G− u∗, add (v, u∗) to G.

6. If Γp is empty, output G, otherwise
repeat steps 2-5.

Figure 3: An approximation algorithm for Eq. (7)

Since it is very unlikely to find an efficient al-
gorithm to solve Eq. (7), instead, we propose the
algorithm in Figure 3 which finds an approximate
solution. The idea of the algorithm is simple. By
finding u∗ with the highest π(u) in step 3, we form
a topological order for the nodes in G in a greedy
way (see Footnote 9). We then add u∗ to G. A
directed edge is added either from every node in
G−u∗ to u∗ or from no node, depending on which
case makes the sum of the weights in G higher.

Theorem 1 The algorithm in Figure 3 is a 1/3-
OPT approximation algorithm for Eq. (7).

Proof idea. First of all, note that G is a TDAG,
because edges are only added to the most recently
created node in step 5. Let OPT be the optimum
value of the right hand side of Eq. (7). The sum of
all the weights in Γp is an upper bound for OPT :

∑

u≺v∈V

∑

λ∈{+,−,ε}
pu,v(λ) ≥ OPT

Step 5 of the algorithm guarantees that the labels
δG(u, v) satisfy:

∑

u≺v∈V
pu,v(δG(u, v)) ≥

∑

u≺v∈V
pu,v(λ) (8)

al. (1999) encounter a similar optimization problem. They
propose an approximation algorithm which finds the solution
(a total order) in a greedy way. Here we use the same greedy
technique to find a total order, but take it only as the topolog-
ical order of the solution (Figure 3).
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for any λ ∈ {+,−, ε}. Hence:
∑

u≺v∈V
pu,v(δG(u, v))=

1

3

(
3
∑

u≺v∈V
pu,v(δG(u, v))

)

≥ 1

3

∑

u≺v∈V

∑

λ∈{+,−,ε}
pu,v(λ)

≥ 1

3
OPT

In practice, we improve the algorithm in Figure 3,
while maintaining the approximation guarantee, as
follows. When adding a node u∗ to graph G, we
do not make a binary decision as to whether con-
nect every node in G to u∗ or none, but we use
some heuristics to choose a subset of nodes (pos-
sibly empty) in G that if connected to u∗ results
in a TDAG whose sum of weights is at least as
big as the binary none-vs-all case. As described in
Sec. 4, the algorithm works very well in our QSD
system, finding the optimum solution in virtually
all cases we examined.

3.2 Dealing with plurality and negation
Consider the following sentence with the plural
NP chunk the lines.

5. Merge [1p/ the lines], ending in [2/ a punctu-
ation], with [3/ the next non-blank line].

6. SI : (1c > 1d > 2; 1d > 3) 10

In QuanText, plural chunks are indexed with a
number followed by the lowercase letter “p”. As
seen in (6), the scoping looks different from before
in that the terms 1d and 1c are not the label of any
chunk. These two terms refer to the two quantified
terms introduced by the plural chunk 1p: 1c (for
collection) represents the set (or in better words
collection) of entities, defined by the plural, and 1d
(for distribution) refers to the implicit universal,
introduced by the plural. In other words, for a plu-
ral chunk ip, id represents the universally quanti-
fied entity over the collection ic. The outscoping
relation 1d > 2 in (6) states that every line in the
collection, denoted by 1c, starts with its own punc-
tuation character. Similarly, 1d > 3 indicates that
every line has its own next non-blank line. Fig-
ure 4(a) shows a DAG for the scoping in (6).

In (7) we have a sentence containing a negation.
In QuanText, negation chunks are labeled with an
uppercase “N” followed by a number.

10This scoping corresponds to the logical formula:
Dx1c, Collection(x1c) ∧ ∀x1d, In(x1d, x1c)⇒
(Line(x1d)∧(∃x2, Punctuation(x2)∧EndIn(x1d, x2))∧
(Dx3,¬blank(x3) ∧ next(x1d, x3) ∧merge(x1d, x3)))
It is straightforward to write a formula for, say, 1c > 2 > 1d.

(a)

1c 1d

2

3

(b)

2 1

3

N1 4

Figure 4: DAGs for scopings in (6) and (8)

7. Extract [1/ every word] in [2/ file “1.txt”],
which starts with [3/ a capital letter], but
does [N1/ not] end with [4/ a capital letter].

8. SI : (2 > 1 > 3; 1 > N1 > 4)

As seen here, a negation simply introduces a
chunk, which participates in outscoping relations
like an NP chunk. Figure 4(b) represents the scop-
ing in (8) as a DAG.

