
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 306–310,
Jeju, Republic of Korea, 8-14 July 2012. c©2012 Association for Computational Linguistics

Improving the IBM Alignment Models Using Variational Bayes

Darcey Riley and Daniel Gildea
Computer Science Dept.
University of Rochester
Rochester, NY 14627

Abstract

Bayesian approaches have been shown to re-
duce the amount of overfitting that occurs
when running the EM algorithm, by placing
prior probabilities on the model parameters.
We apply one such Bayesian technique, vari-
ational Bayes, to the IBM models of word
alignment for statistical machine translation.
We show that using variational Bayes im-
proves the performance of the widely used
GIZA++ software, as well as improving the
overall performance of the Moses machine
translation system in terms of BLEU score.

1 Introduction

The IBM Models of word alignment (Brown et
al., 1993), along with the Hidden Markov Model
(HMM) (Vogel et al., 1996), serve as the starting
point for most current state-of-the-art machine trans-
lation systems, both phrase-based and syntax-based
(Koehn et al., 2007; Chiang, 2005; Galley et al.,
2004).

Both the IBM Models and the HMM are
trained using the EM algorithm (Dempster et al.,
1977). Recently, Bayesian techniques have become
widespread in applications of EM to natural lan-
guage processing tasks, as a very general method of
controlling overfitting. For instance, Johnson (2007)
showed the benefits of such techniques when ap-
plied to HMMs for unsupervised part of speech tag-
ging. In machine translation, Blunsom et al. (2008)
and DeNero et al. (2008) use Bayesian techniques to
learn bilingual phrase pairs. In this setting, which in-
volves finding a segmentation of the input sentences
into phrasal units, it is particularly important to con-
trol the tendency of EM to choose longer phrases,

which explain the training data well but are unlikely
to generalize.

However, most state-of-the-art machine transla-
tion systems today are built on the basis of word-
level alignments of the type generated by GIZA++
from the IBM Models and the HMM. Overfitting is
also a problem in this context, and improving these
word alignment systems could be of broad utility in
machine translation research.

Moore (2004) discusses details of how EM over-
fits the data when training IBM Model 1. He dis-
covers that the EM algorithm is particularly suscep-
tible to overfitting in the case of rare words, due to
the “garbage collection” phenomenon. Suppose a
sentence contains an English word e1 that occurs
nowhere else in the data, and its French transla-
tion f1. Suppose that same sentence also contains a
word e2 which occurs frequently in the overall data
but whose translation in this sentence, f2, co-occurs
with it infrequently. If the translation t(f2|e2) oc-
curs with probability 0.1, then the sentence will have
a higher probability if EM assigns the rare word and
its actual translation a probability of t(f1|e1) = 0.5,
and assigns the rare word’s translation to f2 a prob-
ability of t(f2|e1) = 0.5, than if it assigns a proba-
bility of 1 to the correct translation t(f1|e1). Moore
suggests a number of solutions to this issue, includ-
ing add-n smoothing and initializing the probabili-
ties based on a heuristic rather than choosing uni-
form probabilities. When combined, his solutions
cause a significant decrease in alignment error rate
(AER). More recently, Mermer and Saraclar (2011)
have added a Bayesian prior to IBM Model 1 us-
ing Gibbs sampling for inference, showing improve-
ments in BLEU scores.

In this paper, we describe the results of incorpo-
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rating variational Bayes (VB) into the widely used
GIZA++ software for word alignment. We use VB
both because it converges more quickly than Gibbs
sampling, and because it can be applied in a fairly
straightforward manner to all of the models imple-
mented by GIZA++. In Section 2, we describe VB
in more detail. In Section 3, we present results for
VB for the various models, in terms of perplexity of
held-out test data, alignment error rate (AER), and
the BLEU scores which result from using our ver-
sion of GIZA++ in the end-to-end phrase-based ma-
chine translation system Moses.

