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Abstract

We presentlangid.py, an off-the-shelf lan-
guage identification tool. We discuss the de-
sign and implementation oflangid.py, and
provide an empirical comparison on 5 long-
document datasets, and 2 datasets from the mi-
croblog domain. We find thatlangid.py
maintains consistently high accuracy across
all domains, making it ideal for end-users that
require language identification without want-
ing to invest in preparation of in-domain train-
ing data.

1 Introduction

Language identification (LangID) is the task of de-
termining the natural language that a document is
written in. It is a key step in automatic processing
of real-world data, where a multitude of languages
may be present. Natural language processing tech-
niques typically pre-suppose that all documents be-
ing processed are written in a given language (e.g.
English), but as focus shifts onto processing docu-
ments from internet sources such as microblogging
services, this becomes increasingly difficult to guar-
antee. Language identification is also a key compo-
nent of many web services. For example, the lan-
guage that a web page is written in is an important
consideration in determining whether it is likely to
be of interest to a particular user of a search engine,
and automatic identification is an essential step in
building language corpora from the web. It has prac-
tical implications for social networking and social
media, where it may be desirable to organize com-
ments and other user-generated content by language.
It also has implications for accessibility, since it en-
ables automatic determination of the target language
for automatic machine translation purposes.

Many applications could potentially benefit from
automatic language identification, but building a
customized solution per-application is prohibitively
expensive, especially if human annotation is re-
quired to produce a corpus of language-labelled
training documents from the application domain.
What is required is thus a generic language identi-
fication tool that is usableoff-the-shelf, i.e. with no
end-user training and minimal configuration.

In this paper, we presentlangid.py, a LangID
tool with the following characteristics: (1) fast,
(2) usable off-the-shelf, (3) unaffected by domain-
specific features (e.g. HTML, XML, markdown),
(4) single file with minimal dependencies, and (5)
flexible interface

2 Methodology

langid.py is trained over a naive Bayes clas-
sifier with a multinomial event model (McCallum
and Nigam, 1998), over a mixture of byten-grams
(1≤n≤4). One key difference from conventional
text categorization solutions is thatlangid.py
was designed to be usedoff-the-shelf. Since
langid.py implements a supervised classifier,
this presents two primary challenges: (1) a pre-
trained model must be distributed with the classi-
fier, and (2) the model must generalize to data from
different domains, meaning that in its default con-
figuration, it must have good accuracy over inputs
as diverse as web pages, newspaper articles and mi-
croblog messages. (1) is mostly a practical consid-
eration, and so we will address it in Section 3. In
order to address (2), we integrate information about
the language identification task from a variety of do-
mains by usingLD feature selection (Lui and Bald-
win, 2011).

Lui and Baldwin (2011) showed that it is rela-
tively easy to attain high accuracy for language iden-
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Dataset Documents Langs Doc Length (bytes)

EUROGOV 1500 10 1.7×10
4
±3.9×10

4

TCL 3174 60 2.6×10
3
±3.8×10

3

WIKIPEDIA 4963 67 1.5×10
3
±4.1×10

3

EMEA 19988 22 2.9×10
5
±7.9×10

5

EUROPARL 20828 22 1.7×10
2
±1.6×10

2

T-BE 9659 6 1.0×10
2
±3.2×10

1

T-SC 5000 5 8.8×10
1
±3.9×10

1

Table 1: Summary of the LangID datasets

tification in a traditional text categorization setting,
where we have in-domain training data. The task be-
comes much harder when trying to performdomain
adaptation, that is, trying to use model parameters
learned in one domain to classify data from a dif-
ferent domain.LD feature selection addresses this
problem by focusing on key features that are relevant
to the language identification task. It is based on In-
formation Gain (IG), originally introduced as a split-
ting criteria for decision trees (Quinlan, 1986), and
later shown to be effective for feature selection in
text categorization (Yang and Pedersen, 1997; For-
man, 2003).LD represents the difference in IG with
respect to language and domain. Features with a
highLD score are informative about language with-
out being informative about domain. For practi-
cal reasons, before the IG calculation the candidate
feature set is pruned by means of a term-frequency
based feature selection.

Lui and Baldwin (2011) presented empirical evi-
dence thatLD feature selection was effective for do-
main adaptation in language identification. This re-
sult is further supported by our evaluation, presented
in Section 5.