From these examples, as long as we create two
nodes in the DAG corresponding to each plu-
ral chunk, and one node corresponding to each
negation, there is no need to modify the under-
lying model (defined in the previous section).
However, when u (or v) is a negation (Ni) or
an implicit universal (id) node, the probabilities
pλu,v (λ ∈ {+,−, ε}) may come from a different
source, e.g. a different classification model or the
same model with a different set of features, as de-
scribed in the following section.

3.3 Feature selection

Previous work has shown that the lexical item
of quantifiers and syntactic clues (often extracted
from phrase structure trees) are good at predicting
quantifier scoping. Srinivasan and Yates (2009)
use the semantics of the head noun in a quantified
NP to predict the scoping. MA11 also find the lex-
ical item of the head noun to be a good predictor.
In this paper, we introduce a new set of syntac-
tic features which we found very informative: the
“type” dependency features of de Marneffe et al.
(2006). Adopting this new set of features, we out-
perform MA11’s system by a large margin. An-
other point to mention here is that the features that
are predictive of the relative scope of quantifiers
are not necessarily as helpful when determining
the scope of negation and vice versa. Therefore we
do not use exactly the same set of features when
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one of the scopal terms in the pair11 is a negation,
although most of the features are quite similar.

3.3.1 NP chunks
We first describe the set of features we have
adopted when both scopal terms in a pair are NP-
chunks. We have organized the features into dif-
ferent categories listed below.
Individual NP-chunk features
Following features are extracted for both NP
chunks in a pair.

• The part-of-speech (POS) tag of the head of chunk
• The lexical item of the head noun
• The lexical item of the determiner/quantifier
• The lexical item of the pre-determiner
• Does the chunk contain a constant (e.g. “do”, ’x’)?
• Is the NP-chunk a plural?

Implicit universal of a plural
Remember that every plural chunk i introduces
two nodes in the DAG, ic and id. Both nodes
are introduced by the same chunk i, therefore they
use the same set of features. The only exception
is a single additional binary feature for plural NP
chunks, which determines whether the given node
refers to the implicit universal of the plural (i.e. id)
or to the collection itself (i.e. ic).

• Does this node refer to an implicit universal?

Syntactic features – phrase structure tree
As mentioned above, we have used two sets
of syntactic features. The first is motivated by
HS03’s work and is based on the constituency (i.e.
phrase structure) tree T of the sentence. Since
our model is based on pairwise comparison, the
following features are defined for each pair of
chunks. In the following, by chunk we mean the
deepest phrase-level node in T dominating all the
words in the chunk. If the constituency tree is cor-
rect, this node is usually an NP node. Also, P
refers to the undirected path in T connecting the
two chunks.
• Syntactic category of the deepest common ancestor
• Does 1st/2nd chunk C-command 2nd/1st one?
• Length of the path P
• Syntactic categories of nodes on P
• Is there a conjoined node on P ?
• List of punctuation marks dominated by nodes on P

Syntactic features – dependency tree
Although regular “untyped” dependency relations
do not seem to help our QSD system in the pres-
ence of phrase-structure trees, we found the col-

11Since our model is based on pairwise comparison, every
sample is in fact a pair of nodes (u, v) of the DAG.

lapsed typed dependencies (de Marneffe and Man-
ning, 2008) very helpful, even when used on top of
the phrase-structure features. Below is the list of
features we extract from the collapsed typed de-
pendency tree Td of each sentence. In the follow-
ing, by noun we mean the node in Td which corre-
sponds to the head of the chunk. The choice of the
word noun, however, may be sloppy, as the head
of an NP chunk may not be a noun.
• Does 1st/2nd noun dominate 2nd/1st noun?
• Does 1st/2nd noun immediately dominate 2nd/1st?
• Type of incoming dependency relation of each noun
• Syntactic category of the deepest common ancestor
• Lexical item of the deepest common ancestor
• Length of the undirected path between the two

3.3.2 Negations
There are no sentences in our corpus with more
than one negation. Therefore, for every pair of
nodes with one negation, the other node must re-
fer to an NP chunk. We use the following word-
level, phrase-structure, and dependency features
for these pairs.
• Lexical item of the determiner for the NP chunk
• Does the NP chunk contain a constant?
• Is the NP chunk a plural?
• If so, does this node refer to its implicit universal?
• Does the negation C-command the NP chunk in T ?
• Does the NP chunk C-command the negation in T ?
• What is the POS of the parent p of negation in Td?
• Does p dominate the noun in Td?
• Does the noun dominate p in Td?
• Does p immediately dominate the noun in Td?
• If so, what is the type of the dependency?
• Does the noun immediately dominate p in Td?
• If so, what is the type of the dependency?
• Length of the undirected path between the two in Td