2 Variational Bayes and GIZA++

Beal (2003) gives a detailed derivation of a varia-
tional Bayesian algorithm for HMMs. The result is
a very slight change to the M step of the original
EM algorithm. During the M step of the original al-
gorithm, the expected counts collected in the E step
are normalized to give the new values of the param-
eters:

θxi|y =
E[c(xi|y)]∑
j E[c(xj |y)]

(1)

The variational Bayesian M step performs an inexact
normalization, where the resulting parameters will
add up to less than one. It does this by passing
the expected counts collected in the E step through
the function f(v) = exp(ψ(v)), where ψ is the
digamma function, and α is the hyperparameter of
the Dirichlet prior (Johnson, 2007):

θxi|y =
f(E[c(xi|y)] + α)

f(
∑

j(E[c(xj |y)] + α))
(2)

This modified M step can be applied to any model
which uses a multinomial distribution; for this rea-
son, it works for the IBM Models as well as HMMs,
and is thus what we use for GIZA++.

In practice, the digamma function has the effect
of subtracting 0.5 from its argument. When α is
set to a low value, this results in “anti-smoothing”.
For the translation probabilities, because about 0.5
is subtracted from the expected counts, small counts
corresponding to rare co-occurrences of words will
be penalized heavily, while larger counts will not be
affected very much. Thus, low values of α cause
the algorithm to favor words which co-occur fre-
quently and to distrust words that co-occur rarely.

Sentence pair count
e2 9
f3

e2 2
f2

e1 e2 1
f1 f2

Table 1: An example of data with rare words.

In this way, VB controls the overfitting that would
otherwise occur with rare words. On the other hand,
higher values of α can be chosen if smoothing is de-
sired, for instance in the case of the alignment prob-
abilities, which state how likely a word in position i
of the English sentence is to align to a word in po-
sition j of the French sentence. For these probabili-
ties, smoothing is important because we do not want
to rule out any alignment altogether, no matter how
infrequently it occurs in the data.

We implemented VB for the translation probabil-
ities as well as for the position alignment probabili-
ties of IBM Model 2. We discovered that adding VB
for the translation probabilities improved the perfor-
mance of the system. However, including VB for
the alignment probabilities had relatively little ef-
fect, because the alignment table in its original form
does some smoothing during normalization by inter-
polating the counts with a uniform distribution. Be-
cause VB can itself be a form of smoothing, the two
versions of the code behave similarly. We did not
experiment with VB for the distortion probabilities
of the HMM or Models 3 and 4, as these distribu-
tions have fewer parameters and are likely to have
reliable counts during EM. Thus, in Section 3, we
present the results of using VB for the translation
probabilities only.

3 Results

First, we ran our modified version of GIZA++ on a
simple test case designed to be similar to the exam-
ple from Moore (2004) discussed in Section 1. Our
test case, shown in Table 1, had three different sen-
tence pairs; we included nine instances of the first,
two instances of the second, and one of the third.

Human intuition tells us that f2 should translate to
e2 and f1 should translate to e1. However, the EM
algorithm without VB prefers e1 as the translation
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Figure 1: Determining the best value of α for the transla-
tion probabilities. Training data is 10,000 sentence pairs
from each language pair. VB is used for Model 1 only.
This table shows the AER for different values of α af-
ter training is complete (five iterations each of Models 1,
HMM, 3, and 4).

of f2, due to the “garbage collection” phenomenon
described above. The EM algorithm with VB does
not overfit this data and prefers e2 as f2’s translation.

For our experiments with bilingual data, we used
three language pairs: French and English, Chi-
nese and English, and German and English. We
used Canadian Hansard data for French-English,
Europarl data for German-English, and newswire
data for Chinese-English. For measuring align-
ment error rate, we used 447 French-English sen-
tences provided by Hermann Ney and Franz Och
containing both sure and possible alignments, while
for German-English we used 220 sentences pro-
vided by Chris Callison-Burch with sure alignments
only, and for Chinese-English we used the first 400
sentences of the data provided by Yang Liu, also
with sure alignments only. For computing BLEU
scores, we used single reference datasets for French-
English and German-English, and four references
for Chinese-English. For minimum error rate train-
ing, we used 1000 sentences for French-English,
2000 sentences for German-English, and 1274 sen-
tences for Chinese-English. Our test sets con-
tained 1000 sentences each for French-English and
German-English, and 686 sentences for Chinese-
English. For scoring the Viterbi alignments of each
system against gold-standard annotated alignments,
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Figure 2: Effect of variational Bayes on overfitting for
Model 1. Training data is 10,000 sentence pairs. This
table contrasts the test perplexities of Model 1 with vari-
ational Bayes and Model 1 without variational Bayes af-
ter different numbers of training iterations. Variational
Bayes successfully controls overfitting.

we use the alignment error rate (AER) of Och and
Ney (2000), which measures agreement at the level
of pairs of words.