3 System Architecture

The full langid.py package consists of the
language identifierlangid.py, as well as two
support modulesLDfeatureselect.py and
train.py.
langid.py is the single file which packages the

language identification tool, and the only file needed
to uselangid.py for off-the-shelf language iden-
tification. It comes with an embedded model which
covers 97 languages using training data drawn from
5 domains. Tokenization and feature selection are
carried out in a single pass over the input document
via Aho-Corasick string matching (Aho and Cora-

sick, 1975). The Aho-Corasick string matching al-
gorithm processes an input by means of a determin-
istic finite automaton (DFA). Some states of the au-
tomaton are associated with the completion of one
of then-grams selected throughLD feature selec-
tion. Thus, we can obtain our document represen-
tation by simply counting the number of times the
DFA enters particular states while processing our in-
put. The DFA and the associated mapping from state
to n-gram are constructed during the training phase,
and embedded as part of the pre-trained model.

The naive Bayes classifier is implemented using
numpy,1 the de-facto numerical computation pack-
age for Python.numpy is free and open source, and
available for all major platforms. Usingnumpy in-
troduces a dependency on a library that is not in the
Python standard library. This is a reasonable trade-
off, as numpy provides us with an optimized im-
plementation of matrix operations, which allows us
to implement fast naive Bayes classification while
maintaining the single-file concept oflangid.py.
langid.py can be used in the three ways:

Command-line tool: langid.py supports an
interactive mode with a text prompt and line-by-line
classification. This mode is suitable for quick in-
teractive queries, as well as for demonstration pur-
poses.langid.py also supports language identi-
fication of entire files via redirection. This allows a
user to interactively explore data, as well as to inte-
grate language identification into a pipeline of other
unix-style tools. However, use via redirection is
not recommended for large quantities of documents
as each invocation requires the trained model to be
unpacked into memory. Where large quantities of
documents are being processed, use as a library or
web service is preferred as the model will only be
unpacked once upon initialization.

Python library: langid.py can be imported as
a Python module, and provides a function that ac-
cepts text and returns the identified language of the
text. This use oflangid.py is the fastest in a
single-processor setting as it incurs the least over-
head.

Web service: langid.py can be started as a
web service with a command-line switch. This

1http://numpy.scipy.org
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allows language identitication by means of HTTP
PUT and HTTP POST requests, which return JSON-
encoded responses. This is the preferred method of
usinglangid.py from other programming envi-
ronments, as most languages include libraries for in-
teracting with web services over HTTP. It also al-
lows the language identification service to be run as
a network/internet service. Finally,langid.py is
WSGI-compliant,2 so it can be deployed in a WSGI-
compliant web server. This provides an easy way to
achieve parallelism by leveraging existing technolo-
gies to manage load balancing and utilize multiple
processors in the handling of multiple concurrent re-
quests for a service.
LDfeatureselect.py implements theLD

feature selection. The calculation of term frequency
is done in constant memory by index inversion
through a MapReduce-style sharding approach. The
calculation of information gain is also chunked to
limit peak memory use, and furthermore it is paral-
lelized to make full use of modern multiprocessor
systems.LDfeatureselect.py produces a list
of byten-grams ranked by theirLD score.
train.py implements estimation of parameters

for the multinomial naive Bayes model, as well as
the construction of the DFA for the Aho-Corasick
string matching algorithm. Its input is a list of byte
patterns representing a feature set (such as that se-
lected viaLDfeatureselect.py), and a corpus
of training documents. It produces the final model as
a single compressed, encoded string, which can be
saved to an external file and used bylangid.py
via a command-line option.

4 Training Data

langid.py is distributed with an embedded
model trained using the multi-domain language
identification corpus of Lui and Baldwin (2011).
This corpus contains documents in a total of 97 lan-
guages. The data is drawn from 5 different do-
mains: government documents, software documen-
tation, newswire, online encyclopedia and an inter-
net crawl, though no domain covers the full set of
languages by itself, and some languages are present
only in a single domain. More details about this cor-
pus are given in Lui and Baldwin (2011).

2http://www.wsgi.org

We do not perform explicit encoding detection,
but we do not assume that all the data is in the same
encoding. Previous research has shown that explicit
encoding detection is not needed for language iden-
tification (Baldwin and Lui, 2010). Our training data
consists mostly of UTF8-encoded documents, but
some of our evaluation datasets contain a mixture
of encodings.

5 Evaluation

In order to benchmarklangid.py, we carried out
an empirical evaluation using a number of language-
labelled datasets. We compare the empirical results
obtained fromlangid.py to those obtained from
other language identification toolkits which incor-
porate a pre-trained model, and are thus usableoff-
the-shelf for language identification. These tools are
listed in Table 3.