4 Experiments

QuanText contains 500 sentences with a total of
1750 chunks, that is 3.5 chunks/sentence on av-
erage. Of those, 1700 chunks are NP chunks.
The rest are scopal operators, mainly negation. Of
all the NP chunks, 320 (more than 18%) are plu-
ral, each introducing an implicit universal, that is,
an additional node in the DAG. Since we feed
each pair of elements to the classifiers indepen-
dently, each (unordered) pair introduces one sam-
ple. Therefore, a sentence with n scopal elements
creates C(n, 2) = n(n − 1)/2 samples for classi-
fication. When all the elements are taken into ac-
count,12 the total number of samples in the corpus
will be:

12Here by all elements we mean explicit chunks and the
implicit universals. QuanText labels some other (implicit) el-
ements, which we have not been handled in this work. In
particular, some nouns introduce two entities: a type and a
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∑

i

C(ni, 2) ≈ 4500 (9)

Where ni is the number of scopal terms introduced
by sentence i. Out of the 4500 samples, around
1800 involve at least one implicit universal (i.e.,
id), but only 120 samples contain a negation. We
evaluate the performance of the system for implicit
universals and negation both separately and in the
context of full scope disambiguation. We split the
corpus at random into three sets of 50, 100, and
350 sentences, as development, test, and train sets
respectively.13

To extract part-of-speech tags, phrase structure
trees, and typed dependencies, we use the Stan-
ford parser (Klein and Manning, 2003; de Marn-
effe et al., 2006) on both train and test sets. Since
we are using SVM, we have passed the confidence
levels through a softmax function to convert them
into probabilities P λu,v before applying the algo-
rithm of Section 3. We take MA11’s system as the
baseline. However, in order to have a fair com-
parison, we have used the output of the Stanford
parser to automatically generate the same features
that MA11 have hand-annotated.14 In order to run
the baseline system on implicit universals, we take
the feature vector of a plural NP and add a fea-
ture to indicate that this feature vector represents
the implicit universal of the corresponding chunk.
Similarly, for negation we add a feature to show
that the chunk represents a negation. As shown in
Section 3.3.2, we have used a more compact set
of features for negations. Once again, in order to
have a fair comparison, we apply a similar modifi-
cation to the baseline system. We also use the ex-
act same classifier as used in MA11.15 Figure 5(a)
compares the performance of our model, which we
refer to as RPC-SVM-13, with the baseline sys-
tem, but only on explicit NP chunks.16 The goal
for running this experiment has been to compare
the performance of our model to the baseline sys-

token, as described by Manshadi et al. (2012). In this work,
we have only considered the token entity introduced by those
nouns and have ignored the type entity.

13Since the percentage of sentences with negation is small,
we made sure that those sentences are distributed uniformly
between three sets.

14MA11’s features are similar to part-of-speech tags and
untyped dependency relations.

15SVMMulticlass from SVM-light (Joachims, 1999).
16In all experiments, we ignore NP conjunctions. Previous

work treats a conjunction of NPs as separate NPs. However,
similar to plurals, NP conjunctions (disjunctions) introduce
an extra scopal element: a universal (existential). We are
working on an annotation scheme for NP conjunctions, so
we have left this for after the annotations become available.

NP-Chunks only (no id or 
negation) σ+ P+ R+ F+ AR A

Baseline (MA11) 0.762 0.638 0.484 0.550 0.59 0.47

Our model (RPC-SVM-13) 0.827 0.743 0.677 0.709 0.68 0.55

(a) Scoping explicit NP chunks

Overall system (including 
negation and implicit universals) σ+ P+ R+ F+ AR A

Baseline (MA11) 0.787 0.688 0.469 0.557 0.59 0.47

Our model (RPC-SVM-13) 0.863 0.784 0.720 0.751 0.69 0.55

(b) Scoping all elements (including id and Ni)

Figure 5: Performance on QuanText data

tem on the task that it was actually defined to per-
form (that is scoping only explicit NP chunks).

As seen in this table, by incorporating a richer
set of features and a better learning algorithm, our
model outperforms the baseline by almost 15%.
The measure A in these figures shows sentence-
based accuracy. A sentence counts as correct iff
every pair of scopal elements has been labeled
correctly. Therefore A is a tough measure. Fur-
thermore, it is sensitive to the length of the sen-
tence. Following MA11, we have computed an-
other sentence-based accuracy measure, AR. In
computing AR, a sentence counts as correct iff all
the outscoping relations have been recovered cor-
rectly – in other words, iff R = 100%, regardless
of the value of P. AR may be more practically
meaningful, because if in the correct scoping of
the sentence there is no outscoping between two
elements, inserting one does not affect the inter-
pretation of the sentence. In other words, precision
is less important for QSD in practice.