We ran our code on ten thousand sentence pairs
to determine the best value of α for the transla-
tion probabilities t(f |e). For our training, we ran
GIZA++ for five iterations each of Model 1, the
HMM, Model 3, and Model 4. Variational Bayes
was only used for Model 1. Figure 1 shows how VB,
and different values of α in particular, affect the per-
formance of GIZA++ in terms of AER. We discover
that, after all training is complete, VB improves the
performance of the overall system, lowering AER
(Figure 1) for all three language pairs. We find that
low values of α cause the most consistent improve-
ments, and so we use α = 0 for the translation prob-
abilities in the remaining experiments. Note that,
while a value of α = 0 does not define a proba-
bilistically valid Dirichlet prior, it does not cause any
practical problems in the update equation for VB.

Figure 2 shows the test perplexity after GIZA++
has been run for twenty-five iterations of Model 1:
without VB, the test perplexity increases as training
continues, but it remains stable when VB is used.
Thus, VB eliminates the need for the early stopping
that is often employed with GIZA++.

After choosing 0 as the best value of α for the
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Figure 3: Performance of GIZA++ on different amounts
of test data. Variational Bayes is used for Model 1 only.
Table shows AER after all the training has completed
(five iterations each of Models 1, HMM, 3, and 4).

AER
French Chinese German

Baseline 0.14 0.42 0.43
M1 Only 0.12 0.39 0.41
HMM Only 0.14 0.42 0.42
M3 Only 0.14 0.42 0.43
M4 Only 0.14 0.42 0.43
All Models 0.19 0.44 0.45

Table 2: Effect of Adding Variational Bayes to Specific
Models

translation probabilities, we reran the test above
(five iterations each of Models 1, HMM, 3, and
4, with VB turned on for Model 1) on different
amounts of data. We found that the results for larger
data sizes were comparable to the results for ten
thousand sentence pairs, both with and without VB
(Figure 3).

We then tested whether VB should be used for the
later models. In all of these experiments, we ran
Models 1, HMM, 3, and 4 for five iterations each,
training on the same ten thousand sentence pairs that
we used in the previous experiments. In Table 2, we
show the performance of the system when no VB is
used, when it is used for each of the four models in-
dividually, and when it is used for all four models
simultaneously. We saw the most overall improve-
ment when VB was used only for Model 1; using VB
for all four models simultaneously caused the most
improvement to the test perplexity, but at the cost of

BLEU Score
French Chinese German

Baseline 26.34 21.03 21.14
M1 Only 26.54 21.58 21.73
All Models 26.46 22.08 21.96

Table 3: BLEU Scores

the AER.
For the MT experiments, we ran GIZA++ through

Moses, training Model 1, the HMM, and Model 4 on
100,000 sentence pairs from each language pair. We
ran three experiments, one with VB turned on for all
models, one with VB turned on for Model 1 only,
and one (the baseline) with VB turned off for all
models. When VB was turned on, we ran GIZA++
for five iterations per model as in our earlier tests,
but when VB was turned off, we ran GIZA++ for
only four iterations per model, having determined
that this was the optimal number of iterations for
baseline system. VB was used for the translation
probabilities only, with α set to 0.

As can be seen in Table 3, using VB increases
the BLEU score for all three language pairs. For
French, the best results were achieved when VB was
used for Model 1 only; for Chinese and German, on
the other hand, using VB for all models caused the
most improvements. For French, the BLEU score
increased by 0.20; for German, it increased by 0.82;
for Chinese, it increased by 1.05. Overall, VB seems
to have the greatest impact on the language pairs that
are most difficult to align and translate to begin with.

4 Conclusion

We find that applying variational Bayes with a
Dirichlet prior to the translation models imple-
mented in GIZA++ improves alignments, both in
terms of AER and the BLEU score of an end-to-end
translation system. Variational Bayes is especially
beneficial for IBM Model 1, because its lack of fer-
tility and position information makes it particularly
susceptible to the garbage collection phenomenon.
Applying VB to Model 1 alone tends to improve
the performance of later models in the training se-
quence. Model 1 is an essential stepping stone in
avoiding local minima when training the following
models, and improvements to Model 1 lead to im-
provements in the end-to-end system.
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