5.1 Off-the-shelf LangID tools

TextCat is an implementation of the method of
Cavnar and Trenkle (1994) by Gertjan van Noord.
It has traditionally been the de facto LangID tool of
choice in research, and is the basis of language iden-
tification/filtering in the ClueWeb09 Dataset (Callan
and Hoy, 2009) and CorpusBuilder (Ghani et al.,
2004). It includes support for training with user-
supplied data.
LangDetect implements a Naive Bayes classi-

fier, using a charactern-gram based representation
without feature selection, with a set of normaliza-
tion heuristics to improve accuracy. It is trained on
data from Wikipedia,3 and can be trained with user-
supplied data.
CLD is a port of the embedded language identi-

fier in Google’s Chromium browser, maintained by
Mike McCandless. Not much is known about the
internal design of the tool, and there is no support
provided for re-training it.

The datasets come from a variety of domains,
such as newswire (TCL), biomedical corpora
(EMEA), government documents (EUROGOV, EU-
ROPARL) and microblog services (T-BE, T-SC). A
number of these datasets have been previously used
in language identification research. We provide a

3http://www.wikipedia.org
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Test Dataset
langid.py LangDetect TextCat CLD

Accuracy docs/s ∆Acc Slowdown ∆Acc Slowdown ∆Acc Slowdown

EUROGOV 0.987 70.5 +0.005 1.1× −0.046 31.1× −0.004 0.5×
TCL 0.904 185.4 −0.086 2.1× −0.299 24.2× −0.172 0.5×
WIKIPEDIA 0.913 227.6 −0.046 2.5× −0.207 99.9× −0.082 0.9×
EMEA 0.934 7.7 −0.820 0.2× −0.572 6.3× +0.044 0.3×
EUROPARL 0.992 294.3 +0.001 3.6× −0.186 115.4× −0.010 0.2×
T-BE 0.941 367.9 −0.016 4.4× −0.210 144.1× −0.081 0.7×
T-SC 0.886 298.2 −0.038 2.9× −0.235 34.2× −0.120 0.2×

Table 2: Comparison of standalone classification tools, in terms of accuracy and speed (documents/second), relative
to langid.py

Tool Languages URL

langid.py 97 http://www.csse.unimelb.edu.au/research/lt/resources/langid/
LangDetect 53 http://code.google.com/p/language-detection/
TextCat 75 http://odur.let.rug.nl/vannoord/TextCat/
CLD 64+ http://code.google.com/p/chromium-compact-language-detector/

Table 3: Summary of the LangID tools compared

brief summary of the characteristics of each dataset
in Table 1.

The datasets we use for evaluation are differ-
ent from and independent of the datasets from
which the embedded model oflangid.py was
produced. In Table 2, we report the accuracy of
each tool, measured as the proportion of documents
from each dataset that are correctly classified. We
present the absolute accuracy and performance for
langid.py, and relative accuracy and slowdown
for the other systems. For this experiment, we used
a machine with 2 Intel Xeon E5540 processors and
24GB of RAM. We only utilized a single core, as
none of the language identification tools tested are
inherently multicore.

5.2 Comparison on standard datasets

We compared the four systems on datasets used in
previous language identification research (Baldwin
and Lui, 2010) (EUROGOV, TCL, WIKIPEDIA ), as
well as an extract from a biomedical parallel cor-
pus (Tiedemann, 2009) (EMEA) and a corpus of
samples from the Europarl Parallel Corpus (Koehn,
2005) (EUROPARL). The sample of EUROPARL
we use was originally prepared by Shuyo Nakatani
(author ofLangDetect) as a validation set.
langid.py compares very favorably with other

language identification tools. It outperforms
TextCat in terms of speed and accuracy on all of
the datasets considered.langid.py is generally

orders of magnitude faster thanTextCat, but this
advantage is reduced on larger documents. This is
primarily due to the design ofTextCat, which re-
quires that the supplied models be read from file for
each document classified.

langid.py generally outperforms
LangDetect, except in datasets derived from
government documents (EUROGOV, EUROPARL).
However, the difference in accuracy between
langid.py andLangDetect on such datasets
is very small, andlangid.py is generally faster.
An abnormal result was obtained when testing
LangDetect on the EMEA corpus. Here,
LangDetect is much faster, but has extremely
poor accuracy (0.114). Analysis of the results re-
veals that the majority of documents were classified
as Polish. We suspect that this is due to the early
termination criteria employed byLangDetect,
together with specific characteristics of the corpus.
TextCat also performed very poorly on this
corpus (accuracy 0.362). However, it is important
to note thatlangid.py andCLD both performed
very well, providing evidence that it is possible to
build a generic language identifier that is insensitive
to domain-specific characteristics.

langid.py also compares well withCLD. It is
generally more accurate, althoughCLD does bet-
ter on the EMEA corpus. This may reveal some
insight into the design ofCLD, which is likely to
have been tuned for language identification of web
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pages. The EMEA corpus is heavy in XML markup,
which CLD andlangid.py both successfully ig-
nore. One area whereCLD outperforms all other sys-
tems is in its speed. However, this increase in speed
comes at the cost of decreased accuracy in other do-
mains, as we will see in Section 5.3.