Figure 5(b) gives the performance of the over-
all model when all the elements including the im-
plicit universals and the negations are taken into
account. That the F-score of our model for the
second experiment is 0.042 higher than F-score for
the first indicates that scoping implicit universals
and/or negations must be easier than scoping ex-
plicit NP chunks. In order to find how much one or
both of the two elements contribute to this gain, we
have run two more experiments, scoping only the
pairs with at least one implicit universal and pairs
with one negation, respectively. Figure 6 reports
the results. As seen, the contribution in boosting
the overall performance comes from the implicit
universals while negations, in fact, lower the per-
formance. The performance for pairs with implicit
universal is higher because universals, in general,
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Implicit universals only (pairs 
with at least one id) P+ R+ F+

Baseline (MA11) 0.776 0.458 0.576
Our model (RPC-SVM-13) 0.836 0.734 0.782

(a) Pairs with at least one implicit universal

Negation only (pairs with one 
negation) P+ R+ F+

Baseline (MA11) 0.502 0.571 0.534

Our model (RPC-SVM-13) 0.733 0.55 0.629

(b) Pairs with at least one negation

Figure 6: Implicit universals and negations

are easier to scope, even for the human annota-
tors.17 There are several reasons for poor perfor-
mance with negations as well. First, the number
of negations in the corpus is small, therefore the
data is very sparse. Second, the RPC model does
not work well for negations. Scoping a negation
relative to an NP chunk, with which it has a long
distance dependency, often depends on the scope
of the elements in between. Third, scoping nega-
tion usually requires a deep semantic analysis.

In order to see how well our approximation al-
gorithm is working, similar to the approach of
Chambers and Jurafsky (2008), we tried an ILP
solver18 for DAGs with at most 8 nodes to find the
optimum solution, but we found the difference in-
significant. In fact, the approximation algorithm
finds the optimum solution in all but one case.19

5 Related work

Since automatic QSD is in general challenging,
traditionally quantifier scoping is left underspec-
ified in deep linguistic processing systems (Al-
shawi and Crouch, 1992; Bos, 1996; Copestake et
al., 2001). Some efforts have been made to move
underspecification frameworks towards weighted
constraint-based graphs in order to produce the
most preferred reading (Koller et al., 2008), but
the source of these types of constraint are often
discourse, pragmatics, world knowledge, etc., and
hence, they are hard to obtain automatically. In or-

17Trivially, we have taken the relation outscoping ic > id
for granted and not counted it towards higher performance.

18lpsolve: http://sourceforge.net/projects/lpsolve
19To find the gain that can be obtained with gold-standard

parses, we used MA11’s system with their hand-annotated
and the equivalent automatically generated features. The
former boost the performance by 0.04. Incidentally, HS03
lose almost 0.04 when switching to automatically generated
parses.

der to evade scope disambiguation, yet be able to
perform entailment, Koller and Thater (2010) pro-
pose an algorithm to calculate the weakest read-
ings20 from a scope-underspecified representation.

Early efforts on automatic QSD (Moran, 1988;
Hurum, 1988) were based on heuristics, manually
formed into rules with manually assigned weights
for resolving conflicts. To the best of our knowl-
edge, there have been four major efforts on statisti-
cal QSD for English: Higgins and Sadock (2003),
Galen and MacCartney (2004), Srinivasan and
Yates (2009), and Manshadi and Allen (2011a).
The first three only scope two scopal terms in a
sentence, where the scopal term is an NP with an
explicit quantification. MA11 is the first to scope
any number of NPs in a sentence with no restric-
tion on the type of quantification. Besides ignor-
ing negation and implicit universals, their system
has some other limitations too. First, the learning
model is not theoretically justified. Second, hand-
annotated features (e.g. dependency relations) are
used on both the train and the test data.

6 Summary and future work

We develop the first statistical QSD model ad-
dressing the interaction of quantifiers with nega-
tion and the implicit universal of plurals, defining
a baseline for this task on QuanText data (Man-
shadi et al., 2012). In addition, our work improves
upon Manshadi and Allen (2011a)’s work by (ap-
proximately) optimizing a well justified criterion,
by using automatically generated features instead
of hand-annotated dependencies, and by boosting
the performance by a large margin with the help of
a rich feature vector.

This work can be improved in many directions,
among which are scoping more elements such as
other scopal operators and implicit entities, de-
ploying more complex learning models, and de-
veloping models which require less supervision.
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