5.3 Comparison on microblog messages

The size of the input text is known to play a sig-
nificant role in the accuracy of automatic language
identification, with accuracy decreasing on shorter
input documents (Cavnar and Trenkle, 1994; Sibun
and Reynar, 1996; Baldwin and Lui, 2010).

Recently, language identification of short strings
has generated interest in the research community.
Hammarstrom (2007) described a method that aug-
mented a dictionary with an affix table, and tested it
over synthetic data derived from a parallel bible cor-
pus. Ceylan and Kim (2009) compared a number of
methods for identifying the language of search en-
gine queries of 2 to 3 words. They develop a method
which uses a decision tree to integrate outputs from
several different language identification approaches.
Vatanen et al. (2010) focus on messages of 5–21
characters, usingn-gram language models over data
drawn from UDHR in a naive Bayes classifier.

A recent application where language identifica-
tion is an open issue is over the rapidly-increasing
volume of data being generated by social media.
Microblog services such as Twitter4 allow users to
post short text messages. Twitter has a worldwide
user base, evidenced by the large array of languages
present on Twitter (Carter et al., to appear). It is es-
timated that half the messages on Twitter are not in
English.5

This new domain presents a significant challenge
for automatic language identification, due to the
much shorter ‘documents’ to be classified, and is
compounded by the lack of language-labelled in-
domain data for training and validation. This has led
to recent research focused specifically on the task of
language identification of Twitter messages. Carter
et al. (to appear) improve language identification in
Twitter messages by augmenting standard methods

4http://www.twitter.com
5http://semiocast.com/downloads/

Semiocast_Half_of_messages_on_Twitter_
are_not_in_English_20100224.pdf

with language identification priors based on a user’s
previous messages and by the content of links em-
bedded in messages. Tromp and Pechenizkiy (2011)
present a method for language identification of short
text messages by means of a graph structure.

Despite the recently published results on language
identification of microblog messages, there is no
dedicated off-the-shelf system to perform the task.
We thus examine the accuracy and performance of
using generic language identification tools to iden-
tify the language of microblog messages. It is im-
portant to note that none of the systems we test have
been specifically tuned for the microblog domain.
Furthermore, they do not make use of any non-
textual information such as author and link-based
priors (Carter et al., to appear).

We make use of two datasets of Twitter messages
kindly provided to us by other researchers. The first
is T-BE (Tromp and Pechenizkiy, 2011), which con-
tains 9659 messages in 6 European languages. The
second is T-SC (Carter et al., to appear), which con-
tains 5000 messages in 5 European languages.

We find that over both datasets,langid.py has
better accuracy than any of the other systems tested.
On T-BE, Tromp and Pechenizkiy (2011) report
accuracy between 0.92 and 0.98 depending on the
parametrization of their system, which was tuned
specifically for classifying short text messages. In
its off-the-shelf configuration,langid.py attains
an accuracy of 0.94, making it competitive with
the customized solution of Tromp and Pechenizkiy
(2011).

On T-SC, Carter et al. (to appear) report over-
all accuracy of 0.90 forTextCat in the off-the-
shelf configuration, and up to 0.92 after the inclusion
of priors based on (domain-specific) extra-textual
information. In our experiments, the accuracy of
TextCat is much lower (0.654). This is because
Carter et al. (to appear) constrainedTextCat to
output only the set of 5 languages they considered.
Our results show that it is possible for a generic lan-
guage identification tool to attain reasonably high
accuracy (0.89) without artificially constraining the
set of languages to be considered, which corre-
sponds more closely to the demands of automatic
language identification to real-world data sources,
where there is generally no prior knowledge of the
languages present.
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We also observe that whileCLD is still the fastest
classifier, this has come at the cost of accuracy in an
alternative domain such as Twitter messages, where
bothlangid.py andLangDetect attain better
accuracy thanCLD.

An interesting point of comparison between the
Twitter datasets is how the accuracy of all systems
is generally higher on T-BE than on T-SC, despite
them covering essentially the same languages (T-BE
includes Italian, whereas T-SC does not). This is
likely to be because the T-BE dataset was produced
using a semi-automatic method which involved a
language identification step using the method of
Cavnar and Trenkle (1994) (E Tromp, personal com-
munication, July 6 2011). This may also explain
why TextCat, which is also based on Cavnar and
Trenkle’s work, has unusually high accuracy on this
dataset.

6 Conclusion

In this paper, we presentedlangid.py, an off-the-
shelf language identification solution. We demon-
strated the robustness of the tool over a range of test
corpora of both long and short documents (including
micro-blogs).
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